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Random walks and semantic fluency 
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What are the representations and algorithms underlying human memory search? 
 
When people search their memory, clusters of  semantically related items tend to be 
retrieved together [1]. A recent proposal suggests these patterns reflect an optimal 
foraging policy, with people searching for items distributed in memory in a manner 
similar to animals searching for food in patchy environments [2]. This explanation is 
relatively complex, assuming two separate processes and a strategic decision to switch 
between them. 
 
We show that these results can be reproduced by a random walk on a semantic network, 
which offers a simpler alternative explanation and provides further support for the idea 
that memory search might just be a random walk over a structured representation. 

Semantic fluency and optimal foraging 

Semantic fluency task: Name as many animals as you can in 3 minutes. 
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Two-part memory retrieval process [1, 2]  
clustering: produce words from the current semantic 
subcategory using local cues. 
switching: transition from the current to a different 
subcategory using global cues. 

Optimal foraging policy for memory search [2] 
Leave a “patch” in memory (ie: semantically related 
cluster) when the instantaneous rate of  finding 
more relevant items falls below the expected rate of  
searching elsewhere in memory. 

. . . . 

(a) IRTs increase towards the long-term average IRT up until a patch switch, going above it only for patch 
switches (indicated by “1”) as it takes extra time to find a new patch. 

(b) The majority of  participants’ pre-switch IRTs take less time than their long-term average IRT. 
(c) When participants leave a patch too late or too soon, they produce fewer words. 

These results are consistent with the optimal foraging policy for memory search. 

Human results from Hills et al. [2] animal naming task 

(a) (b) (c) 

Results averaged over 1000 simulations of  each of  the four random walk models run for a 
duration of  1750 iterations:  

(a)  Uniform transition model  
       without jumps (ρ=0.00) 

(b)  Weighted transition model 
       without jumps (ρ=0.00) 

(c)  Uniform transition model 
       with jumps (ρ=0.05) 

(d)  Weighted transition model 
       with jumps (ρ=0.05) 

A random walk on a semantic network exhibits similar complex behavior as participants in a 
semantic fluency experiment. Although human memory search can behave in a complex 
manner, it is not necessarily evidence that complex processes are producing the behavior.  
 
Our result helps to clarify the possible mechanisms that could account for PageRank predicting 
the prominence of  words in semantic memory [4], since PageRank is simply the stationary 
distribution of  the Markov chain defined by this random walk. 

Consider a Markov chain that starts at state X0 = “animal”, and then at step n randomly generates the next state Xn+1 according to a 
probability distribution that only depends on the current state Xn (and possibly the cue C = “animal”).  

Transition model: can either be uniform, where the next state is chosen uniformly at random from the outgoing links of  the current node, 
or weighted, where the probability of  the next state is weighted according to the frequency of  transitions in the word-association data [3].  

Effect of  cue at each step: can either be non-jumping (it has no effect except for initializing the chain at “animal”), or jumping, where the cue 
causes us to jump back to “animal” and transition from there, P(Xn+1|Xn = “animal”), with probability ρ (but otherwise transition normally 
with probability 1-ρ).  

Formally, the space of  models is defined by: 
  

P( Xn+1|C = “animal”, Xn = xn ) = ρP( Xn+1|Xn = “animal” ) + (1-ρ)P( Xn+1|Xn = xn )  
where P( Xn+1|Xn ) is either uniform or weighted, and ρ=0 is non-jumping or 0 < ρ ≤ 1 is jumping. We define the inter-item retrieval time 
(IRT) between animal k and animal k-1 to be: 

IRT(k) = τ(k) - τ(k-1) + L(k) 
 

where τ(k) is the first time animal k was seen on the random walk, and L(k) is the length of  the word for animal k. 

A semantic network represents the relationships between words (or concepts) as a directed graph, where each word is 
represented as a node and nodes are connected by an edge if  they are associated in some manner. 

We use a network with 5018 nodes derived 
from a word association task [3], in which 
people were asked to list the words that come 
to mind for a particular cue.  

Are the clusters identified by Troyer et al. [1] reflected in this semantic network?  
 
Let S be the matrix of  similarities obtained by taking sij=exp{-dij}, where dij is the length 
of  the shortest path between animal nodes i and j in the semantic network. The similarity 
matrix according to additive clustering is S=FWF’ where F is a feature matrix ( fac=1 if  
animal a has feature c ) and W is a diagonal matrix of  (non-negative) cluster weights.  

(a) (b) Visualizing the similarity between pairs of  
animals in our semantic network (darker 
colors represent stronger similarities): 
  
(a)  Similarity matrix obtained empirically 

from the semantic network.  
(b)  Similarity matrix obtained using the 

additive clustering model. 

Random walks on semantic networks have previously been proposed as an account of  behavior on fluency tasks: Griffiths et al. [4] 
showed that the prominence of  words in human memory can be predicted by running the PageRank algorithm on a semantic network. 

For example, when given the cue “tiger”, a person might 
produce the associates “animal”, “stripe”, and “bear”. 

Does a random walk over a semantic network reproduce the optimal foraging phenomena identified by Hills et al. [2]? If  so, this 
provides further support that the mechanism underlying memory search is a random walk. 
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Subjected to the same analyses applied to human data, the same phenomena is seen across all four models. The first 
word starting a patch has the highest overall retrieval time, and the second word in a patch takes a significantly shorter 
amount of  time. There is a strong correlation between pre-switch IRTs and average IRT, and a negative relationship 
between words produced and absolute difference of  pre-switch and average IRTs. 

These results demonstrate that behavior consistent with an optimal foraging policy can be 
produced by a simple undirected search process over a semantic network. 

The two similarity matrices contain similar block structure, which supports the hypothesis that the 
clusters of  animals are implicitly captured by the semantic network.  


