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Abstract
We present a generalized reverse correlation technique that can be used to
estimate the spatio-temporal receptive fields (STRFs) of sensory neurons
from their responses to arbitrary stimuli such as auditory vocalizations or
natural visual scenes. The general solution for STRF estimation requires
normalization of the stimulus–response cross-correlation by the stimulus auto-
correlation matrix. When the second-order stimulus statistics are stationary,
normalization involves only the diagonal elements of the Fourier-transformed
auto-correlation matrix (the power spectrum). In the non-stationary case
normalization requires the entire auto-correlation matrix. We present modelling
studies that demonstrate the feasibility and accuracy of this method as
well as neurophysiological data comparing STRFs estimated using natural
versus synthetic stimulus ensembles. For both auditory and visual neurons,
STRFs obtained with these different stimuli are similar, but exhibit systematic
differences that may be functionally significant. This method should be useful
for determining what aspects of natural signals are represented by sensory
neurons and may reveal novel response properties of these neurons.

1. Introduction

There is increasing evidence that sensory systems have evolved to optimally process
behaviourally relevant natural stimuli. For example, the auditory systems of many species
5 Corresponding author.
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appear to be tuned for those species’ vocalizations. Neurons in bat auditory cortex are selective
for echolocation calls (Ohlemiller et al 1996, Suga et al 1978); neurons in songbirds are
selective for the birds’ own songs (Margoliash 1986) and some neurons in primate auditory
cortex are selective for conspecific vocalizations (Rauschecker et al 1995). Furthermore the
stimulus–response function of lower level sensory neurons might be matched to the statistics
of natural stimuli. For example, neurons in the early auditory system of frogs are more efficient
at encoding sounds with natural power spectra (Rieke et al 1995). Similarly, the tuning of
neurons early in the mammalian visual system appears to be matched to the statistics of natural
scenes (Dan et al 1996, Field 1987).

One important goal of sensory neurophysiology is to further understand how sensory
systems encode natural stimuli. However, natural stimuli are complex and relatively little
is currently known about their statistical and mathematical structure. Therefore, in order to
describe the stimulus–response functions of sensory neurons, neurophysiologists have until
very recently used synthetic stimuli. These stimuli are typically varied along one or two
dimensions to estimate a neural tuning curve of theoretical interest. For example, spatial
characteristics of the stimulus are varied to obtain the frequency tuning for auditory neurons or
orientation and spatial frequency tuning for visual neurons. The responses to dynamic stimuli
are studied using similar methods to obtain temporal tuning characteristics (e.g. amplitude
modulation tuning in auditory neurons, motion tuning in visual neurons). When spatial and
temporal tuning are considered simultaneously, one obtains a spatio-temporal receptive field
(STRF). The STRF describes the linear transformation between a time varying spatial stimulus
and the neural response. STRFs were first used to describe the properties of neurons in the
auditory system (Aertsen and Johannesma 1981b) but are now commonly used in other sensory
modalities (DeAngelis et al 1995, DiCarlo and Johnson 2000).

STRFs have been estimated predominantly by using white-noise stimuli and extracting
the STRF by reverse correlation (DeBoer and Kuyper 1968). For white noise, the STRF
is proportional to the correlation between the stimulus and the response, and the reverse
correlation method relies on this fact. This technique is powerful and efficient, but has two
serious limitations. First, some sensory neurons are particularly selective for natural stimuli
and respond poorly to white noise. In this case the estimated STRF will be an unacceptably
noisy descriptor of the neuron’s transfer function (Aertsen and Johannesma 1981a, Nelken
et al 1997). Second, even if white noise drives the neuron, the resulting STRF may not predict
responses to natural stimuli. Complex stimuli can alter responses by pushing a neuron into
a different operational range or by evoking nonlinear response properties (Theunissen et al
2000). If we can obtain STRFs from behaviourally relevant natural stimuli, we can obtain a
rigorous description of a neuron’s responses in its natural operating regime.

In this paper we derive a more general reverse correlation method that can be used to
extract STRFs from neural responses to arbitrary stimuli, including natural stimuli. We show
that the analytical solution for the STRF takes different forms, depending on the nature of
the second-order statistics of the stimuli. We then demonstrate, both by modelling and in
neurophysiological experiments, how this method can be used to successfully estimate STRFs
using natural stimuli. The general solution to the reverse correlation problem is mathematically
involved, and there is no single reference that offers a rigorous summary of this method.
Therefore, we also include an appendix with a collection of the theorems and proofs that form
the foundations of STRF estimation.



Spatio-temporal receptive fields of sensory neurons 291

2. Methods

We present a general method for estimating the STRFs of sensory neurons from their responses
to complex stimulus ensembles. The solution takes the second-order statistics of the stimulus
ensemble into account. If the statistics are stationary, the solution has a simple analytical form
in the Fourier domain: the STRF is obtained by normalizing cross-stimulus–response power
spectral density by the power spectral density of the stimulus. We show that the discrete form
of this solution is a particular case of the general solution of the linear minimum mean-square
estimate (LMMSE) of the STRF. The general solution of the LMMSE involves normalizing
the cross-covariance matrix between the stimulus and response by the auto-covariance matrix
of the stimulus. The link between the general solution and the specific solution found in the
stationary case is given by the fact that the eigenvectors of a stationary stimulus covariance
matrix are the coefficients of the discrete Fourier transform (DFT).

We then demonstrate how the general solution can be applied when the spatial statistics
are non-stationary, a case that is important for both audition and vision. In audition, the
spectrographic representation of natural sounds does not have stationary spatial second-order
statistics. In vision the two-point correlation function is translation invariant for ensembles of
natural images, but this may not be true for data acquired in real neurophysiology experiments
using relatively brief, spatially bounded stimulus ensembles.

The STRF is defined mathematically as a spatio-temporal impulse response, h(t, x), that
relates a spatio-temporal description of a stimulus, s(t, x), to a neural response r(t). For
example, in the visual system, s(t, x) can represent the light intensity as a function of time and
position. In the auditory system, s(t, x) can represent the time-varying amplitude of sound in
a frequency band centred at x. If we assume that the neuronal system is time invariant, then a
linear estimate of the stimulus–response transfer function is obtained by convolving the STRF,
h(t, x), with the stimulus

r̂(t) =
∫ ∫

h(τ, x)s(t − τ, x) dτ dx + r0, (1)

where r0 is the mean neural response and r̂(t) is the estimate of the actual neural response r(t).
The impulse response function h(t, x) is the STRF of the neuron.

An analytical solution for h(t, x) and r0 can be found by minimizing the expectation value
of the square difference between r(t) and r̂(t), E[(r̂− r)2]. This expectation value is obtained
by averaging across data samples and can be rewritten as

〈(
r(t)− r̂(t)

)2〉
. It is easily shown

that the best mean-square estimate for r0 is simply 〈r〉 and, therefore, the response can be
normalized to a mean of zero. We can also assume without loss of generality that the stimulus
parameters have been re-scaled to have zero means.

2.1. Solution for one dimension in the stationary case: continuous formulation

The one-dimensional solution for h that satisfies equation (1) has been discussed elsewhere
for the case of stationary temporal statistics where the stimulus and response are continuous
functions of time (e.g. Marmeralis and Marmeralis 1978, Rieke et al 1997, Theunissen et al
1996). For completeness, a particular form of this solution is given in the appendix. The
following section presents the solution for the multi-dimensional case. Finally, in later sections
we demonstrate how the same answer can be obtained from the general derivation of the
problem in the discrete case, where time and space are sampled and represented as vectors.

The one-dimensional version of equation (1) is written as

r̂(t) =
∫ ∞

−∞
h(τ)s(t − τ) dτ . (2)
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As long as the second-order statistics of s(t) are stationary, the derivation can be obtained
directly in the Fourier domain. Denoting by R(ωt), H(ωt) and S(ωt ) the Fourier transform of
r(t), s(t) and h(t), respectively, the convolution in equation (2) then becomes a product in the
Fourier domain:

R̂(ωt ) = H(ωt)S(ωt ).

The solution for H(ωt) is then obtained with (appendix, proof 1)

H(ωt) = 〈S∗(ωt )R(ωt )〉
〈S∗(ωt )S(ωt )〉 , (3)

where the averages are taken across data samples and the * indicates the complex conjugate.
These equations demonstrate that the impulse response of the linear estimator is found

by normalizing the cross-correlation between the stimulus and the response (numerator) by
the power spectrum of the stimulus (denominator). If the stimulus is spectrally white then
the denominator is a constant and the impulse response of the linear estimator is proportional
to the cross-correlation between the stimulus and the response. In this case the solution can
be found directly in the time domain. With a zero-mean stimulus the cross-correlation can
be obtained simply by averaging the stimulus before each spike and reversing the time axis
(appendix, proof 2). In other words, the impulse response of the filter is proportional to the
spike-triggered average (STA) stimulus. This particular solution is the well known reverse
correlation method that was first applied in the auditory nerve (DeBoer and Kuyper 1968).

2.2. Solution for multiple spatial dimensions in the stationary case: continuous formulation

The derivation for the spatial dimension differs slightly from the derivation for the temporal
dimension. Rewriting equation (1) and ignoring the temporal dimension for the moment, we
have

r̂ =
∫ ∞

−∞
h(x)s(x) dx. (4)

One can rewrite the previous equation as

r̂(x) =
∫ ∞

−∞
h(x + x ′)s(x ′) dx ′, with r̂(x) = δ(x)r̂,

so that the Fourier domain representation of (4) can be written as

R̂(ωx) = H(ωx)S
∗(ωx).

A similar derivation to that used for the time dimension then leads to

H(ωx) = 〈S(ωx)r〉
〈S∗(ωx)S(ωx)〉 . (5)

Note that in this case the complex conjugate of S(ωx) does not appear in the numerator.
We can now combine the derivation for the time and space domains to find the solution

of equation (1) for the case of stationary spatial and temporal statistics. Taking the Fourier
transform of both the spatial and temporal dimension and defining R(ωt , x) = R(ωt)δ(x),
equation (1) can be rewritten in the Fourier domain as

R̂(ωt , ωx) = H(ωt , ωx)S
∗(ωt , ωx).

Therefore, for stationary temporal and spatial statistics

H (ωt , ωx) = 〈S(ωt , ωx)R(ωt )〉
〈S∗(ωt , ωx)S(ωt , ωx)〉 . (6)



Spatio-temporal receptive fields of sensory neurons 293

Just as for the spatial one-dimensional case, if the statistics of the stimulus are stationary
the impulse response of the linear filter is obtained by normalizing the two-dimensional Fourier
transform of the cross-correlation between the stimulus and response by the power spectrum of
the stimulus. Here, the power spectrum of the stimulus is also obtained by the two-dimensional
Fourier transform.

2.3. Solution in the general case: discrete formulation

If the second-order statistics of the stimulus ensemble vary in either time or space, the ensemble
is non-stationary. In this case, the general solution of equation (1) must be solved with a discrete
formulation. We therefore derive the general form of the solution in the discrete case and show
that the discrete form of equations (6) can be recovered when stationarity is assumed. We then
show that a similar solution can be found when the second-order stimulus statistics are not
stationary. An important case for sensory neurophysiology occurs when the temporal statistics
are stationary and the spatial statistics are not.

The discrete form of equation (1) can be written as

r̂[t] =
N−1∑
i=0

M−1∑
k=0

ht [i, k]s[t − i, k], (7)

where the index i sums over N points in time (the memory of the system) and the index k

sums over M spatial parameters. The number of time points, N , and the time interval between
sampling points depends on both the memory of the system and the highest temporal frequency
being encoded by the neuron (or present in the stimulus). Similarly, M depends on the spatial
extent of the receptive field of the neuron and on the highest spatial frequency of interest.

Equation (7) can be written in vector form by using one column to represent both the
spatial and temporal dimension of the stimulus

r̂[t] =
M×N−1∑
i=0

h[i]st [i] or r̂[t] = hT · st ,

where h = [h0, . . . , hN×M−1]T are the linear coefficients describing the linear estimator, and
both the stimulus and the response are sampled at particular points in time, t .

Minimizing 〈(r̂ − r)2〉 gives the solution for the vector h (appendix, proof 3):

h = C−1
ss Csr, (8)

where Css is the (NM) × (NM) auto-correlation matrix of the stimulus, s, and Csr is the
1 × (NM) cross-correlation vector of the stimulus, s, and the neural response, r[t] (see
appendix, proof 3).

Equation (8) is the well known multi-dimensional solution of the linear regression problem
(Kay 1993) and is similar in form to equations (3), (5) and (6). However, unlike those equations,
equation (8) does not involve any assumptions about the statistical properties of the stimulus
and therefore involves all possible cross-moments of the stimulus. To solve for h, equation (8)
requires the inversion of the stimulus auto-correlation matrix, Css (whereas equations (3), (5)
and (6) involve simple scalar divisions). If the statistics of the stimulus are not stationary in
time, equation (8) gives an estimate for h at each time point, t . In this case multiple samples
are obtained by repeating the experiment with identical initial conditions to generate multiple
stimulus–response combinations at time t . However, if the linear response of the neuron is
time invariant, then these estimates of h at different points in time can be averaged to obtain a
single time-invariant linear estimate of the neuron’s transfer function.



294 F E Theunissen et al

Equation (8) can be used to estimate the linear transfer function of a neuron regardless of
whether the transfer function is time invariant; whether the second-order temporal statistics
of the stimulus are stationary or whether the second-order spatial statistics of the stimulus are
stationary. We now simplify the calculation of equation (8) by deriving analytical expressions
for the case where the transfer function of the neuron is time invariant and the statistics of the
stimulus are stationary in time.

We can diagonalize the symmetric correlation matrix Css:

Css = Q�Q−1,

where Q is the eigenvector matrix of CSS and � is the diagonal matrix of eigenvalues.
Equation (8) can then be written as

Q−1h = �−1Q−1Csr. (9)

This indicates that a solution for h can be found by a scalar division along each eigenvector
in the eigenspace of the stimulus auto-correlation matrix. In the following section, we show
that when the statistics are stationary the eigenspace is the discrete Fourier space, so that
equation (9) becomes equivalent to (3), (5) and (6).

2.4. Solution for stationary statistics in the discrete case

In this section we assume that the transfer function is time invariant and that the temporal
statistics of the stimulus are stationary. Initially, we also assume that space is one dimensional.
Equation (7) is then simply

r̂[t] =
N−1∑
i=0

h[i]s[t − i]. (10)

Because the stimulus auto-correlation matrix (Css) is now independent of reference time, t , it
can be written as

Css =




css[0] css[1] · · · css[N − 1]
css[1] css[0] · · · css[N − 2]
...

...
. . .

...

css[N − 1] css[N − 2] · · · css[0]


 ,

where css[j ] is the correlation between two stimulus points separated by j time points,

css[j ] = 〈s[t]s[t − j ]〉.
Each row of this matrix is a copy of the previous row shifted by one index. Such matrices

are called symmetric Toeplitz. The eigenvalues and eigenvectors of the symmetric Toeplitz
matrix are given by the DFT (Davis 1979, appendix, proof 4).

Calling the matrix containing the DFT eigenvectors QFT, equation (9) can be rewritten as

Q−1
FT h = Q−1

FT Csr

�
. (11)

Equation (11) is the discrete form of equation (3) and, as in the continuous formulation, it
shows that the impulse response can be estimated by a scalar division in the Fourier domain.
The impulse response (in the Fourier domain) is given by the Fourier transform of the cross-
correlation between the stimulus and response, divided by the power of the stimulus. In
equation (11), � is the diagonal matrix whose elements are the power spectrum as a function
of temporal frequency (see appendix, proof 4). Note that in this section, the index of the
cross-correlation between the stimulus and response goes backward in time. This inversion of
the temporal axis results in the complex conjugate in the numerator of equation (3).
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A similar situation arises when the stimulus has stationary spatial statistics that are
independent of the temporal dimension. In equation (10) we simply replace s[t − i] by
s[i], where the N spatial parameters of the stimulus are represented by the index i. Just as
for the temporal parameters, the two-point correlation between s[i] and s[i + j ] depends only
on j , the distance between the points. The eigenvectors and eigenvalues of the stimulus auto-
correlation matrix are again given by the DFT. The spatial filter coefficients, h, are also given
by equation (11), which corresponds to equation (5). Note that in contrast to the solution
for the temporal dimension, the index in the cross-correlation between the stimulus and the
response goes forward in space. Therefore, there is no complex conjugate in the numerator of
equation (5).

2.5. General solution in the discrete case for stationary temporal statistics

In the more general case of equation (9), the stimulus auto-correlation matrix can be separated
into its spatial and temporal dimensions:

Css =

 c0,0 · · · c0,M−1

...
. . .

...

cM−1,0 · · · cM−1,M−1


 ,

where

ci,j =




〈s[t, i]s[t, j ]〉 〈s[t, i]s[t − 1, j ]〉 · · · 〈s[t, i]s[t − (N − 1), j ]〉
〈s[t − 1, i]s[t, j ]〉 〈s[t − 1, i]s[t − 1, j ]〉

.

.

.

.

.

.
. . .

〈s[t − (N − 1), i]s[t, j ]〉 · · · 〈s[t − (N − 1), i]s[t − (N − 1), j ]〉


.

The sub-matrix ci,j describes the correlations between spatial dimensions i and j for
all relevant time delays. When the system is linear and time invariant and the second-order
temporal statistics are stationary, each ci,j is symmetric Toeplitz and its eigenvectors are
contained in QFT defined above. Defining Qt as

Qt =

QFT 0

. . .

0 QFT


 ,

equation (9) can be written as

�tH = CSR, (12)

where

H = Q−1
t h, CSR = Q−1

t Csr

and

�t =

 �0,0 · · · �0,M−1

...
. . .

�M−1,0 �M,M


 .

Each �j,k is an N × N diagonal matrix describing the cross-correlation of stimulus
spatial dimensions j and k, for all N temporal frequencies, ω[i]. Because �t is composed of
diagonal matrices, equation (12) can be written as a set of linear equations for each frequency,
ω[i] (appendix, proof 5):

�(ωt [i])H (ωt [i]) = CSR (ωt [i]) , (13)
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where �(ωt [i]) is the M × M matrix describing all the stimulus correlations across spatial
dimensions for the temporal frequency ωt [i] (see appendix, proof 5).

The set of equations (13) can be use to solve for H , and h can then be obtained by taking
the inverse DFT. To solve (13), we must invert each �(ωt [i]). These matrices are Hermitian
and therefore have eigenvectors and real eigenvalues. Denoting by Qx(ωt [i]) the matrix of
eigenvectors of �(ωt [i]) and by �x (ωt [i]) the corresponding eigenvalues gives

H (ωt [i]) = Qx (ωt [i])�
−1
x (ωt [i])Q

−1
x (ωt [i])CSR (ωt [i]) . (14)

Equation (14) can be used to estimate the STRF of a sensory neuron without making any
assumptions about the second-order statistical properties of the spatial dimension.

In summary, the discrete solution for h with stationary temporal statistics is obtained by
the following steps: (1) calculate the stimulus auto-correlation and stimulus–response cross-
correlations; (2) take the Fourier transform along the temporal dimension of both the auto-
and cross-correlation; (3) for each temporal frequency, find the eigenvectors and eigenvalues
of the spatial auto-correlation matrix of the stimulus; (4) use the eigenvalues of this spatial
auto-correlation function to normalize the cross-correlation in the basis set defined by the
eigenvectors; (5) return to the original spatial basis set; (6) take the inverse temporal Fourier
transform.

When the second-order spatial statistics are also stationary then all the Qx(ωt [i]) are equal
to QFT. In this case steps (3) and (5) above consist of taking the spatial Fourier transform and
its inverse, and several steps ((2) and (3), and (5) and (6)) can be merged by taking the two-
dimensional (time–space) DFT. Step (4) then reduces to normalizing the stimulus–response
cross-correlation by the two-dimensional power spectrum of the stimulus. Mathematically,
we write

H (ωt [i], ωx[k]) = CSR (ωt [i], ωx[k])

Ps (ωt [i], ωx[k])
, (15)

where H (ωt [i], ωx[k]) = Q−1
FT H (ωt [i]), CSR (ωt [i], ωx[k]) = Q−1

FT CSR (ωt [i]) and
PS (ωt [i], ωx[k]) = �x (ωt [i]). Equation (15) is the discrete equivalent of equation (6).
The index i in these equations goes back in time.

In the results section we use these methods to estimate STRFs of both model and real
neurons using natural and synthetic stimuli. We also compare the results obtained using
equation (14), which does not assume spatial stationarity, with equation (15), where spatial
stationarity is assumed.

2.6. Goodness of fit measure

To judge the quality of the estimated STRF we need to compare the predicted response, r̂(t),
with the actual response, r(t). To prevent over-fitting such comparisons are made with a set
of response data (the validation set) that were not used to estimate the STRF.

We use two different measures to quantify the estimated STRF’s goodness of fit. The
first measure is based on the coherence between r(t) and r̂(t). The coherence is a function of
frequency and is given by Marmeralis and Marmeralis (1978):

γ 2(ω) =
〈
R(ω)R̂(ω)∗

〉〈
R(ω)∗R̂(ω)

〉
〈
R(ω)R(ω)∗

〉〈
R̂(ω)R̂(ω)∗

〉 . (16)

The coherence measures the correlation between the actual response and the estimator
at each temporal frequency, ω. Coherence is a good measure because it can be calculated
directly from a raw post-stimulus time histogram (PSTH) without any smoothing (i.e. for an
arbitrarily small time window). However, when the signal-to-noise ratio is low, coherence is



Spatio-temporal receptive fields of sensory neurons 297

a positively biased measure and additional statistical techniques must be used to guarantee its
validity (Thomson and Chave 1991). An overall goodness-of-fit estimate is obtained from the
coherence function by the following integration:

I = −
∫ ∞

0
log2(1 − γ 2) dω. (17)

Here I is expressed in bits/second and can be used to estimate a lower bound on the information
transmitted by the neuron if the noise (defined as the difference between r(t) obtained from
a single trial and r̂(t)) is Gaussian (Rieke et al 1997, Borst and Theunissen 1999). More
generally I serves as a measure of the integrated coherence.

Because neurophysiological experiments often report simple correlation, it is also useful
to calculate the correlation coefficient (cc) between r(t) and r̂(t):

cc =
〈(
r(t)− r(t)

)(
r̂(t)− r̂(t)

)〉
√〈
(r(t)− r(t))2

〉〈
(r̂(t)− r̂(t))2

〉 . (18)

It is important to note that the cc depends on the time binning that is used to obtain r(t) from
the PSTH. Small time bins tend to produce low ccs while large time bins tends to artificially
elevate ccs. Transmitted information is roughly proportional to the cc divided by the length
of the time window, so ccs can only be compared between similar time windows.

2.7. Numerical issues

Equations (14) and (15) both require the division of the stimulus and response cross-correlation
by the eigenvalues that describe the power of the stimulus ensemble in the appropriate basis.
The spatial Fourier basis is used for equation (15) and a different spatial eigenspace is used
in equation (14). When natural scenes or sounds are used as stimuli, or indeed for any band-
limited stationary stimulus, stimulus power may be very small or even zero for a set of spatial
and temporal frequencies. Similarly, the eigenvalues along specific temporal frequencies and
spatial eigendimensions in equation (14) will be very close to zero. To prevent numerical errors,
it is necessary to determine the subset of eigenvectors in equation (14) that have significant non-
zero eigenvalues. Similarly, for equation (15) it is necessary to determine the spatio-temporal
frequencies that have significant non-zero power.

To solve this problem, we include only those eigenvalues in the analysis that exceed a
specific fraction of the largest eigenvalue or peak power. The eigenvalues or power levels
below this threshold are considered to be insignificant. This is equivalent to performing a
singular-value decomposition (SVD) of the stimulus auto-correlation. In practice, we find
the threshold level maximizes the ability of estimated STRFs to predict responses obtained in
the validation data set (recall that these data were not used to estimate the STRF). Prediction
quality is determined by calculating the information value shown in equation (28). This cross-
validation method effectively removes noise from both the stimulus auto-correlation estimate
and the stimulus–response cross-correlation.

It is important to note that in this procedure we are, in effect, dividing the stimulus space
into two subspaces: one subspace that is sampled sufficiently for analysis, and another subspace
that is not sampled sufficiently. The estimated STRF will therefore only be representative of
the neuron’s true STRF if the experimental stimulus space adequately samples all the spatio-
temporal or eigenvector components covered by the neuron’s true STRF. We will return to this
important point in the results and discussion sections.
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3. Results

In the following sections, we first describe the second-order statistics of the natural sounds and
natural vision movies that we use in our experiments. We then show results from modelling
experiments that (1) demonstrate the validity of our methods, (2) compare the results obtained
with equation (14) versus equation (15) and (3) illustrate some potential limitations in the use
of bandpass and natural stimuli to estimate STRFs. Finally, we apply the methods to high-level
auditory neurons in songbirds and to visual neurons in area V1.

3.1. Properties of the second-order statistics of natural stimuli used in our experiments

One of the challenges of using natural stimuli to probe sensory systems is to describe the
sensory space itself. In order to estimate the linear stimulus response function, a complete
description of the second-order statistics of the stimulus ensemble is required. When these
second-order statistics are stationary they are given by the power spectrum.

3.1.1. Natural sounds. To characterize high-level auditory neurons, the one-dimensional
sound pressure waveform, s(t), is first transformed into a spectrographic representation, s(t, x),
where s(t, x) is the amplitude envelope of the sound in a set of frequency bands centred at x
(Klein et al 2000, Theunissen et al 2000). Figure 1 shows the second-order statistics of the
spectrogram representation for two different stimulus ensembles, a collection of zebra finch
songs and a collection of tone pips designed to have some of the same acoustical properties
as zebra finch song. (The duration of the tone pips and tone gaps had the same mean and
variance as found in zebra finch song syllables and gaps, and the power spectra of the stimuli
were matched.) Each ensemble consisted of approximately 20 s of sound. The spectrographic
representation used 31 frequency bands of 250 Hz bandwidth, spanning the frequency range
250–8000 Hz. The amplitude envelope in each band was sampled at 1 kHz (Theunissen et al
2000).

The left-hand panel of figure 1 shows the stimulus auto-correlation matrix, Css. Since
the matrix is symmetric, only the upper diagonal is shown. Each element corresponds to the
correlations between two spatial dimensions, cij . In this case the cij represent correlations
between the amplitude envelopes of different frequency bands. Since the temporal statistics
are stationary, each submatrix, cij , is symmetric Toeplitz and can be collapsed into a single
row. This simplification is shown in the left-hand panels of figure 1.

A close look at the auto-correlation matrix reveals some basic properties of these two
sound ensembles. First, because the rows are not identical to shifted versions of one another,
the spatial statistics of these ensembles are not completely stationary. Second, the large off-
diagonal terms indicate that the zebra finch song contains correlations between all frequency
bands. This occurs because the syllables of zebra finch song are broad band and the amplitude
envelopes are co-modulated across frequencies. In contrast, the tone pip ensemble shows
only small off-diagonal terms, confirming that these stimuli have small correlations between
frequency bands.

The middle panels of figure 1 show the two-dimensional power spectra of the two sound
ensembles. PS (ωt [i], ωx[k]), which is used in equation (15), is plotted as a function of temporal
(ωt , x-axis) and spatial (ωx , y-axis) frequencies. If the second-order spatial statistics of these
sounds were stationary, the power spectra would be as informative as the full-correlation
matrix shown in the left-hand panels of figure 1. In this case, the two-dimensional power
spectra could be obtained by averaging the auto-correlation matrix across rows and taking the
two-dimensional Fourier transform.
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Figure 1. (a) Second-order statistics for zebra finch song. The left-hand panel shows the stimulus
auto-correlation matrix in the space–time domain. Each entry in the matrix corresponds to the
temporal cross-correlations of the sound amplitude in two different frequency bands. The time
course covers a period of ±200 ms. The spectrographic representation of the sound is composed of
31 frequency bands spanning the frequency range between 250 and 8000 Hz. The frequency scale
is linear and each frequency band has a bandwidth of 250 Hz. The matrix is organized with lowest
centre frequency of the band at the top left corner and the highest frequency at the bottom right (see
Theunissen et al 2000 for details). The middle panel shows the spatio-temporal power spectra of
the song stimuli. A fit of the marginal power spectra shows that the power of the amplitude scales
approximately as 1/ω0.5

t and that the power of the frequency ripples scales approximately as 1/ω0.5
x .

The right-hand panel shows the magnitude of the eigenvalues for the spatial eigenvectors (y axis)
for each temporal frequency (x axis). The eigenvectors are different for each temporal frequency
and have been sorted in rank order. The black and white lines bound the area of the stimulus space
where the power is significantly different from zero (see methods and results). (b) Second-order
statistics for tone pips designed to have statistics similar to those of zebra finch song (see results).

The two-dimensional power spectrum of the zebra finch song shows that most of the energy
is in the low temporal frequencies (i.e. the low frequencies of amplitude modulation of the
sound envelopes) and that for amplitude modulation frequencies below 50 Hz the power scaled
as 1/ω0.5

t . The spatial frequencies are also dominated by the low-frequency components, except
at low temporal frequencies. The power spectrum of the songs is also slightly asymmetric,
indicating a difference in the acoustics of downward (right quadrant) versus upward (left
quadrant) frequency sweeps. In contrast, the two-dimensional power spectrum of the tone
pips covers the same range of temporal and spatial frequencies but is completely symmetric.

The right-hand panels of figure 1 show the spatial eigenvalues,�x (ωt [i]) of equation (14),
for each temporal frequency, ωt [i]. In this figure each ωt [i] (represented on the x-axis) is
associated with a different set of eigenvectors (shown along the y-axis). The eigenvectors are
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ordered by decreasing eigenvalue. The black line in the middle and right-hand panels separates
the values above threshold from those those below threshold for the specific neuron shown in
the last section 3.3.1. In practice, only the region of acoustical space above this threshold is
used to calculate h using (14) or (15).

3.1.2. Natural vision movies. Figure 2(a) shows the stimulus auto-correlation matrix for
a natural vision movie which simulates natural viewing of a static natural scene. Natural
vision movies were constructed by extracting image patches from a greyscale image along a
simulated eye scan path. Eye scan paths were generated using a statistical model of natural eye
movements made during free viewing (Vinje and Gallant 2000). In analogy with figure 1, each
element in the matrix shown in figure 2(a) represents the correlation cij between two spatial
dimensions. In the visual case these are the correlations between the greyscale luminance
intensity of pixel pairs. Because the temporal statistics are stationary, the submatrix cij has
been collapsed into a single function of time-lag (covering a range of ±840 ms). The stimulus
ensemble consisted of a natural vision movie 50 s long and displayed at 72 Hz.

As noted earlier, the ensemble of all possible natural scenes has stationary statistics (Field
1987). However, inspection of figure 2(a) reveals that it is not truly Toeplitz, which indicates
that the spatial statistics of this particular 50 s natural vision movie are non-stationary. In
this sense these specific visual stimuli are similar to natural auditory stimuli, which are
also non-stationary. The non-stationary statistics of natural vision movies is an unavoidable
artifact of their use in neurophysiological experiments. First, natural vision movies used
in experiments are often masked by a circular window and pixels on opposite sides of this
boundary have different statistical properties. Second, neuro-physiological experiments have
a finite length and therefore finite stimulus sampling. This finite sampling effectively introduces
non-stationary statistics.

Another notable aspect of figure 2(a) is the temporal auto-correlation, which has a large
peak around a time-lag of zero. This peak is caused by the saccadic structure of natural vision.
During a single fixation each pixel is completely correlated in time, but uncorrelated across
fixations. Because fixation durations are roughly equal, the stimulus auto-correlations decrease
almost linearly up to the average fixation time.

Figure 2(b) shows the logarithm of the absolute value of the stimulus auto-correlation
matrix in the spatial Fourier domain. This figure is complementary to the one shown in
figure 2(a), but the Fourier domain is shown because analysis in the Fourier domain facilitates
analysis of V1 complex cells that have spatially phase-invariant responses (David et al 1999).
Each element in figure 2(b) represents the correlation between two spatial frequencies, but
only one temporal frequency (3.6 Hz, the lowest sampled temporal frequency) is shown for
each element. Here the non-stationarity of natural vision movies is clearly revealed by the
significant off-diagonal terms.

Figure 2(c) shows the spatial Fourier domain power spectrum of the natural vision movie
used in calculating the auto-correlation matrix in figure 2(b). Figure 2(d) shows power as a
function of both spatial and temporal frequency (spatial frequencies correspond to a vertical
slice through figure 2(c) at one cycle/frame). As in the auditory case, the power spectra
are dominated by low frequencies. The spatial power spectrum of natural scenes falls off
roughly as 1/ω2

t (Field 1987). In the temporal domain power falls off as ∼1/ω2
t . Saccades

resemble ‘scene cut’ transitions in movies, and such transitions are known to generate power-
law behaviour (Dong and Atick 1995). In contrast to the structure in zebra finch song, these
visual images are symmetric along the positive and negative frequencies, demonstrating that
there is no preferred spatial orientation or direction of motion within a natural vision movie.
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(a) Natural vision space/time correlations (b) Second order correlations

(c) Spatial power (d) Spatial vs. temporal frequency (e) Eigenvalues

Figure 2. (a) Stimulus auto-correlation matrix for a natural vision movie in the space–time domain.
Axes correspond to spatial locations of each pixel. Each curve shows the temporal correlation
function between a pair of pixels. The time course covers a period of ±840 ms. The movie length
was 50 s. The spatial plane has been downsampled from 60×60 to 6×6 pixels in order to facilitate
display. The repeating pattern in the off-diagonal elements of the auto-correlation matrix does
not reflect structure in the stimuli, but rather is caused by wrapping each ωx and ωy into a single
vector before computing each cij . (b) Stimulus auto-correlation matrix for a natural vision movie
in the Fourier power domain. Axes correspond to spatial frequencies and each point represents the
correlation between a pair of two-dimensional spatial frequencies. The auto-correlation matrix is
shown for one temporal frequency, 3.6 Hz, and terms corresponding to dc spatial frequency are not
shown. The spatial plane was down-sampled from 60×60 to 16×16 pixels to reveal the fine structure
of the matrix. The rectangular texture is caused by reordering the two-dimensional spatial Fourier
plane into a single vector for display. The strong off-diagonal terms indicate the presence of non-
stationarity in the stimulus. (c) Spatial power spectrum of a natural vision movie. Axes correspond
to points in the spatial Fourier domain. The spectrum is taken at 3.6 Hz temporal frequency. The
dc term—zeroed for the analysis—has been set to the top of the colour scale in order to better show
spectral structure. The 1/ω2

t structure of the power spectrum is readily apparent at all orientations.
(d) Spatio-temporal power spectrum of a natural vision movie. The vertical axis corresponds to
Fourier coefficients in the spatial domain; the horizontal axis corresponds to Fourier coefficients in
the temporal domain. The spatial power spectrum corresponds to a vertical slice through figure 2(c)
at 1 cyc/frame. The spatial domain again shows 1/ω2

t structure, while power in the temporal domain
also shows 1/ω2

t structure due to the pattern of fixations and saccades. Those spectral components
inside the contour line have stimulus power that is above the threshold used in the stationary analysis
of the model cell discussed in section 3.2.2. (e) Eigenvalues of the stimulus auto-correlation matrix
as a function of temporal frequency. The vertical axis corresponds to eigenvector rank, assigned in
order of descending eigenvalue amplitude. The horizontal axis corresponds to coefficients in the
temporal Fourier domain. The eigenvalues within the contour lie above the significance threshold
used to analyse data from the model cell. The eigenvectors corresponding to these eigenvalues are
retained for the normalization of STRF estimates in equation (14).
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Figure 3. Analysis of two model auditory neurons. In panel A, the model neuron’s STRF was obtained from a real auditory neuron in the auditory
forebrain of a zebra finch. In panel B, the model neuron’s STRF was a delta function centred at 0 ms and 2 kHz. Responses to four different stimulus
ensembles, songs, tone pips, speech and white noise, were generated by using these STRFs as filters. The middle row in each panel shows the STA
for each stimulus. The bottom row shows the estimated STRFs obtained assuming stationarity and non-stationarity. The information value and ccs are
shown in the last rows. The ccs were calculated using a time bin of 5 ms for the song neuron STRF and a time bin of 3 ms for the delta function STRF.
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Figure 2(e) shows the eigenvalues of the stimulus auto-correlation matrix as a function
of temporal frequency. The y axis represents a different set of eigenvectors for each ωt [i]
and the eigenvectors are ordered by decreasing eigenvalue. The solid curve in figure 2(d)
indicates the spatial and temporal frequency thresholds that are used when h is calculated
using equation (15) for the model neuron presented in section 3.2.2. In figure 2(e) the solid
line indicates the thresholds for the spatial eigenvectors at each temporal frequency when h is
calculated for the same model neuron using equation (14).

3.2. Results of modelling experiments

To validate our methods and their implementation we estimated STRFs from data sets
representing the responses of model neurons to various stimulus ensembles. In all cases
the model neurons had linear STRFs but their output was governed by a stochastic (Poisson)
spike generator.

3.2.1. Modelling experiments with auditory stimuli. Four stimulus ensembles were included
in this analysis: zebra finch songs, tone pips, white noise (Gaussian and flat from 0 to 8000 Hz)
and speech (20 short sentences from a database of 100 sentences, Tyler et al 1990). For each
of the four classes, model responses were obtained to 100 repetitions of approximately 40 s
each (20 songs, 22 s tone pip trains, 22 s noise bursts and 20 sentences). The mean firing
rate of the model neurons was 20 spikes s−1 and the deviation from the mean was calculated
by convolving the spectrographic representation of each sound with the model STRF. The
gain of the STRF was adjusted so that its modulation also had a mean root square strength of
20 spikes s−1 (this ensured that the signal strength approximately matched noise strength).

Two model neurons were probed with these stimuli. The STRF of one model was obtained
from a real auditory neuron in the forebrain of a zebra finch (top panel, figure 3(a)), while the
second STRF was a simple delta function in space and time (single peak response at t = 0 ms
and x = 2000 Hz, top panel figure 3(b)). The middle panels of figures 3(a) and (b) show the
cross-correlation between the stimulus and the response for the four sound classes. As expected
from theory, these cross-correlations are proportional to the original STRF only when the cell
is probed with white noise. Correlations in the other stimulus classes spread the STRF in
time and space. The bottom row of figures 3(a) and (b) shows the estimates of the model
STRFs for the non-stationary (equation (14)) and stationary (equation (15)) cases. When the
STRFs are derived from white noise the two estimates are similar and predict real model neural
responses to novel stimuli equally well. In contrast, STRFs derived from non-white stimuli
were always closer to the true model neural response if they did not assume stationarity. These
non-stationary estimates were also best at predicting real neural responses to novel stimuli.

The STRF estimated for the delta function model (shown in figure 3(b)) illustrates another
important point: if the true STRF has power in regions of the stimulus space that are not
sampled in the experiment, then the estimated STRF may be a relatively poor model. The
delta function STRF has high spatial and temporal frequencies that are not present in the song,
tone-pip or speech ensembles. Therefore, STRFs estimated from responses to those three
stimulus classes are low-pass versions of the true delta function STRF.

3.2.2. Modelling experiments with visual stimuli. Two stimulus classes were used in this
analysis: movies simulating natural vision (described above and in Vinje and Gallant 2000)
and dynamic grating sequences (Ringach et al 1997). In the dynamic grating sequences the
orientation, spatial frequency and phase of the gratings were chosen randomly on each 72 Hz
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video frame. All gratings were shown at a contrast of 0.5. For both stimulus classes, model
responses were obtained from 150 s of stimulation.

The model neuron consisted of a V1 complex cell implemented as a quadrature phase
energy mechanism (Carandini et al 1997, Heeger 1992, Vinje and Gallant 1998). First, linear
kernels were constructed at four spatial phases (each offset by 90◦). Each kernel was a Gabor
function in space multiplied by a weakly biphasic impulse response in time. Second, the
inner product in space and the convolution in time was computed between each of the kernels
and the stimulus sequence to form subunit outputs. Next, the four subunit outputs were half-
wave rectified, averaged and normalized, to give the model’s output. This output was used to
modulate a Poisson spiking process, constrained so that the mean rate was 7 spikes s−1 and
the standard deviation of the modulation signal was 8 spikes s−1.

In order to recover tuning for both simple and complex cells, we transformed the
stimulus into a spatial phase-separated Fourier domain representation before completing
reverse correlation. Each frame of the movie was transformed into the spatial Fourier
domain and then projected onto each of the positive and negative real and imaginary axes.
This produced a representation of the stimulus which contained four phase channels at each
spatial frequency, paralleling the quadrature phase structure of the complex cell model. Thus
contributions from different spatial phases were not confounded during reverse correlation,
and STRFs could be recovered regardless of a neuron’s phase invariance properties (David
et al 1999). For visualization, the visual STRFs shown in this paper have been collapsed over
the phase dimension so that they indicate the relative power of the STRF at different spatial
frequencies and latencies.

The results of the STRF estimation for the model neuron are shown in figure 4, in which
each frame displays the Fourier domain STRF at one latency step. Figure 4(a) shows the actual
STRF of the model cell used to generate data for the analysis. The Gabor structure of the STRF
is clearly visible in the fourth and fifth frames. Figure 4(b) shows the STA estimated via simple
reverse correlation of the model’s responses to the dynamic grating sequence. Because the
model is quasi-linear and the grating sequence is relatively white with respect to the cardinal
dimensions of the model STRF (orientation and spatial frequency), the STA closely matches
the true STRF. Figure 4(c) shows the STA estimated from the model’s responses to natural
vision movies. In this case the STA bears little resemblance to the true STRF, reflecting
stimulus bias in the stimulus–response cross-correlation. Figures 4(d) and (e) illustrate the
effect of correcting for the stimulus bias in the natural vision movies. In figure 4(d), the
analysis assumed stationarity (equation (15)) by normalizing only by the diagonal elements
of the stimulus auto-correlation matrix. This procedure removes much of the low-frequency
bias but does not eliminate noise at high spatial frequencies. In figure 4(e), the analysis did
not assume stationarity (equation (14)) by normalizing with the full stimulus auto-correlation
matrix. This STRF estimate is very similar to the true STRF of the model neuron.

3.3. Results of real experiments

As a final check on the feasibility of our methods we used equations (14) and (15) to estimate
STRFs of sensory neurons recorded in the avian forebrain and in primate area V1.

3.3.1. Real experiments on avian auditory neurons. We estimated the STRFs of seven
auditory neurons in the auditory forebrain of three songbirds (details of physiological methods
can be found in Theunissen et al 2000). Data were obtained from song and tone-pip stimuli like
those described in section 3.1.1. We estimated two STRFs for each neuron using equations (14)
and (15). Figure 5 shows the results obtained for one neuron from area L2a of the avian



306 F E Theunissen et al

(a) Model cell STRF

(b) Dynamic grating sequence  STA

(c) Natural vision movie  STA

(d) Natural vision movie  stationary

0

(e) Natural vision movie  nonstationary

14 28 42
Latency (ms)
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Figure 4. Analysis of a model complex cell constructed by summing the rectified output of four
linear Gabor subunits in quadrature spatial phase. The model has a peak orientation of 60◦ from
horizontal, a peak spatial frequency of 2 cycles per receptive field and a latency of 56 ms. Each
panel displays the spatial Fourier power for one latency, and latency is plotted from left (t = 0) to
right (t = 7 bins, 98 ms). Positive responses are shown by warm colours while negative responses
are shown by cool colours. Stimuli spanned a region twice the diameter of the receptive field and
were downsampled to 16 × 16 pixels before analysis, so that effective spatial frequency of the
estimated STRF ranged from 0.5 to 4 cycles per receptive field. (a) STRF of the model neuron.
In frames t = 56 and 70 ms the Gabor structure of the model neuron’s STRF is clearly visible.
This STRF was used as a linear filter to generate model responses to dynamic grating sequences
and natural vision movies. (b) STA calculated from the model’s responses to 150 s of stimulation
by a dynamic grating sequence. The STA is similar to the model’s true STRF. (c) STA calculated
from the model’s responses to 150 s of stimulation by a natural vision movie. The low-frequency
correlations present in the stimulus corrupt the STA and make it impossible to estimate the model’s
STRF without normalization. (d) STRF estimated from the model’s responses to a natural vision
movie, assuming stationarity (equation (15)). Although the orientation of the estimated STRF is
similar to the true STRF, the quality of the estimate is quite low. (e) STRF estimated from the
model’s responses to a natural vision movie after full normalization (equation (14)). This estimate
corresponds closely to the true structure of the model STRF.

auditory forebrain. The left-hand panels show the cross-correlation between the stimulus
and the response, the middle panels show the estimated STRF obtained assuming stationarity
and the right-hand panels show the estimated STRF obtained without assuming stationarity.
The estimated STRFs are clearly different. Most notably, the STRF estimated by assuming
stationarity (equation (15)) is more distributed in space and time than the one obtained without
this assumption (equation (14)). The distribution of energy in the STRF has a substantial effect
on its predictive power. As shown in figure 6, STRFs estimated without assuming stationarity
were always more predictive than those obtained under the more restrictive assumption.
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Figure 5. Results of STRF estimation for an auditory neuron recorded from area L2a of the zebra
finch auditory forebrain. Data were obtained in response to both zebra finch song (top) and tone
pips (bottom). The left-hand panels show the STA. The centre panels show the STRF obtained
assuming stationarity (equation (15)). The right-hand panels show the STRF obtained with full
normalization (equation (14)).
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Figure 6. Predictive power of auditory STRFs to account for responses to novel song stimuli.
Prediction quality is quantified in terms of the cc and the information. Prediction quality is shown
for both stationary and non-stationary STRFs obtained from responses to songs and tone pips.
Error bars correspond to one standard error. A two-tailed paired t-test shows that the difference
between the stationary and non-stationary goodness of fit is significant both for songs and tones
and in both for the information or correlation measures (info for songs p = 0.0077; info for pure
tones p = 0.033; cc for songs p = 0.0214; cc for tones p = 0.0004).
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There were also clear differences between STRF estimates obtained with songs versus tone
pips. These stimulus classes have equivalent second-order statistics, the differences between
the estimated STRFs. Therefore, these differences reflect nonlinear response properties, such
as adaptation, that are elicited by the different higher-order statistics of the two stimulus
ensembles (Theunissen et al 2000).

3.3.2. Real experiments on STRF for primate cortical visual neurons. We also estimated
the STRFs of neurons in area V1 using both dynamic grating sequences (250 s, 1 repetition)
and natural vision movies (40 s, 30 repetitions) like those described in section 3.1.2 (details
of physiological methods can be found in Vinje and Gallant 2000). Figure 7 summarizes the
results obtained from one V1 complex cell. The STA estimated from the neuron’s responses
to the dynamic grating sequence is shown in figure 7(a). For this stimulus, power is uniformly
distributed throughout the Fourier domain, so the STA is proportional to the true STRF. The
STRF shows a clear positive response beginning at a latency of 42 ms. The corresponding
STA obtained with natural vision movies is shown in figure 7(b). This STA is clearly different
from the STRF estimated using the dynamic grating sequence, and the difference is probably
due to the large spatio-temporal correlations in the natural vision movie. Figures 7(c) and (d)
show the estimated STRFs obtained via equations (15) and (14), respectively. The STRF
obtained by assuming stationarity (figure 7(c)) produces an estimate of the STRF more similar
than the STA alone to the STRF estimated from dynamic grating sequences. However, the
correspondence between STRFs estimated from responses to the two stimulus ensembles
appears to be substantially improved by use of equation (14) (figure 7(d)).

We also examined how well each STRF estimate could predict neural responses to novel
natural vision movies. The ccs between STRF predictions and data were: 0.48 for the STA
obtained from natural vision movies (figure 7(b)), 0.67 for the STRF estimated assuming
stationarity (figure 7(c)) and 0.84 for the STRF estimated without assuming stationarity
obtained with equation (14) (figure 7(d)). Thus, STRF estimates were substantially improved
by assuming non-stationarity when normalizing the STA.

As in the auditory experiments, there are some pronounced differences between STRFs
estimated from these two stimulus classes. For example, the STRF estimated from dynamic
grating sequences (figure 7(a)) is tuned to a higher spatial frequency than is the STRF estimated
with natural vision movies (figure 7(d)). Because the power spectrum of natural scenes is biased
toward low spatial frequencies we should expect to see a low-frequency bias in the STA (fig-
ure 7(b)). However, this difference remains even after normalization and regardless of the sta-
tionarity assumption. The remaining difference could be an artifact of the thresholding proce-
dure, which tends to exclude high-frequency eigenvectors that have relatively low signal power.
Alternatively, it might reflect nonlinear response properties elicited by naturalistic stimuli.

The STRFs estimated from the two stimulus classes also have different temporal responses.
The STRF estimated from dynamic grating sequences has a positive monophasic response,
while that estimated from natural vision movies has a biphasic response (compare figures 7(a)
and (d)). This effect is probably due to the temporal properties of natural vision. The dynamic
grating stimuli were updated at 72 Hz, while natural vision movies changed at about 3 Hz to
simulate fixations and saccades. The slower time course of the natural vision movies possibly
elicits nonlinear adaptation and produces a biphasic STRF.

Taken together, the differences in spatial frequency tuning and temporal response profile
can have a large effect on the ability of STRFs obtained with different stimulus ensembles to
predict neural responses to novel natural vision movies. The dynamic grating STA achieved
a correlation of 0.52 between predicted and observed responses, whereas the STRF estimated
from natural vision movies using equation (14) achieved a correlation of 0.84.
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(a) Dynamic grating sequence  STA

(b) Natural vision movie  STA

(c) Natural vision movie  stationary
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(d) Natural vision movie  nonstationary
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Figure 7. Results of STRF estimation for a V1 neuron. Axes and layout as in figure 3. The spatial
receptive field of this neuron was 0.36◦ and the stimuli covered an area twice this size. Thus,
each spatial frequency bin of the STRF corresponds to 1.4 cycles per degree. (a) STA obtained
from the neuron’s responses to a dynamic grating sequence (250 s, 1 repetition). Mostly positive
response tuning is evident, and the temporal response is monophasic. (b) STA calculated from
the neuron’s responses to a natural vision movie (40 s, 30 repetitions). In this case the STA is
corrupted by the low-frequency stimulus bias. (c) STRF estimated from the neuron’s responses to
a natural vision movie assuming stationarity (equation (15)). The tuning of the estimate is similar
to the STA obtained with gratings, but it is still affected by stimulus bias. (d) STRF estimated
with full normalization (equation (14)) from the neuron’s responses to a natural vision movie.
The spatial profile of this estimate is quite similar to the STA obtained with the dynamic grating
sequence, though the temporal response profile is different. The ability of this STRF to predict
neural responses to novel natural vision movies is substantially higher than the predictive power of
the STA obtained with dynamic gratings. The prediction correlation is 0.84 for the STRF estimated
using equation (14) versus only 0.52 for the grating STA.

4. Discussion

We have presented a generalized reverse correlation method that can be used to estimate
STRFs from neural responses to arbitrary stimulus ensembles, including natural stimuli. The
method involves normalizing the cross-correlation between the stimulus and the response by the
stimulus auto-correlation matrix. Because the stimulus auto-correlation matrix is symmetric,
this normalization can be done in the eigenspace of the matrix.

An important consideration involves whether the spatial and temporal statistics of the
stimulus are stationary or non-stationary. When the second-order statistics of the stimulus
are stationary, the eigenspace is the Fourier domain and the normalization is equivalent to
dividing by the power of the stimulus at each frequency. When the statistics are non-stationary
a different eigenspace is found, but the normalization is mathematically homologous. We
emphasized a particular case in which the temporal statistics are stationary but the spatial
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statistics are not. In this case the eigenvectors are found by diagonalizing the matrix of the
spatial correlations for each temporal frequency (equation (14)).

Normalization of non-stationary spatial statistics is particularly important when STRFs are
to be estimated from natural stimuli. The spatial statistics of natural sounds such as birdsong
or speech are inherently non-stationary, while natural vision movies are non-stationary due to
experimental constraints on visual stimuli.

When stimuli have non-stationary spatial statistics, optimal STRF estimation requires a
different normalization at each temporal frequency (equation (14)). This is a computationally
demanding procedure because it requires the calculation of a different eigenspace at each
temporal frequency. Thus, we compared the results obtained in this full normalization with
those obtained with the approximate, stationary solution, as shown in equation (15). In
this approximation the same eigenspace (the spatial Fourier domain) is used for all temporal
frequencies, reducing the computation load of the analysis. Our model simulations, analyses
of neuronal data and evaluation of predictive power all clearly demonstrate that normalization
assuming non-stationary spatial statistics produces substantially better STRF estimates than
when stationarity is assumed.

An important methodological question concerns the choice of threshold for the exclusion
of some of the eigenvectors of the auto-correlation matrix prior to inversion. If the magnitude
of a given eigenvector is relatively large then it is likely to be important for the normalization
process. However, eigenvectors of small magnitude are more likely to reflect noise and
sampling limitations; these will tend to corrupt STRF estimates if they are included in the
normalization process. We set thresholds according to an iterative procedure that uses the
predictive power of the estimated STRF as its success criterion. This approach works well
whether the stimulus statistics are stationary or not.

The same procedure allows one to identify the spatial and temporal range of the
experimental stimulus ensemble (solid lines in figures 1 and 2). Complex stimuli are necessarily
band limited, regardless of whether they are natural or synthetic. In such cases a neuron’s STRF
may extend outside the spatio-temporal range being sampled in a particular experiment. This
was demonstrated in section 3.2.1, where it was impossible to completely recover the delta-
function STRF because of its high spatial and temporal frequency power. On the other hand,
if the spatio-temporal power of the STRF is much more restricted than the stimulus space
being sampled (as might occur when broad-band white noise is used), the power density of
the stimulus could be insufficient to drive the neuron (Klein et al 2000). One argument in
favour of natural stimuli in STRF estimation is that such stimuli are likely to closely match
stimulus space sampled by a sensory neuron. It is therefore always important to describe
the spatio-temporal range of experimental stimuli. One should be particularly careful when
comparing STRFs obtained from different stimulus classes (such as natural versus synthetic),
because apparent differences in the STRFs might be due to differences in the sampling range
of the various stimulus classes.

Although this paper has emphasized methodological issues, we have successfully applied
these techniques to the auditory system of songbirds (Theunissen et al 2000) and the visual sys-
tem of primates (David et al 1999). In some cases the STRFs estimated from natural stimuli are
similar to those those obtained with simpler synthetic stimuli (David et al 1999), while in other
cases they may be quite different (Theunissen et al 2000). This suggests that natural stimuli
are a critical complement to synthetic stimuli in sensory experiments. By combining the STRF
estimation methods presented here with simpler methods appropriate for synthetic stimuli (e.g.
Klein et al 2000, Ringach et al 1997), it should be possible to bridge the gap between qualitative
neuro-ethological approaches and more quantitative neuro-physiological approaches.
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Appendix

Proof 1. Solution of equation (1) for the one-dimensional case and for stationary statistics.
We wish to obtain an equation for the one-dimensional impulse response function h(t) that
yields the best prediction of the neural response, r̂(t), in the minimum-mean-square sense.
r̂(t) is given by

r̂(t) =
∫ ∞

−∞
h(τ)s(t − τ) dτ .

Invoking the convolution theorem:

R̂(ωt ) = H(ωt)S(ωt ).

Parseval’s theorem asserts that it is equivalent to minimize〈(
r(t)− r̂(t)

)2〉
t

and
〈(
R(ωt)− R̂(ωt )

)2〉
ωt
,

where the first estimate of the mean-square error is taken over time points, t , and the second
estimate is taken over the Fourier frequencies, ωt :〈(

R(ωt)− R̂(ωt )
)2〉

ωt
= 〈(

R(ωt)−H(ωt)S(ωt )
)2〉

ωt
.

Taking the complex derivative with respect to H(ωt) and setting it to zero:

d

dH(ωt)

〈(
R(ωt)−H(ωt)S(ωt )

)2〉
ωt

= 0.

If we suppress the ωt argument, the equation can be written as

d

dH

〈
RR∗ − R∗HS − RH ∗S∗ + HH ∗SS∗〉

ωt
= 0〈

H ∗SS∗ + H ∗S∗S − SR∗ − SR∗〉
ωt

= 0〈
H(ωt)S(ωt )S

∗(ωt )
〉
ωt

= 〈
S∗(ωt )R(ωt )

〉
ωt
.

Here the complex derivative is defined as

d

dH
= d

dHr
+ i

d

dHi
,

where Hr and Hi are the real and complex part of H . If the second-order statistics of the
stimulus are stationary, then the averages taken across ωt for the entire data set are identical
to averages taken over ωt for segments of the data, denoted as D:〈〈

H(ωt)S
∗(ωt )S(ωt )

〉
ωt

〉
D

= 〈〈
S∗(ωt )R(ωt )

〉
ωt

〉
D
.

The unique solution of the previous equation for arbitrary functions S(ωt ) and R(ωt) is given
by

H(ωt) =
〈
S∗(ωt )R(ωt )

〉
S〈

S∗(ωt )S(ωt )
〉
S

.
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Proof 2. Cross-covariance and spike-triggered average stimulus. We want to show that the
cross-covariance between the stimulus and the response is equal to the STA stimulus, given
that the stimulus, s(t), has zero mean and the neural response consists of spiking events.

The cross-covariance between s(t) and r(t) is given by

Csr(τ ) = 1

2T

∫ T

−T
(r(t)− r̄)s(t + τ) dt,

or in discrete form

Csr(dt) = 1

N

N−1∑
i=0

(r(i)− r̄)s(i + dt).

In the above equations r̄ is the mean of r and we assume that the stimulus has zero mean. The
neural response, r(i), consists a set of times {j} where we recorded a spike, r(i ∈ {j}) = 1,
and other times where we recorded no spikes, r(i /∈ {j}) = 0. Therefore,

Csr(dt) = 1

N

(∑
i∈{j}

(1 − r̄)s(i + dt) +
∑
i /∈{j}

−r̄s(i + dt)

)
.

Since
∑

i∈{j} s(i + dt) +
∑

i /∈{j} s(i + dt) = 0,

Csr(dt) = 1

N

(∑
i∈{j}

s(i + dt)

)
.

Therefore, in this case the cross-covariance between the stimulus and response is given simply
by the STA stimulus.

Proof 3. Solution to the general LMMSE. We want a solution for a vector of coefficients, h,
that describes the linear transform between the stimulus s and the response r:

r̂[t] =
M×N−1∑
i=0

h[i]st [i].

A solution for h is found by minimizing the mean square difference between the predicted
response, r̂ , and the actual response, r . The derivation is the linear algebra equivalent of the
derivation in proof 1 (see also Kay 1993). Expanding the mean-square difference

〈(r̂ − r)2〉 = 〈(hTs − r)2〉
= 〈hTssTh − hTsr − rsTh + r2〉
= 〈hTssTh〉 − 〈hTsr〉 − 〈rsTh〉 + 〈r2〉
= hTCssh − hTCsr − Crsh + var(r)

where Css = 〈
ssT
〉

is the stimulus auto-correlation matrix and Csr = 〈sr〉 is the stimulus–
response cross-correlation vector

Css =
〈
ssT

〉
=

 〈s[t − 0]s[t − 0]〉 · · · 〈s[t − 0]s[t − ((NM)− 1)]〉

.

.

.
. . .

.

.

.

〈s[t − ((NM)− 1)]s[t − 0]〉 · · · 〈s[t − ((NM)− 1)]s[t − ((NM)− 1)]〉




and

Csr = 〈
sr
〉 =


 〈s[t − 0]r[t]〉

...

〈s[t − ((NM)− 1)]r[t]〉


 .
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To find the best h, we the take the derivative of
〈(
r̂ − r

)2〉
with respect to h and set it to zero:

d
〈(
r̂ − r

)2〉
dh

= 2hCss − 2Csr = 0,

where we have used the following linear algebra equations:

dxTAx

dx
= 2Ax and

dbTx

dx
= b.

Therefore,

h = C−1
ss Csr.

Proof 4. Eigenvectors and eigenvalues of a symmetric Toeplitz matrix. When the stimulus
statistics are stationary, the stimulus auto-correlation matrix can be written as

Css =




c[0] c[1] · · · c[N − 1]
c[1] c[0] · · · c[N − 2]
...

...
. . .

...

c[N − 1] c[N − 2] · · · c[0]


.

This matrix is symmetric Toeplitz. In addition the correlation data can be organized to have
period N (i.e. c[N − 1] is set equal to c[1] and so forth until c[N −N/2] = c[N/2]). In such
cases, the memory of the system is given by N/2 data points in time and the data are repeated
twice for mathematical convenience.

The N eigenvectors of a such a symmetric Toeplitz matrix of period N are then given by

qk = 1√
N

[
1, exp

(
j
2πk

N

)
, exp

(
j
2πk

N
2

)
, . . . , exp

(
j
2πk

N
(N − 1)

)]T

,

where k goes from 0 to N/2 and

qk = 1√
N

[
1, exp

(
j
2π(k −N)

N

)
,

exp

(
j
2π(k −N)

N
2

)
, . . . , exp

(
j
2π(k −N)

N
(N − 1)

)]T

for k from N/2 to N − 1.
These q eigenvectors are the coefficients of the DFT and the corresponding eigenvalues

give the power of the stimulus at each frequency ωt [k] = 2πk
N

:

λk = Ps(ωt [k]) =
N−1∑
i=0

c[i] exp(jωt [k]i).

This property can be shown by first verifying

Cssqk = λkqk.

Expanding Cssqk for k ∈ [0, N/2],

Cssqk = 1√
N




c[0] + c[1] exp
(

j2πk
N

)
+ · · · + c[N − 1] exp

(
j2πk(N−1)

N

)
c[1] + c[0] exp

(
j2πk
N

)
+ · · · + c[N − 2] exp

(
j2πk(N−1)

N

)
...

c[N − 1] + c[N − 2] exp
(

j2πk
N

)
+ · · · + c[0] exp

(
j2πk(N−1)

N

)



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Cssqk = λk√
N




1

exp
(

j2πk
N

)
...

exp
(

j2πk(N−1)
N

)




where

λk = r[0] + r[1] exp

(
j2πk

N

)
+ · · · + r[N − 1] exp

(
j2πk(N − 1)

N

)
.

A similar expansion can be performed for the negative frequencies (for k ∈ [N/2, N]).
Therefore, we verified that

Cssqk = λkqk,

for the qk corresponding to the DFT. Since these N vectors are orthonormal, we have also
shown that they constitute a complete set of eigenvectors for Css.

Proof 5. Separation of spatial and temporal dimensions in equation (9) for stationary temporal
statistics. For stationary temporal statistics equation (9) can be rewritten as equation

�tH = CSR, (A.5.1)

where

H = Q−1
t h, CSR = Q−1

t Csr, Qt =

QFT 0

. . .

0 QFT




and

�t =

 �0,0 · · · �0,M−1

...
. . .

�M−1,0 �M−1,M−1


 .

�t is composed ofN×N diagonal submatrices�i,j describing the cross-correlation of stimulus
spatial dimension i with stimulus spatial dimension j , for all N temporal frequencies, ω[i]:

�t =




λ0,0,ω[0] 0 0 λ0,M−1,ω[0] 0 0

0
. . . 0 · · · 0

. . . 0
0 0 λ0,0,ω[N−1] 0 0 λ0,M−1,ω[N−1]

...
. . .

...

λM−1,0,ω[0] 0 0 λM−1,M−1,ω[0] 0 0

0
. . . 0 · · · 0

. . . 0
0 0 λM−1,0,ω[N−1] 0 0 λM−1,M−1,ω[N−1]



.

The form of�t tells us that all the correlations between stimulus points with different temporal
frequencies are 0, which is a direct consequence of the stationarity of the temporal statistics.
By changing the order of the rows of �t , equation (A.5.1) can be arranged along its temporal



Spatio-temporal receptive fields of sensory neurons 315

frequency components, ωt [i]. In this case �t becomes block diagonal:

�t =




λ0,0,ω[0] · · · λ0,M−1,ω[0]
...

. . .
... · · · 0

λM−1,0,ω[0] · · · λM−1,M−1,ω[0]
...

. . .
...

λ0,0,ω[N−1] · · · λ0,M−1,ω[N−1]

0 · · · ...
. . .

...

λM−1,0,ω[N−1] · · · λM−1,M−1,ω[N−1]




=

�(ωt [0]) 0 0

0
. . . 0

0 0 �(ωt [N − 1])




and therefore equation (A.5.1) can be written as N independent linear equations:

�(ωt [k])H (ωt [k]) = CSR (ωt [k]) ,

where

�(ωt [k]) =

 λ0,0,ω[k] · · · λ0,M−1,ω[k]

...
. . .

...

λM−1,0,ω[k] · · · λM−1,M−1,ω[k]


 .
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