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How do people determine which elements of
a set are most representative of that set?






Representativeness

e Judgment and Decision Making:

Representativeness Heuristic
(Kahneman and Tversky, 1972)

e Categorization: Typicality

(Mervis and Rosch, 1981)



Proposals

data d is representative of a hypothesized
process or concept, h, if it is similar to the
observations h typically generates

* Similarity
* Likelihood
* Bayesian



Bayesian measure

Good example of a concept - one that best
provides evidence for the concept relative to
possible alternatives

P(d | h)
S P(d [ h)P (h))

[#]
P(h;)
I_P(hz‘)

R(d,h)=log

where P'(h)=

(Tenenbaum and Griffiths, 2001)



Bayesian measure
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Bayesian measure

d= %
h, = “fair coin”, P(h,) = 0.9
h, = “two-headed coin”, P(h,) = 0.05
h, = “weighted coin — heads 3/5”, P(h;) = 0.05
P(d|h)
R(d,h;) =log R(HHTHT,h,) = 0.59

S P(d | )P ()

i#]



Bayesian measure

d =
h, = “fair coin”, P(h,) = 0.9
h, = “two-headed coin”, P(h,) = 0.05
h, = “weighted coin — heads 3/5”, P(h;) = 0.05
P(d|h)
R(d,h;) =log R(HHTHT,h,) = 0.59

P(d|h,)P'(h,)
E, R(HHHHH,h ) = -2.85

HHTHT is more representative of a fair coin than HHHHH



Limitations

* Requires pre-defined concept/hypotheses

* Simple, artificial stimuli



Limitations

* Requires pre-defined concept/hypotheses
Extend measure to sets of objects - with

concepts generated on the fly

* Simple, artificial stimuli
Evaluate on large database of naturalistic
stimuli



Outline

* Representativeness and Bayesian Sets

* Application to a large image database

* Empirical Evaluation



Outline

* Representativeness and Bayesian Sets



Representativeness with Sets

P(d | h) P(h,)

Rd,hl- = lo where P'(h.) =
(d:h) “SP@h)Ph) U= )

i#]



Representativeness with Sets

P(d|D,) P(D)

R(d,DS) = lOg where P'(Dt) =

EP(C”DI)P'(DJ I-P(D,)

S#f

for a set of items D, ={x,, ..., Xy} € D



Representativeness with Sets

P(d|D,) P(D)

R(d,DS) = lOg where P'(Dt) =

EP(C”DI)P'(DJ I-P(D,)

S#f

for a set of items D, ={x,, ..., Xy} € D

... but how do we compute this efficiently?
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Bayesian Sets

Given a data collection D and a subset of items D, = {x, ..., X\}
representing a concept, rank an item x* € { D\D,}

p(x',D,)
p(x)p(D,)

Bscore(X) =

(Ghahramani and Heller, 2005)



Bayesian Sets

Given a data collection D and a subset of items D, = {x, ..., X\}
representing a concept, rank an item x* € { D\D,}

p(X*ﬂDs)

Bscore(X) =

p(x")p(D,)




Bayesian Sets

Given a data collection D and a subset of items D, = {x, ..., X\}
representing a concept, rank an item x* € { D\D,}

p(x',D,)
p(x)p(D,)

Bscore(X) =

for sparse binary data, can be computed efficiently as
a single matrix-vector multiplication



Representativeness and Bayesian Sets

P(d|D,)
Y P(d|D,)P'(D,)

S#[

R(d,D;) =log




Representativeness and Bayesian Sets

P(d|D,)

D)= S b4 by P (D)

S#[




Representativeness and Bayesian Sets

P(d|D,)

D)= S b4 by P (D)

S#[




Representativeness and Bayesian Sets

P(d|D,)

D)= S b4 by P (D)

S#[




Representativeness and Bayesian Sets

P(d|D,)

D)= S b4 by P (D)

S#[

Yeitot




Representativeness and Bayesian Sets

P(d|D,)
Y P(d|D,)P'(D,)

S#[

R(d,D;) =log

0 X0 N\l EeeT <. O S~~7\ I/ \ e
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EP(dlDt)P'(Dt)zP(d)

S=7




Representativeness and Bayesian Sets

P(d|D,)
) P(d|D,)P'(D,)

S#E[

R(d,Dy) =log

P(d|D;)
P(d)
P(d,D,)
P(d)P(D,)
= log Bscore(d)

~ log

= log



Outline

* Application to a large image database



How do people determine which images of a
labeled set are most representative of that set?




abstract

aerial

animal

woman

(Heller and Ghahramani, 2006)



50 labeled sets depicting unique categories, with
varying numbers of images per set (mean=264)

Images are represented as 240-D feature vectors:
48 Gabor texture features
27 Tamura texture features
165 color histogram features

Post-processed through binarization stage

(Heller and Ghahramani, 2006)



Representativeness framework

input: a set of items, D, for a particular
category label w
for each item x.€ D, do
letD,,={D, \ x.}
compute score(x; ,D,;)
end for
rank items in D, by this score

output: ranked list of itemsin D,



Top 9 Bottom 9




Bottom 9

Top 9

“mountains”



Outline

* Empirical Evaluation



Models of Representativeness

p(x’,D,)
p(x’)p(D,)

Bayesian Model  Bscore(x') =
Likelihood Model Lscore(x’)=p(x | D,)

Prototype Model  Pscore(x’) = exp{-Adist(x ,Xx,,,,)}

Exemplar Model  Escore(x") = Eexp{—/ldist(x*,xj)}
x,&D



Method

Participants: 500 (10 per category) via Amazon MT

Stimuli: Union of top 10 and bottom 10 ranked
images per category, for each model*

*(excluding Exemplar model)



Is the image below a good example of the concept "eiffel" ?

Instructions: On a scale from 1 to 7, please rate how good an example the image below is of the concept "eiffel", with
a rating of 1 meaning the image is not a very good example and a rating of 7 meaning the image is a very good example.

Not Vary Good Example Very Good Example



Mean quality ratings
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Spearman rank-order correlation

how well the actual scores from the models fit
with the entire set of human judgments

Bayesian model (p =0.352)*
Likelihood model (p =0.220)
Prototype model (p=0.160)
Exemplar model (p=0.212)



Summary

* Extended an existing Bayesian model of
representativeness to handle sets of items

* Showed relationship to Bayesian Sets and
exploited this to evaluate on a large database

of naturalistic images

* Results provide strong evidence for this
characterization of representativeness



Summary

Closer integration of methods from cognitive
science and machine learning

= first quantitative comparison of Bayesian
Sets algorithm to human judgments

= first evaluation of Bayesian measure of
representativeness in context of a real
applied problem
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Finding Outliers in Sets

Take an image from one category and inject it
into all other categories, run algorithms and
see where it ranks

Model Avg. Pos. S.E.

Bayesian 0.805 + 0.014
Likelihood 0.779 ¥ 0.013
Prototype 0.734 + 0.015

Exemplar 0.734 ¥ 0.016






“current”, “world leader”

“democratic”, “US President”




Bayesian Sets

Given a data collection D and a subset of items D, = {x, ..., X\}
representing a concept, rank an item x* € { D\D,}

Bscore(X) =

p(X*ﬂDs)

p(x")p(D,)

p(x) = [p(x"|0)p(0)d6

p(D) = [

p(X*,DS) =f

ﬁ p(x, |6)

ﬁmxn 0

p(0)do

p(x"|6)p(6)do



Bayesian Sets

Given a data collection D and a subset of items D, = {x, ..., X\}
representing a concept, rank an item x* € { D\D,}

p(x 9Ds)
p(x)p(D;)
Assume each item x; € D is represented as a binary feature vector

X; = (X;3, .-, Xy) Where x; € {0,1} and defined under a model in which
each element of x; has an independent Bernoulli distribution

p(x;|6) = ﬂe%l 6,

and conjugate Beta prior

p©|a. )= ﬂ

Bscore(X) =

+h)
F(Ot )1“(/5 )

p;-1
(I_Hj)



Bayesian Sets

Given a data collection D and a subset of items D, = {x, ..., X\}
representing a concept, rank an item x* € { D\D,}

p(x',D,)
p(x)p(D,)

_Haj+/3j+N[aj) [/3]-]

J

Bscore(X) =




Bayesian Sets

log Bscore(X' ) =c + E S X

J
where

c=210g(0!,- +ﬁj)_10g(aj +ﬁj +N)+10g/3;j _log/))j
J

s, =loga, -loga, —logﬁj +log B,

and X is the jt" component of x*



Image features

Texture features (75):

We represent images using two types of texture features, 48 Gabor texture
features and 27 Tamura texture features. We computed coarseness, contrast and
directionality Tamura features, for each of 9 (3x3) tiles. We applied 6 scale
sensitive and 4 orientation sensitive Gabor filters to each image point and
compute the mean and standard deviation of the resulting distribution of filter
responses.

Color features (165):
Computed HSV 3D histogram with 8 bins for H and 5 each for value and

saturation. The lowest value bin was not partitioned into hues since these are
hard to distinguish.

Binarization:

Each feature was binarized by computing the skewness of the distribution of that

feature and giving a binary value of 1 to images falling in the 20 percentile of the
heavier tail of the feature distribution.



