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Introduction

Structure of semantic memory Model evaluation

What are the representations and algorithms underlying human memory search? A semantic network represents the relationships between words (or concepts) as a directed graph, where each word 1s Results averaged over 1000 simulations of each of the four random walk models run for a
represented as a node and nodes are connected by an edge if they are associated in some manner. duration of 1750 iterations: .. o
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Consider a Markov chain that starts at state X, = “animal”, and then at step » randomly generates the next state X ,, according to a
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probability distribution that only depends on the current state X (and possibly the cue C

Transition model: can either be wniform, where the next state is chosen uniformly at random from the outgoing links of the current node,
or weighted, where the probability of the next state 1s weighted according to the frequency of transitions in the word-association data [3]. Discussion

animal”).

Human results from Hills et al. [2] animal naming task
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distribution of the Markov chain defined by this random walk.

(a) IRTs 1increase towards the long-term average IRT up until a patch switch, going above it only for patch
switches (indicated by “1”) as it takes extra time to find a new patch.
(b) The majority of participants’ pre-switch IRTs take less time than their long-term average IRT.

where P( X | X)) 1s etther wniform or weighted, and p=0 1s non-jumping or 0 < p = 1 1s jumping. We define the inter-item retrieval time
(IRT> between animal ,é and animal ,é_1 tO be: This work was supported by grants IIS-0845410 from the National Science Foundation and FA-9550-10-1-0232 from the Air Force Office of Scientific Research.
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(c) When participants leave a patch too late or too soon, they produce fewer words.

These results are Consistent With the optimal foraging policy for memory Search. WhCI’@ T(/é) IS the ﬁl’St tlme aﬂlmal /é was SECn on the raﬂdom Walk, aﬂd L(lé) IS the 1€ﬂgth Of the W()rd fOI' anlmal /é.




