# Applying a Bayesian Measure of Representativeness to Sets of Images

Joshua T. Abbott, Katherine A. Heller, Zoubin Ghahramani, and Thomas L. Griffiths







How do people determine which elements of a set are most representative of that set?



















#### Representativeness

• Judgment and Decision Making: Representativeness Heuristic

(Kahneman and Tversky, 1972)

• Categorization: Typicality

(Mervis and Rosch, 1981)

# **Proposals**

data *d* is representative of a hypothesized process or concept, *h*, if it is similar to the observations *h* typically generates

- Similarity
- Likelihood
- Bayesian

Good example of a concept - one that best provides evidence for the concept relative to possible alternatives

$$R(d, h_i) = \log \frac{P(d | h_i)}{\sum_{i \neq j} P(d | h_j) P'(h_j)}$$

where 
$$P'(h_j) = \frac{P(h_j)}{1 - P(h_i)}$$









$$h_1 = "fair coin", P(h_1) = 0.9$$

$$h_2$$
 = "two-headed coin",  $P(h_2)$  = 0.05

$$h_3$$
 = "weighted coin – heads 3/5",  $P(h_3)$  = 0.05

$$R(d, h_i) = \log \frac{P(d \mid h_i)}{\sum_{i \neq j} P(d \mid h_j) P'(h_j)}$$









$$h_1 = "fair coin", P(h_1) = 0.9$$

$$h_2$$
 = "two-headed coin",  $P(h_2)$  = 0.05

$$h_3$$
 = "weighted coin – heads 3/5",  $P(h_3)$  = 0.05

$$R(d, h_i) = \log \frac{P(d \mid h_i)}{\sum_{i \neq j} P(d \mid h_j) P'(h_j)}$$

 $R(HHTHT,h_1) = 0.59$ 

$$h_1 = "fair coin", P(h_1) = 0.9$$

$$h_2$$
 = "two-headed coin",  $P(h_2)$  = 0.05

$$h_3$$
 = "weighted coin – heads 3/5",  $P(h_3)$  = 0.05

$$R(d, h_i) = \log \frac{P(d \mid h_i)}{\sum_{i \neq j} P(d \mid h_j) P'(h_j)}$$

$$R(HHTHT,h_1) = 0.59$$
  
 $R(HHHHHH,h_1) = -2.85$ 

HHTHT is more representative of a fair coin than HHHHH

#### Limitations

Requires pre-defined concept/hypotheses

• Simple, artificial stimuli

#### Limitations

Requires pre-defined concept/hypotheses
 Extend measure to sets of objects - with
 concepts generated on the fly

Simple, artificial stimuli
 Evaluate on large database of naturalistic
 stimuli

#### Outline

Representativeness and Bayesian Sets

Application to a large image database

Empirical Evaluation

#### Outline

Representativeness and Bayesian Sets

Application to a large image database

Empirical Evaluation

#### Representativeness with Sets

$$R(d, h_i) = \log \frac{P(d \mid h_i)}{\sum_{i \neq j} P(d \mid h_j) P'(h_j)} \quad \text{where } P'(h_j) = \frac{P(h_j)}{1 - P(h_i)}$$

# Representativeness with Sets

$$R(d, D_s) = \log \frac{P(d | D_s)}{\sum_{s \neq t} P(d | D_t) P'(D_t)} \quad \text{where } P'(D_t) = \frac{P(D_t)}{1 - P(D_s)}$$

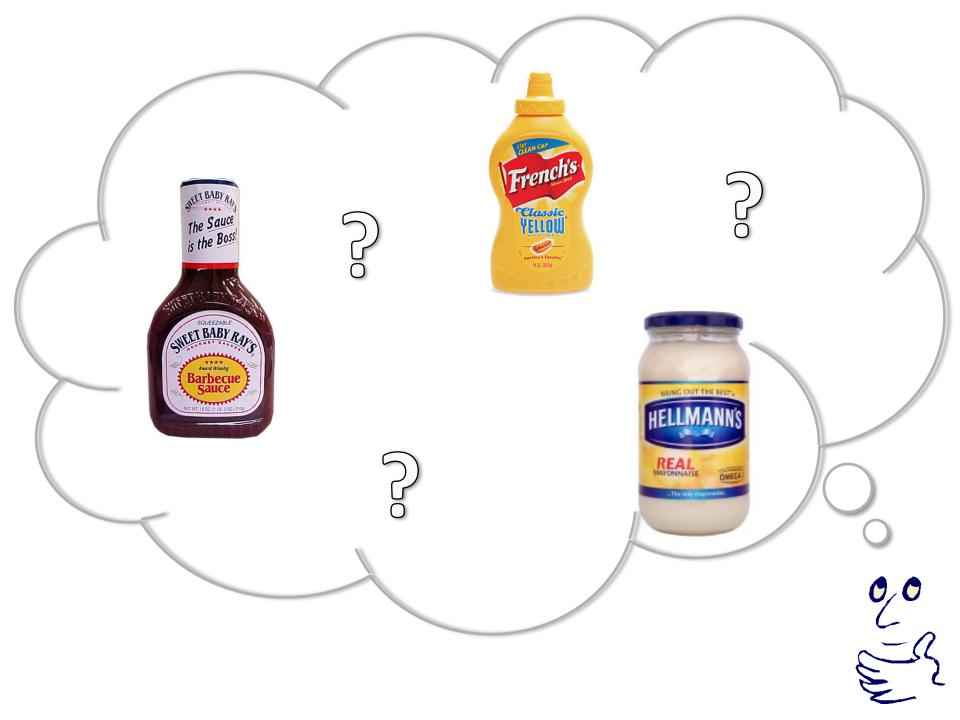
for a set of items  $D_s = \{\mathbf{x}_1, ..., \mathbf{x}_N\} \subseteq D$ 

# Representativeness with Sets

$$R(d, D_s) = \log \frac{P(d | D_s)}{\sum_{s \neq t} P(d | D_t) P'(D_t)} \quad \text{where } P'(D_t) = \frac{P(D_t)}{1 - P(D_s)}$$

for a set of items  $D_s = \{\mathbf{x}_1, ..., \mathbf{x}_N\} \subseteq D$ 

... but how do we compute this efficiently?





#### **Bayesian Sets**

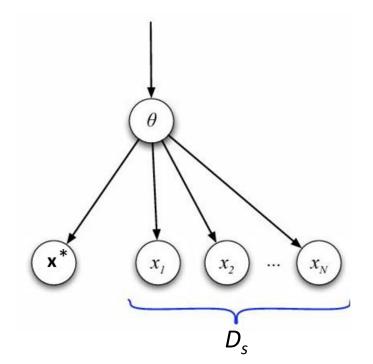
Given a data collection D and a subset of items  $D_s = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  representing a concept, rank an item  $\mathbf{x}^* \in \{D \setminus D_s\}$ 

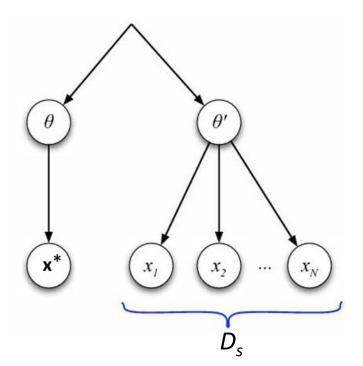
$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

#### **Bayesian Sets**

Given a data collection D and a subset of items  $D_s = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  representing a concept, rank an item  $\mathbf{x}^* \in \{D \setminus D_s\}$ 

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$





#### **Bayesian Sets**

Given a data collection D and a subset of items  $D_s = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$  representing a concept, rank an item  $\mathbf{x}^* \in \{D \setminus D_s\}$ 

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

for sparse binary data, can be computed efficiently as a single matrix-vector multiplication

$$R(d, D_S) = \log \frac{P(d \mid D_s)}{\sum_{s \neq t} P(d \mid D_t) P'(D_t)}$$





















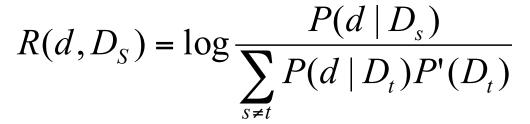
















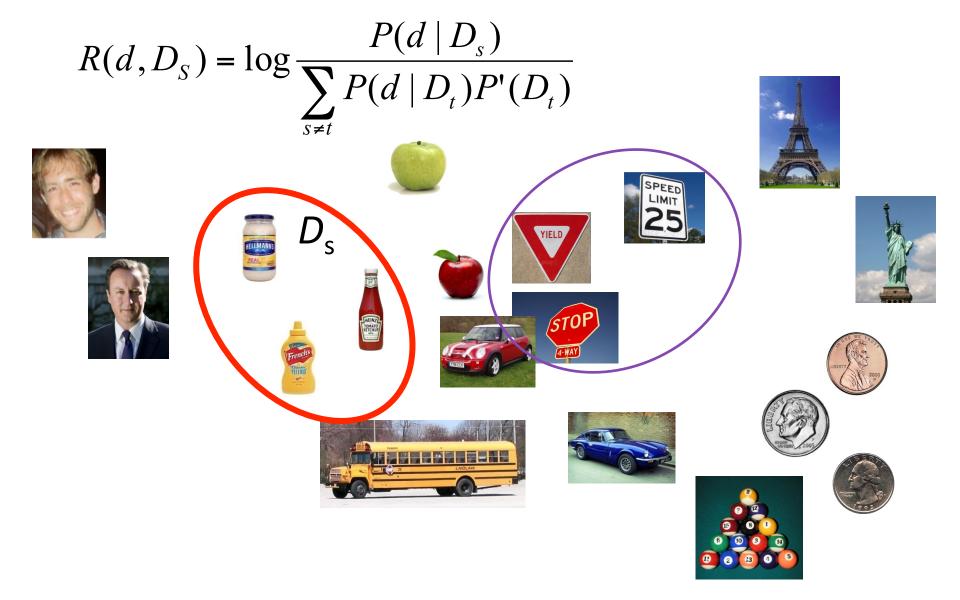


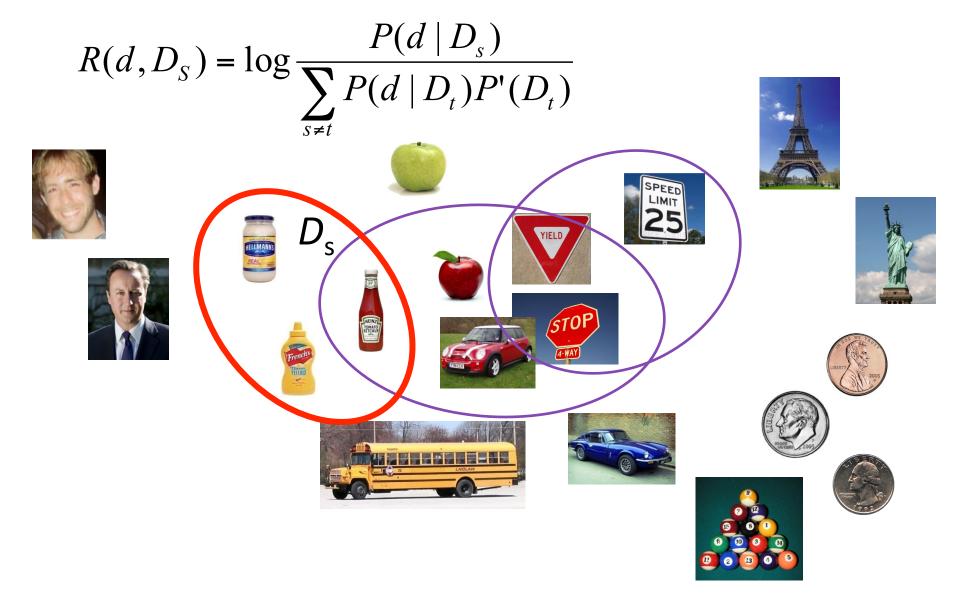


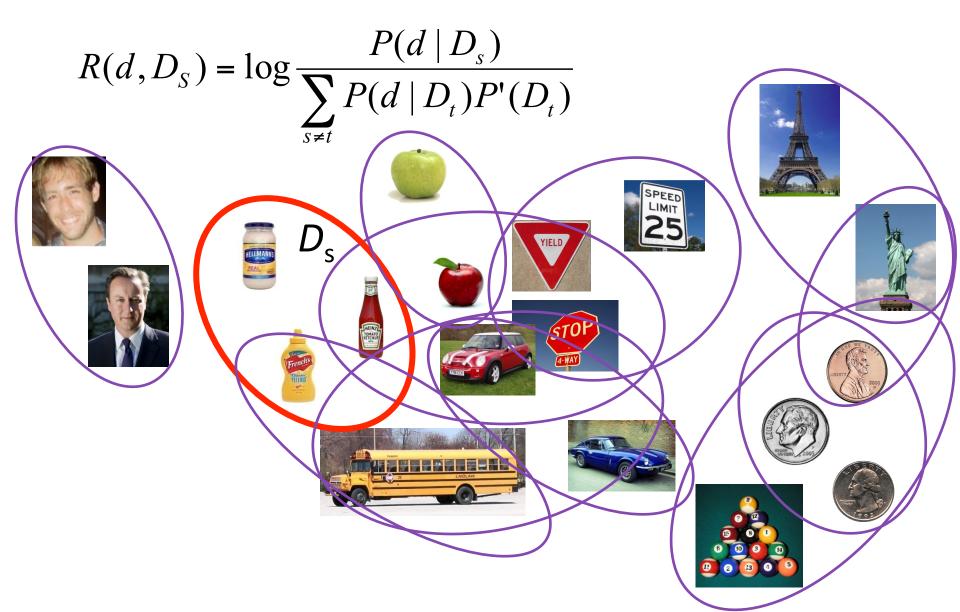


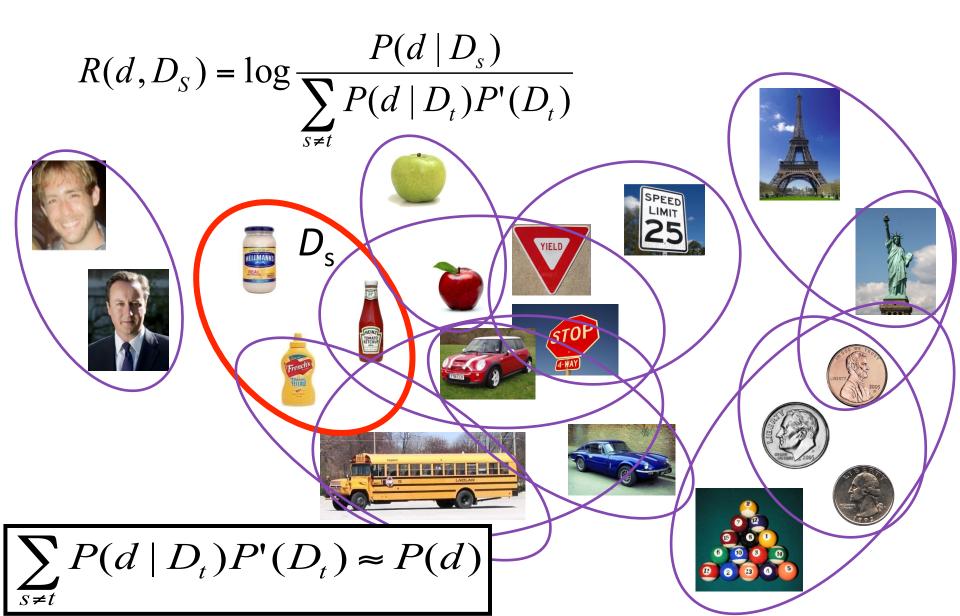












$$R(d, D_S) = \log \frac{P(d \mid D_S)}{\sum_{s \neq t} P(d \mid D_t) P'(D_t)}$$

$$\approx \log \frac{P(d \mid D_S)}{P(d)}$$

$$= \log \frac{P(d, D_S)}{P(d) P(D_S)}$$

$$= \log Bscore(d)$$

#### Outline

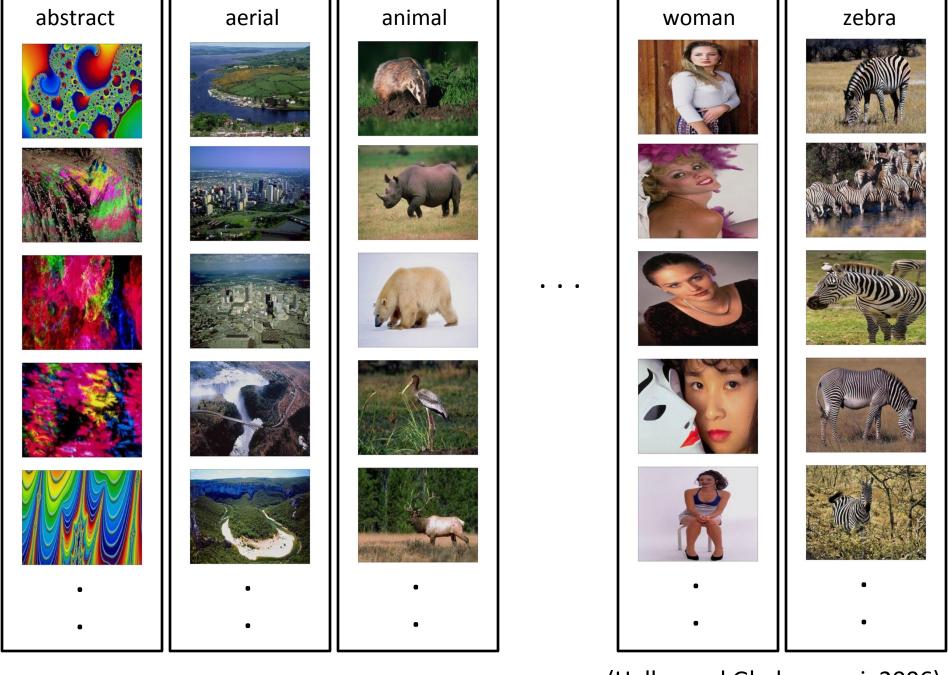
Representativeness and Bayesian Sets

Application to a large image database

Empirical Evaluation

# How do people determine which images of a labeled set are most representative of that set?





(Heller and Ghahramani, 2006)

50 labeled sets depicting unique categories, with varying numbers of images per set (mean=264)

Images are represented as 240-D feature vectors:

48 Gabor texture features

27 Tamura texture features

165 color histogram features

Post-processed through binarization stage

# Representativeness framework

```
input: a set of items, D_w, for a particular category label w
```

for each item  $\mathbf{x}_i \in D_w$  do

let 
$$D_{wi} = \{ D_w \setminus \mathbf{x}_i \}$$
  
compute  $score(\mathbf{x}_i, D_{wi})$ 

#### end for

rank items in D<sub>w</sub> by this score

**output:** ranked list of items in  $D_w$ 

Top 9











**Bottom 9** 



























"coast"

Top 9











**Bottom 9** 



























"mountains"

#### Outline

Representativeness and Bayesian Sets

Application to a large image database

Empirical Evaluation

# Models of Representativeness

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

#### **Likelihood Model**

$$Lscore(\mathbf{x}^*) = p(\mathbf{x}^* \mid D_s)$$

$$Pscore(\mathbf{x}^*) = \exp\{-\lambda dist(\mathbf{x}^*, \mathbf{x}_{proto})\}$$

$$Escore(\mathbf{x}^*) = \sum_{x_j \in D_s} \exp\{-\lambda dist(\mathbf{x}^*, \mathbf{x}_j)\}$$

#### Method

Participants: 500 (10 per category) via Amazon MT

**Stimuli:** Union of top 10 and bottom 10 ranked images per category, for each model\*

#### Is the image below a good example of the concept "eiffel"?

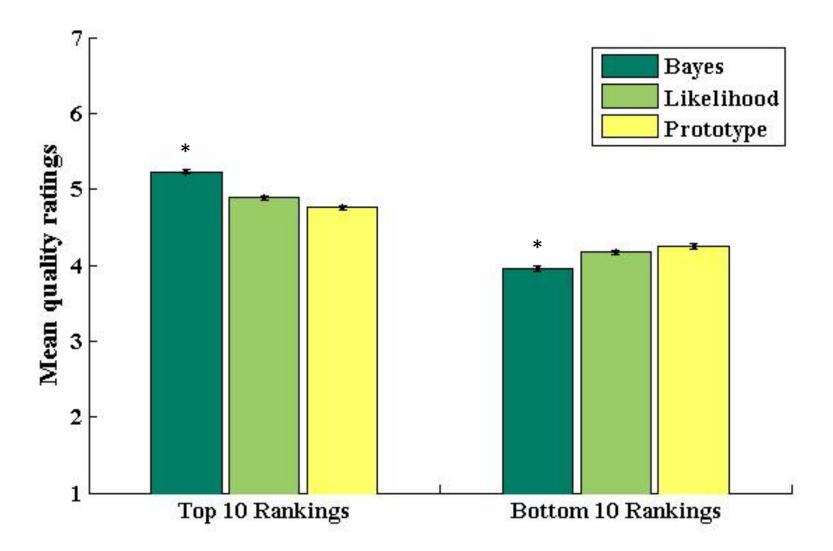
**Instructions:** On a scale from 1 to 7, please rate how good an example the image below is of the concept "eiffel", with a rating of 1 meaning the image is not a very good example and a rating of 7 meaning the image is a very good example.



| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Not Very Good Example

Very Good Example



# Spearman rank-order correlation

how well the actual scores from the models fit with the entire set of human judgments

Bayesian model  $(\rho = 0.352)^*$ 

Likelihood model ( $\rho = 0.220$ )

Prototype model  $(\rho = 0.160)$ 

Exemplar model  $(\rho = 0.212)$ 

### Summary

 Extended an existing Bayesian model of representativeness to handle sets of items

 Showed relationship to Bayesian Sets and exploited this to evaluate on a large database of naturalistic images

 Results provide strong evidence for this characterization of representativeness

### Summary

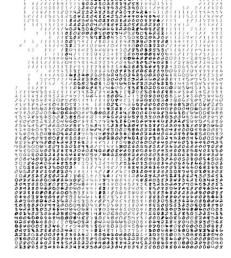
Closer integration of methods from cognitive science and machine learning

⇒ first quantitative comparison of Bayesian Sets algorithm to human judgments

⇒ first evaluation of Bayesian measure of representativeness in context of a real applied problem

#### Questions?

#### joshua.abbott@berkeley.edu



CoCoSci @ Berkeley

#### Bayesian Representativeness:

J.B. Tenenbaum and T. L. Griffiths. The rational basis of representativeness. *Proceedings of 23<sup>rd</sup> CogSci (2001)* 

#### **Bayesian Sets:**

- Z. Ghahramani and K. A. Heller. Bayesian Sets. NIPS (2005)
- K. A. Heller and Z. Ghahramani. A simple Bayesian framework for content-based image retrieval. IEEE CVPR (2006)

# Extra Slides

## Finding Outliers in Sets

Take an image from one category and inject it into all other categories, run algorithms and see where it ranks

| Model      | Avg. Pos. | S.E.           |
|------------|-----------|----------------|
| Bayesian   | 0.805     | <b>∓</b> 0.014 |
| Likelihood | 0.779     | <b>∓</b> 0.013 |
| Prototype  | 0.734     | ∓ 0.015        |
| Exemplar   | 0.734     | ∓ 0.016        |





"democratic", "US President"

#### "current", "world leader"













Given a data collection D and a subset of items  $D_s = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  representing a concept, rank an item  $\mathbf{x}^* \in \{D \setminus D_s\}$ 

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

$$p(\mathbf{x}^*) = \int p(\mathbf{x}^* \mid \theta) p(\theta) d\theta$$

$$p(D_s) = \int \left[ \prod_{n=1}^N p(\mathbf{x}_n \mid \theta) \right] p(\theta) d\theta$$

$$p(\mathbf{x}^*, D_s) = \int \left[ \prod_{n=1}^N p(\mathbf{x}_n \mid \theta) \right] p(\mathbf{x}^* \mid \theta) p(\theta) d\theta$$

Given a data collection D and a subset of items  $D_s = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  representing a concept, rank an item  $\mathbf{x}^* \in \{D \setminus D_s\}$ 

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

Assume each item  $\mathbf{x}_i \in D$  is represented as a binary feature vector  $\mathbf{x}_i = (\mathbf{x}_{i1}, ..., \mathbf{x}_{iJ})$  where  $\mathbf{x}_{ij} \in \{0,1\}$  and defined under a model in which each element of  $\mathbf{x}_i$  has an independent Bernoulli distribution

$$p(\mathbf{x}_i \mid \theta) = \prod_j \theta_j^{x_{ij}} (1 - \theta_j)^{1 - x_{ij}}$$

and conjugate Beta prior

$$p(\theta \mid \alpha, \beta) = \prod_{j} \frac{\Gamma(\alpha_{j} + \beta_{j})}{\Gamma(\alpha_{j})\Gamma(\beta_{j})} \theta_{j}^{\alpha_{j}-1} (1 - \theta_{j})^{\beta_{j}-1}$$

Given a data collection D and a subset of items  $D_s = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  representing a concept, rank an item  $\mathbf{x}^* \in \{D \setminus D_s\}$ 

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

$$= \prod_{j} \frac{\alpha_{j} + \beta_{j}}{\alpha_{j} + \beta_{j} + N} \left(\frac{\widetilde{\alpha}_{j}}{\alpha_{j}}\right)^{x_{*j}} \left(\frac{\widetilde{\beta}_{j}}{\beta_{j}}\right)^{1 - x_{*j}}$$

where 
$$\widetilde{\alpha}_{j} = \alpha_{j} + \sum_{n=1}^{N} x_{nj}$$

$$\widetilde{\beta}_{j} = \beta_{j} + N - \sum_{n=1}^{N} x_{nj}$$

$$\log Bscore(\mathbf{x}^*) = c + \sum_{j} s_j x_{*j}$$

where

$$c = \sum_{j} \log(\alpha_j + \beta_j) - \log(\alpha_j + \beta_j + N) + \log \widetilde{\beta}_j - \log \beta_j$$
$$s_j = \log \widetilde{\alpha}_j - \log \alpha_j - \log \widetilde{\beta}_j + \log \beta_j$$

and  $x_{*_i}$  is the  $j^{th}$  component of  $\mathbf{x}^*$ 

# Image features

#### **Texture features (75):**

We represent images using two types of texture features, 48 Gabor texture features and 27 Tamura texture features. We computed coarseness, contrast and directionality Tamura features, for each of 9 (3x3) tiles. We applied 6 scale sensitive and 4 orientation sensitive Gabor filters to each image point and compute the mean and standard deviation of the resulting distribution of filter responses.

#### Color features (165):

Computed HSV 3D histogram with 8 bins for H and 5 each for value and saturation. The lowest value bin was not partitioned into hues since these are hard to distinguish.

#### **Binarization:**

Each feature was binarized by computing the skewness of the distribution of that feature and giving a binary value of 1 to images falling in the 20 percentile of the heavier tail of the feature distribution.