Applying a Bayesian Measure of Representativeness to Sets of Images

Joshua T. Abbott, Katherine A. Heller, Zoubin Ghahramani, and Thomas L. Griffiths

How do people determine which elements of a set are most representative of that set?

Representativeness

• Judgment and Decision Making: Representativeness Heuristic

(Kahneman and Tversky, 1972)

• Categorization: Typicality

(Mervis and Rosch, 1981)

Proposals

data *d* is representative of a hypothesized process or concept, *h*, if it is similar to the observations *h* typically generates

- Similarity
- Likelihood
- Bayesian

Good example of a concept - one that best provides evidence for the concept relative to possible alternatives

$$R(d, h_i) = \log \frac{P(d | h_i)}{\sum_{i \neq j} P(d | h_j) P'(h_j)}$$

where
$$P'(h_j) = \frac{P(h_j)}{1 - P(h_i)}$$

$$h_1 = "fair coin", P(h_1) = 0.9$$

$$h_2$$
 = "two-headed coin", $P(h_2)$ = 0.05

$$h_3$$
 = "weighted coin – heads 3/5", $P(h_3)$ = 0.05

$$R(d, h_i) = \log \frac{P(d \mid h_i)}{\sum_{i \neq j} P(d \mid h_j) P'(h_j)}$$

$$h_1 = "fair coin", P(h_1) = 0.9$$

$$h_2$$
 = "two-headed coin", $P(h_2)$ = 0.05

$$h_3$$
 = "weighted coin – heads 3/5", $P(h_3)$ = 0.05

$$R(d, h_i) = \log \frac{P(d \mid h_i)}{\sum_{i \neq j} P(d \mid h_j) P'(h_j)}$$

 $R(HHTHT,h_1) = 0.59$

$$h_1 = "fair coin", P(h_1) = 0.9$$

$$h_2$$
 = "two-headed coin", $P(h_2)$ = 0.05

$$h_3$$
 = "weighted coin – heads 3/5", $P(h_3)$ = 0.05

$$R(d, h_i) = \log \frac{P(d \mid h_i)}{\sum_{i \neq j} P(d \mid h_j) P'(h_j)}$$

$$R(HHTHT,h_1) = 0.59$$

 $R(HHHHHH,h_1) = -2.85$

HHTHT is more representative of a fair coin than HHHHH

Limitations

Requires pre-defined concept/hypotheses

• Simple, artificial stimuli

Limitations

Requires pre-defined concept/hypotheses
 Extend measure to sets of objects - with
 concepts generated on the fly

Simple, artificial stimuli
 Evaluate on large database of naturalistic
 stimuli

Outline

Representativeness and Bayesian Sets

Application to a large image database

Empirical Evaluation

Outline

Representativeness and Bayesian Sets

Application to a large image database

Empirical Evaluation

Representativeness with Sets

$$R(d, h_i) = \log \frac{P(d \mid h_i)}{\sum_{i \neq j} P(d \mid h_j) P'(h_j)} \quad \text{where } P'(h_j) = \frac{P(h_j)}{1 - P(h_i)}$$

Representativeness with Sets

$$R(d, D_s) = \log \frac{P(d | D_s)}{\sum_{s \neq t} P(d | D_t) P'(D_t)} \quad \text{where } P'(D_t) = \frac{P(D_t)}{1 - P(D_s)}$$

for a set of items $D_s = \{\mathbf{x}_1, ..., \mathbf{x}_N\} \subseteq D$

Representativeness with Sets

$$R(d, D_s) = \log \frac{P(d | D_s)}{\sum_{s \neq t} P(d | D_t) P'(D_t)} \quad \text{where } P'(D_t) = \frac{P(D_t)}{1 - P(D_s)}$$

for a set of items $D_s = \{\mathbf{x}_1, ..., \mathbf{x}_N\} \subseteq D$

... but how do we compute this efficiently?

Bayesian Sets

Given a data collection D and a subset of items $D_s = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ representing a concept, rank an item $\mathbf{x}^* \in \{D \setminus D_s\}$

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

Bayesian Sets

Given a data collection D and a subset of items $D_s = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ representing a concept, rank an item $\mathbf{x}^* \in \{D \setminus D_s\}$

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

Bayesian Sets

Given a data collection D and a subset of items $D_s = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$ representing a concept, rank an item $\mathbf{x}^* \in \{D \setminus D_s\}$

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

for sparse binary data, can be computed efficiently as a single matrix-vector multiplication

$$R(d, D_S) = \log \frac{P(d \mid D_s)}{\sum_{s \neq t} P(d \mid D_t) P'(D_t)}$$

$$R(d, D_S) = \log \frac{P(d \mid D_S)}{\sum_{s \neq t} P(d \mid D_t) P'(D_t)}$$

$$\approx \log \frac{P(d \mid D_S)}{P(d)}$$

$$= \log \frac{P(d, D_S)}{P(d) P(D_S)}$$

$$= \log Bscore(d)$$

Outline

Representativeness and Bayesian Sets

Application to a large image database

Empirical Evaluation

How do people determine which images of a labeled set are most representative of that set?

(Heller and Ghahramani, 2006)

50 labeled sets depicting unique categories, with varying numbers of images per set (mean=264)

Images are represented as 240-D feature vectors:

48 Gabor texture features

27 Tamura texture features

165 color histogram features

Post-processed through binarization stage

Representativeness framework

```
input: a set of items, D_w, for a particular category label w
```

for each item $\mathbf{x}_i \in D_w$ do

let
$$D_{wi} = \{ D_w \setminus \mathbf{x}_i \}$$

compute $score(\mathbf{x}_i, D_{wi})$

end for

rank items in D_w by this score

output: ranked list of items in D_w

Top 9

Bottom 9

"coast"

Top 9

Bottom 9

"mountains"

Outline

Representativeness and Bayesian Sets

Application to a large image database

Empirical Evaluation

Models of Representativeness

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

Likelihood Model

$$Lscore(\mathbf{x}^*) = p(\mathbf{x}^* \mid D_s)$$

$$Pscore(\mathbf{x}^*) = \exp\{-\lambda dist(\mathbf{x}^*, \mathbf{x}_{proto})\}$$

$$Escore(\mathbf{x}^*) = \sum_{x_j \in D_s} \exp\{-\lambda dist(\mathbf{x}^*, \mathbf{x}_j)\}$$

Method

Participants: 500 (10 per category) via Amazon MT

Stimuli: Union of top 10 and bottom 10 ranked images per category, for each model*

Is the image below a good example of the concept "eiffel"?

Instructions: On a scale from 1 to 7, please rate how good an example the image below is of the concept "eiffel", with a rating of 1 meaning the image is not a very good example and a rating of 7 meaning the image is a very good example.

1	2	3	4	5	6	7
0	0	0	0	0	0	0

Not Very Good Example

Very Good Example

Spearman rank-order correlation

how well the actual scores from the models fit with the entire set of human judgments

Bayesian model $(\rho = 0.352)^*$

Likelihood model ($\rho = 0.220$)

Prototype model $(\rho = 0.160)$

Exemplar model $(\rho = 0.212)$

Summary

 Extended an existing Bayesian model of representativeness to handle sets of items

 Showed relationship to Bayesian Sets and exploited this to evaluate on a large database of naturalistic images

 Results provide strong evidence for this characterization of representativeness

Summary

Closer integration of methods from cognitive science and machine learning

⇒ first quantitative comparison of Bayesian Sets algorithm to human judgments

⇒ first evaluation of Bayesian measure of representativeness in context of a real applied problem

Questions?

joshua.abbott@berkeley.edu

CoCoSci @ Berkeley

Bayesian Representativeness:

J.B. Tenenbaum and T. L. Griffiths. The rational basis of representativeness. *Proceedings of 23rd CogSci (2001)*

Bayesian Sets:

- Z. Ghahramani and K. A. Heller. Bayesian Sets. NIPS (2005)
- K. A. Heller and Z. Ghahramani. A simple Bayesian framework for content-based image retrieval. IEEE CVPR (2006)

Extra Slides

Finding Outliers in Sets

Take an image from one category and inject it into all other categories, run algorithms and see where it ranks

Model	Avg. Pos.	S.E.
Bayesian	0.805	∓ 0.014
Likelihood	0.779	∓ 0.013
Prototype	0.734	∓ 0.015
Exemplar	0.734	∓ 0.016

"democratic", "US President"

"current", "world leader"

Given a data collection D and a subset of items $D_s = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ representing a concept, rank an item $\mathbf{x}^* \in \{D \setminus D_s\}$

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

$$p(\mathbf{x}^*) = \int p(\mathbf{x}^* \mid \theta) p(\theta) d\theta$$

$$p(D_s) = \int \left[\prod_{n=1}^N p(\mathbf{x}_n \mid \theta) \right] p(\theta) d\theta$$

$$p(\mathbf{x}^*, D_s) = \int \left[\prod_{n=1}^N p(\mathbf{x}_n \mid \theta) \right] p(\mathbf{x}^* \mid \theta) p(\theta) d\theta$$

Given a data collection D and a subset of items $D_s = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ representing a concept, rank an item $\mathbf{x}^* \in \{D \setminus D_s\}$

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

Assume each item $\mathbf{x}_i \in D$ is represented as a binary feature vector $\mathbf{x}_i = (\mathbf{x}_{i1}, ..., \mathbf{x}_{iJ})$ where $\mathbf{x}_{ij} \in \{0,1\}$ and defined under a model in which each element of \mathbf{x}_i has an independent Bernoulli distribution

$$p(\mathbf{x}_i \mid \theta) = \prod_j \theta_j^{x_{ij}} (1 - \theta_j)^{1 - x_{ij}}$$

and conjugate Beta prior

$$p(\theta \mid \alpha, \beta) = \prod_{j} \frac{\Gamma(\alpha_{j} + \beta_{j})}{\Gamma(\alpha_{j})\Gamma(\beta_{j})} \theta_{j}^{\alpha_{j}-1} (1 - \theta_{j})^{\beta_{j}-1}$$

Given a data collection D and a subset of items $D_s = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ representing a concept, rank an item $\mathbf{x}^* \in \{D \setminus D_s\}$

$$Bscore(\mathbf{x}^*) = \frac{p(\mathbf{x}^*, D_s)}{p(\mathbf{x}^*)p(D_s)}$$

$$= \prod_{j} \frac{\alpha_{j} + \beta_{j}}{\alpha_{j} + \beta_{j} + N} \left(\frac{\widetilde{\alpha}_{j}}{\alpha_{j}}\right)^{x_{*j}} \left(\frac{\widetilde{\beta}_{j}}{\beta_{j}}\right)^{1 - x_{*j}}$$

where
$$\widetilde{\alpha}_{j} = \alpha_{j} + \sum_{n=1}^{N} x_{nj}$$

$$\widetilde{\beta}_{j} = \beta_{j} + N - \sum_{n=1}^{N} x_{nj}$$

$$\log Bscore(\mathbf{x}^*) = c + \sum_{j} s_j x_{*j}$$

where

$$c = \sum_{j} \log(\alpha_j + \beta_j) - \log(\alpha_j + \beta_j + N) + \log \widetilde{\beta}_j - \log \beta_j$$
$$s_j = \log \widetilde{\alpha}_j - \log \alpha_j - \log \widetilde{\beta}_j + \log \beta_j$$

and x_{*_i} is the j^{th} component of \mathbf{x}^*

Image features

Texture features (75):

We represent images using two types of texture features, 48 Gabor texture features and 27 Tamura texture features. We computed coarseness, contrast and directionality Tamura features, for each of 9 (3x3) tiles. We applied 6 scale sensitive and 4 orientation sensitive Gabor filters to each image point and compute the mean and standard deviation of the resulting distribution of filter responses.

Color features (165):

Computed HSV 3D histogram with 8 bins for H and 5 each for value and saturation. The lowest value bin was not partitioned into hues since these are hard to distinguish.

Binarization:

Each feature was binarized by computing the skewness of the distribution of that feature and giving a binary value of 1 to images falling in the 20 percentile of the heavier tail of the feature distribution.