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Building machines that learn and think  
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Joshua B. Tenenbaum    5,10 & Thomas L. Griffiths    2,8,10

What do we want from machine intelligence? We envision machines that are 
not just tools for thought but partners in thought: reasonable, insightful, 
knowledgeable, reliable and trustworthy systems that think with us. Current 
artificial intelligence systems satisfy some of these criteria, some of the 
time. In this Perspective, we show how the science of collaborative cognition 
can be put to work to engineer systems that really can be called ‘thought 
partners’, systems built to meet our expectations and complement our 
limitations. We lay out several modes of collaborative thought in which 
humans and artificial intelligence thought partners can engage, and we 
propose desiderata for human-compatible thought partnerships. Drawing 
on motifs from computational cognitive science, we motivate an alternative 
scaling path for the design of thought partners and ecosystems around their 
use through a Bayesian lens, whereby the partners we construct actively 
build and reason over models of the human and world.

Computers have long been seen as tools for thought. Steve Jobs called 
computers “bicycles for the mind”: tools that dramatically increase the 
efficiency, productivity and joy of thinking. Now, 30 years later, this 
metaphor is beginning to change. Computer systems are increasingly 
referred to not as vehicles but as “copilots”1,2: we have moved from 
designing tools for thought to actual partners in thought.

The current wave of artificial intelligence (AI) technologies, par-
ticularly language models, have catalysed this transition (key terms are 
defined in Glossary). Users no longer have to know how to write code to 
engage intimately with computers; we can now interface through the 
medium of natural language. Humans already think alone and together, 
and these thoughts are often communicated through the medium of 
language3. We long have done so—from developing new modes of think-
ing through questioning and debate to teaching and learning through 
language. The apparent power of these new systems (which getting 
closer to the kind of AI imagined in the field’s early days4–9)—as well 

as challenges faced by the current iterations of such systems—invites 
us to think about what it will take to build systems that truly act as 
effective thought partners. We argue that good thought partners are 
systems (1) that can understand us, (2) that we can understand and (3) 
that have sufficient understanding of the world that we can engage on 
common ground.

One path to building such thought partners is to scale foundation 
models (such as large language models (LLMs)10) with large amounts 
of human demonstrations and feedback, along with ‘traces’ of human 
thought scraped from web-scale data11–13. Although such an approach 
has produced systems that accurately mimic human behaviour (for 
example, producing fluent text), these machines do not robustly simu-
late human cognition (for example, explicitly reasoning about the 
world or other minds) in ways expected by a true thought partner3,14–20.

What would it take to design systems that meet our criteria? One 
promising path is to design systems that build explicit models of the 
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scientific innovation has come through collaboration, where advances 
are frequently fuelled by engaging with diverse partners who offer new 
ideas yet share our values38.

Modes of collaborative thought
As an illustration of the many ways that people and machines might 
think with each other, we highlight a few modes of collaborative 
thought (Table 1). This set of modes, partly inspired by characteriza-
tions of thinking and reasoning in psychology39,40, are not meant to be 
comprehensive of all aspects of thought. Rather, we see these modes 
as ripe for the further development of AI thought partners.

Example domains
We next outline a few diverse domains in which the development of AI 
thought partners able to truly collaborate with humans (Fig. 1) may be 
particularly valuable. We highlight common computational challenges 
that arise when considering what effective partnership might look like 
in each domain, foreshadowing our proposed desiderata. We later 
return to these case studies with concrete human-centric thought 
partner instantiations.

Thought partners for programming. Programming is a cognitively 
demanding activity that requires gaining fluency in translating human 
intentions into formal, machine-interpretable languages. It is no 
surprise that decades of effort have gone into designing tools to help 
people to program41–45. New ‘programming assistant’ tools such as 
GitHub Copilot have rapidly gained enormous popularity and atten-
tion, but these tools are often unreliable46–48—for example, failing 
to understand users’ intentions49 and generating bugs that may be 
particularly risky alongside beginner programmers50. Programming 

task, world and human (where these models are structured21 rather than 
distributionally learned from data)—drawing on formal frameworks 
grounded in cognitive psychology for understanding how humans 
think, alone and together. In this Perspective, we chart a new vision 
for the design of AI thought partners. Decades of work in the behav-
ioural sciences provide valuable insights for designing human-centric, 
uncertainty-aware thought partners. Drawing on such research, we 
argue that effective thought partners are those that build models of 
the human and the world.

This toolkit includes foundation models22–24 but is not limited to 
them. Indeed, foundation models such as LLMs are fuelling new motifs 
for thinking about human minds in computational terms (for example, 
“rational meaning construction”16) interleaved alongside techniques 
from probabilistic programming25–29, goal-directed search30–32 and 
other explicit, structured representations—for example, of agents 
thinking about other agents33–35. We already have tools that help us to 
build machines that learn and think like people36. We propose applying 
that toolkit to collaborative cognition—to build machines that learn 
and think with people.

What are thought partners?
When we think, we draw coherent inferences, make predictions and act 
on these predictions—from assessing what birthday present to gift a 
treasured friend, to formulating a new scientific hypothesis and experi-
ment plan to evaluate a theory. We flexibly draw on prior knowledge and 
update our beliefs through experience (as we discuss below). We not 
only solve problems but imagine new ones37. And we think together. For 
generations, humans have discussed and debated ideas and developed 
ecosystems to disseminate such thoughts to new audiences. Much 

Glossary

Collaborative cognition
The process by which two or more 
agents work together in some 
aspect(s) of thinking (for example, 
planning together, learning together 
or creating together).

Thought partner
Another entity (human or AI) that 
works with an agent to push forward 
some aspect(s) of thinking.

Artificial intelligence (AI)
Computational systems that are 
able to process inputs and engage 
in some aspect of learning, planning, 
reasoning and/or decision-making. 
Used interchangeably with machines.

Large language model (LLM)
A particular kind of AI system that 
learns a distribution over text, often 
trained on large amounts of web-
scale text data. LLMs are a class of 
large-scale foundation models.

Agent
An entity that can process inputs, 
make decisions and take actions in 
some environment.

Dyad
A system with two agents (for example, 
human–human, human–AI or AI–AI).

Resource rationality
The idea that human behaviour  
and cognition can be viewed as 

rational under bounded constraints  
(for example, under limited working 
memory).

Probabilistic generative 
model
A model of how the data one 
observes about the world are 
generated by some probabilistic 
process, from which one can sample 
new observations and make queries 
about existing observations.

Probabilistic programming 
language (PPL)
A language for expressing 
probabilistic generative models as 
computer programs that interleave 
deterministic code (for example, 
arithmetic, logic or artificial neural 
networks) with random choices. PPLs 
allow users to specify probabilistic 
models and inference algorithms in a 
modular and compositional manner.

Bayesian inference
A method for updating one’s beliefs 
over various aspects of the world, 
grounded in probability theory; in 
Bayesian inference, an agent updates 
their beliefs by assigning higher 
credence to hypotheses that better 
explain the evidence, weighted against 
the backdrop of their prior beliefs.

Affordance
Design features of a system that 
inform use.

Table 1 | Modes of collaborative thought

Mode Ongoing challenges Sampling of existing systems

Collaborative planning

• �Joint 
decision-making

• �Decentralized 
cooperation

• �Goal and task 
assistance

Reliable goal inference
Value and intent 
alignment
Scalable multi-agent 
planning

Collaborative robots68,222

Video game sidekicks223,224

Language-based 
assistants35,225

Collaborative learning

• �Pair and team 
problem-solving

• �Identification of 
knowledge gaps

• �New problem 
construction

Strong and robust 
problem-solving abilities
Personalized curriculum 
pacing
Problem construction of 
targeted difficulty

Programming learning 
aids178,226–228

Mathematics tutors15,229,230

Collaborative deliberation

• �Debate and 
argumentation

• �Critical review 
and discussion

• �Consensus 
formation

Opinion diversity
Verifiable reasoning
Formation of common 
ground

Machine-assisted 
debating231–233

Consensus writing and 
opinion mapping234,235

Collaborative sense-making

• Explanation
• Visualization
• Data analytics

Exponential increases in 
data produced
Accessible 
communication
Fidelity of insights to the 
world

Probabilistic data 
modelling158,159,161,236,237

Machine-assisted theory 
discovery238–240

Collaborative creation and ideation

• Co-design
• Idea critiquing
• Brainstorming

Generation diversity
Style consistency
Modular customizability

Machine-assisted writing72,74,241

Prompted image creation242–244

Collaborative sketching245–247

Settings in which human–human and human–AI thought partners can engage.
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involves much more than just accurate in-line code suggestions—
which, at the time of writing, GitHub Copilot specializes in. Humans 
plan abstract, structural decisions and collaboratively learn, and 
we need partners who can answer our questions—such as why code 
behaves as it does or fails to work. A good collaborative programming 
partner seeks to understand not only the programming language 
but also their fellow programmer, inferring and reasoning about our 
overarching intentions and adapting to both what we know and what 
we do not know.

Thought partners for embodied assistance. Ensuring that embodied 
agents can form accurate and physically realizable plans is foundational 
for effective assistance we can trust—from guessing what a friend wants 
when we help them to cook51, to working with someone with different 
physical abilities52, to carrying out a high-stakes search-and-rescue 
mission53. Although much current research on embodied AI and 
assistive robots focuses on learning specific skills or following simple 
instructions54–56, evaluations suggest that even state-of-the-art lan-
guage models fine-tuned on extensive human feedback continue to 
struggle with tasks that require reliable, effective planning towards 
novel goals57,58. Instead, ideal assistive partners understand our 
actions, words and instructions as expressions of goals, beliefs and 
intentions59–61 that are grounded in physical possibilities62, while also 
understanding that these can be shared across multiple minds63–65. 
In addition, effective partners account for each other’s limitations in 
perception, planning and world modelling, correcting for possible 
mistakes66,67 and acting to make their intentions more legible68,69.

Thought partners for storytelling. Another domain in which we may 
want thought partners is storytelling—for writers, filmmakers and even 
scientists. Storytelling is a complex, iterative cognitive process70,71 
with substantial opportunities for thought partners to collaboratively 
ideate and create with humans by helping to brainstorm new ideas, 
generate storylines and improve their writing style and tone72–77. For this 
process to be productive, a thought partner needs to understand more 
than just our authorial intentions and dispositions—they also need to 
understand the audience we are speaking to (that is, to understand the 
social world), including audience expectations and likely interpreta-
tions of the stories we are crafting for them.

Thought partners for medicine. Doctors need to sense-make, plan, 
deliberate and continually learn in the face of new medical evidence. 
A primary care doctor is not unlike Sherlock Holmes—collating and 
integrating disparate bits of evidence with their prior beliefs to make 
decisions under uncertainty. Yet, doctors rarely have enough time 
to engage deeply with each patient78, driving high rates of burnout 
with knock-on effects on patient care quality79. Can we develop safe, 
reliable thought partners that can free doctors up to spend more time 
and communicate better with their patients? Already, foundation 

models are becoming proficient in medical assessments80,81, seem-
ingly capable of easing the heavy burden on doctors by assisting and 
partnering82,83, and even providing preferable responses to patients84. 
Yet, it is not clear that these systems understand us (and our cognitive 
limitations), understand the world (underlying biology) and enable 
us to understand them (which, in this context, may be important for 
transparency and reliability85–88).

Desiderata
What then do we want from thought partners? There are many criteria 
for tools for thought that are of course relevant, such as efficiency, 
accuracy, robustness, fairness, cost and scalability. But the domains 
above illuminate that what is distinctive about a thought partner is its 
relationship to the user89. Looking to ideas from the behavioural sci-
ences motivates three desiderata to guide the design of human-centred 
thought partners:

	(1)	 You understand me: we would like our thought partners to un-
derstand our goals, plans, (possibly false) beliefs and resource 
limitations, taking into account what they have observed of us in 
the past and present to best collaborate with us in the future90,91. 
For example, a thought partner should adaptively change strate-
gies when working with an expert, layperson or child, meeting 
us where we are.

	(2)	I understand you: we would like our thought partners to act in a 
way that is legible to us68,92 and communicate with us in the way 
we intuitively understand93–95.

	(3)	We understand the world: we would like our thought partners to 
be tethered to reality96. This means being accurate and knowl-
edgeable as well as working with a shared representation of the 
world, domain or task97–99. Furthermore, our use of ‘we’ empha-
sizes that thought partnerships are fundamentally about syn-
ergy, moving beyond the sum of their parts.

Engineering human-centred thought partners
Our core proposal is that our three desiderata can be engineered explic-
itly, building on theoretical motifs from computational cognitive sci-
ence and cognitively informed AI (summarized in Table 2), rather than 
left as emergent and potentially brittle properties arising implicitly 
in systems trained for other ends20. Here we articulate a framework 
for engineering thought partners designed to robustly and explicitly 
function as cooperative, collaborative actors. Humans are far from 
homogeneous, perfectly rational oracles, nor are we so unpredictable 
that it is hopeless to model human behaviour. We argue that models 
that explain human cognition and choice as approximately optimal 
solutions given goals and constraints provide an ideal starting point for 
designing thought partners, and that a Bayesian formalism provides a 
probabilistically sound common conceptual language that facilitates 
cross-talk between different disciplines22,100,101.

Humans as thought partners

Alice Bob

Product of
thought

Beliefs
about AliceBeliefs

about world

Beliefs
about Bob

Machines as thought partners

Alice Machine

Product of
thought

Beliefs
about AliceBeliefs

about world

Beliefs
about machine

Machines as tools

Alice Machine

Product of
thought

Beliefs
about world

Beliefs
about machine

Fig. 1 | Examples of ecosystems for thinking. Humans have long thought together. Machines have expanded the efficiency of human thinking. Now, machines—
powered by AI—open up new realms of computational thought partnership with humans.
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Implementing our desiderata
What does it take to engineer real systems that meet our desiderata? 
First, we propose that a thought partner that understands us should 
explicitly model its human collaborator as such—as a cooperative agent 
with structured internal beliefs, knowledge and goals, as well as funda-
mental resource limitations. Second, engineering a thought partner that 
we can understand benefits from looking at how humans model other 
humans: just as a good human collaborator seeks to learn and adapt to 
the relative strengths, imperfections and computational bounds of their 
partner, we can build machine thought partners that also reason about 
the computational demands they are placing on another agent such 
that we can appropriately predict their behaviour18,102. Finally, to build 
thought partners that understand the world—and learn and think syner-
gistically alongside us—we argue that it is valuable to build on structured 
computational toolkits for grounding shared goals and communication 
into the environment and domain in which collaboration takes place.

Computational cognitive science motifs
We now non-exhaustively spotlight several key insights about model-
ling humans, modelling humans modelling humans and modelling 
humans modelling the world from computational cognitive science—
motifs for reverse-engineering the mind (Table 2)—that we believe can 
inform engineering of human-centred thought partners. Although we 
acknowledge that some communities within cognitive science may 
disagree with some of these theories, we emphasize that the compu-
tational underpinnings of the motifs hold tremendous engineering 
potential for building thought partners in practice.

Probabilistic models of cognition. Decades of work in computa-
tional cognitive science have demonstrated the power of modelling 
aspects of human cognition as Bayesian inference through structured 
probabilistic generative world models21,103–106. Such approaches have 
found empirical success in capturing a diversity of facets of human 
cognition including early word learning107, visual perception108,109, 
physical reasoning99,110,111, concept learning112–114, language processing 
and acquisition104,115–117, causal inference in children118,119 and adults120,121, 
memory reconstruction122, and theory formation123,124, among many 
others. Probabilistic models of cognition, particularly those built using 
a Bayesian approach, have offered principled formalisms in capturing 
rapid belief updating125 and how we may integrate our common-sense 
world knowledge with new evidence to inform the actions and decisions 
we take in the world126. Probabilistic inference over structured represen-
tations, particularly drawing on Bayesian modelling and tools such as 
meta-level Markov decision processes127, has provided a computational 
account of how humans plan so flexibly, with the capability of forming 
rich hierarchical goals and subgoals, across varied timescales100,126,128–130.

Theory of mind and communication. In our quest to build systems 
for collaborative cognition, we are guided by the success of Bayesian 
accounts of how we reason about others’ mental states and how we 
communicate about them. In particular, Bayesian treatments of theory 
of mind have offered strong accounts of how we may rapidly reason 
about each other’s beliefs, desires, goals and intentions33,131–134. We 
may build mental models135,136 of our thought partners, which can in 
turn be used to support communication and collaboration, informing 
the way we teach137–139, infer whether to rely on a partner for help140 and 
support rapid, flexible adaptation to new conversation partners141,142. 
We call particular attention to the rational speech act framework59,143, 
which models communicative partners as recursively reasoning about 
each other’s minds to inform what to say (from the perspective of the 
speaker) and how to interpret a received utterance (as the listener). 
Bayesian models provide a useful framework for formalizing such rich 
cross-partner inferences, allowing both social cognition and commu-
nication to be modelled with the same computational toolbox144,145.

Resource-rationality and tractable theory-building. Human brains 
also have limited resources such as time, memory and attention that 
shape what we think about, how long we spend thinking and even how 
we communicate our thoughts to others146. We thus sometimes make 
systematically biased inferences147,148. Such ‘erroneous’ judgements can 
be captured by modelling humans as making rational use of our finite 
resources—for example, via approximate inference125,149 or bounded 
planning67. Crucially, human cognition is tractable150. Indeed, we can 
navigate large, potentially unbounded, hypothesis spaces to build the-
ories of the world—a process that seems to demand some kind of heu-
ristics and approximations, which may be resource-rational17,130,146,151–154.  
One approach to modelling minds advocates thinking about humans 
as “world model builders” (or “hackers”)—conducting experiments and 
updating our beliefs about compressed representations of the world, 
where these representations may be expressed as programs123,155. Such 
representations—bolstered by tools such as program synthesis—help 
to explore suboptimal behaviour156.

Scaling thought partners via probabilistic programming
If Bayesian thought partners are to reason over models of their human 
thought partner and the world, these models need to continually evolve 
as new facts come to light and as the human thought partner them-
selves grows in their expertise, beliefs and needs. Probabilistic pro-
gramming26 provides one powerful methodology for building, scaling 
and performing inference in these kinds of rich models. For example, 
probabilistic programs can be learned from data157,158 and synthesized 
via LLMs that encode rich priors16,159,160. Probabilistic programs also 

Table 2 | Bayesian thought partner toolkit

Motif Description Sample 
references

Probabilistic 
mental models 
and inference

Humans update beliefs and draw 
inferences consistent with probabilistic 
generative models representing the world.

21,103,248

Structured 
knowledge 
representations

Humans have abstract, highly structured 
conceptual representations that 
include causality, agents and physical 
representations.

249–251

Hierarchical 
models

Humans construct and update 
hierarchical representations that separate 
concrete knowledge and belief from 
abstract ones.

106,184,252

Theory learning 
as programme 
synthesis

Human minds can be viewed as growing 
and editing theories of the world, 
expressed as programs, to improve their 
codebase (world models).

123,155,253

Resource- 
rationality

Humans make rational choices about how 
to allocate finite computational resources, 
including time and memory.

152,153,254

Goal-directed 
planning and 
search

Humans are intentional actors, who plan 
to achieve goals by reasoning about the 
(uncertain) effects of their (possible) 
actions in the environment.

255–257

Bayesian theory 
of mind

Humans represent other agents as 
intentional, intelligent actors and 
probabilistically infer their mental states 
from observations of actions.

126,134,258

Rational speech 
acts

Humans reason about language as an 
intentional, communicative action to infer 
speakers’ underlying goals.

59,143,259

Learning to learn Humans meta-learn (improve our 
overarching ability to learn) jointly with 
learning new concrete concepts and 
skills.

36,260–262

A range of computational cognitive motifs for reverse-engineering the mind in engineering 
terms, drawn from computational cognitive science, can be used to build human-centric 
thought partners that meet our desiderata.
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enable fast approximate inference in world models that cohere with 
human common-sense knowledge and domain expertise161,162, where the 
learned models are themselves amenable to modular inspection and 
editing by humans. Modern probabilistic programming languages25,27,163 
offer not just generic inference but programmable inference—that 
is, they automate the mathematics for hybrids of optimization164,165, 
dynamic programming166 and Monte Carlo inference167. Although such 
frameworks are certainly not the only methods to handle uncertainty 
and build effective and robust thought partners, we believe they are 
one promising and cognitively grounded approach to instantiating 
thought partners today, as we discuss in our case studies.

Infrastructure around thought partners
The design of systems that learn and think with people necessitates care-
ful construction not only of the thought partner (that is, the machine 
itself) but also of the infrastructure within which human and compu-
tational thought partners collaborate102. Questions such as ‘When and 
where should a human be able to engage a computational thought part-
ner to ensure effective and appropriate use?’ or ‘For a given problem, is 
the human or computational thought partner better suited to start first, 
in light of their respective strengths and weakness, costs of the task at 
hand and particular mode of thought?’ inform the design of the workflow 
that surrounds thought partnership. This sociotechnical ecosystem may 
be dictated by external regulations, organizational practices or other 
principles73,168–171 and is crucially informed by studies of human behav-
iour. For example, Article 14 of the European Union AI Act requires users 
of high-risk AI systems “to correctly interpret the high-risk AI system’s 
output” and “to remain aware of the possible tendency of automatically 
relying or over-relying on the output.” Satisfying such requirements 
not only begets careful design of thought partners (for example, that 
we can understand) but also demands careful design of the system of 
affordances172,173 and infrastructure around thought partnerships (for 
instance, communicating back to humans information about their reli-
ance strategies). Disentangling thought partners from the infrastructure 
around them provides a modular scaffold for addressing unintentional 
thought partnership behaviour, such as over-reliance174 and “illusions 
of understanding”175. Bayesian modelling has already found success in 
inferring humans’ reliance strategies176 and regions of the task space 
where a human versus machine can complement one another177.

Case studies in engineering thought partners
We now return to the example domains previously introduced and dis-
cuss specific case studies (depicted in Fig. 2). Our goal is to demonstrate 
the potential benefits of endowing thought partners with structured 
probabilistic models of the human and/or world and to provide a flavour 
of the kinds of infrastructure questions that may surround them to 
ensure that the thought partners we build work with people.

Thought partners for programming
We highlighted some visions for effective programming partnerships, 
such as a partner that can address ‘why’ questions. One recent idea, 
from Chandra et al.178, is to apply the Bayesian toolkit to explain sur-
prising behaviour of computer programs in a human-like way. Chandra 
et al.178 apply Bayesian models of mental state inference and rational 
communication179 to design a system called WatChat that answers 
questions such as “Why did program p output result r?” in a principled, 
human-like way. WatChat infers what erroneous mental model might 
cause the programmer to have expected something different (partner 
understands user) and generates an explanation that ‘debugs’ that 
mental model (user understands partner). WatChat represents pos-
sible mental models themselves as programs whose bugs correspond 
to possible misconceptions; mental models can thus be inferred by 
Bayesian program synthesis (Table 2). Such a framework can also be 
inverted to help to design new questions for teachers or self-driven 
learners to identify misconceptions.

Thought partners for embodied assistance
Recall the challenge of collaboratively planning uncertain tasks, from 
a search-and-rescue mission to everyday cooking, wherein we typically 
want to infer shared goals and communicative intent from our partners. 
This cooperative logic can be modelled in a Bayesian architecture called 
cooperative language-guided inverse plan search (CLIPS)35. By model-
ling humans as cooperative planners who use language to communicate 
joint plans to achieve their goals65, CLIPS is able to infer those plans 
and goals from both the actions and instructions of human collabora-
tors. This allows CLIPS to pragmatically follow human instructions, 
using context to disambiguate the multiple meanings that a request 
might have, while proactively assisting with the goals that underlie the 
instruction. For example, CLIPS can understand the likely intentions 
behind an instruction such as ‘Can you prepare the vegetables while 
I knead the dough?’, inferring the shared goal of making pizza. These 
capabilities are made possible by using probabilistic programming 
infrastructure25 to unite algorithms for Bayesian inverse planning33,132 
and human–AI alignment51,61,180 with LLMs. In particular, by using LLMs 
to evaluate the probability of a natural language instruction given a 
possible intention, CLIPS can infer intentions from natural language in 
a coherent Bayesian manner—demonstrating the power of combining 
tools from the Bayesian thought partner toolkit.

Thought partners for storytelling
Storytelling is about crafting experience. Can we also apply the toolkit 
to help storytellers design experiences from first principles? Recent 
work has shown that a system grounded in Bayesian theory of mind can 
predict and even design interventions on the audience’s experience of 
a story181,182. Chandra et al.183 conceive of storytelling as “inverse inverse 
planning”: that is, starting with human social cognition, modelled as 
Bayesian inverse planning33, and then optimizing narrative events to 
shape the model’s inferences over time. They show how a variety of sto-
rytelling techniques—from plot twists to stage mime—can be expressed 
in the language of inverse inverse planning to create animations that 
have a desired cognitive effect on viewers. Herein, we also highlight the 
breadth of thought partners for media beyond language, though the 
framework does nicely suggest a variety of natural extensions, such as 
integration into tools for creative writing72–77.

Thought partners for medicine
Finally, we envision medical thought partners that both understand 
us—reasoning about the doctor, patient and care team as agents with 
goals, beliefs and worries—and complement our capabilities, integrat-
ing swaths of evidence that exceed our cognitive capacities to inform 
diagnosis and treatment. Although no system yet meets our desiderata 
for these criteria, we believe that a range of motifs and tools from the 
Bayesian thought partner toolkit here can support the development 
of such systems for collaborative sense-making and deliberation. We 
imagine Bayesian thought partners that can update their medical world 
knowledge in light of new insights in biology—for example, editing a 
code snippet of the underlying probabilistic world model16 or growing 
the representation in a non-parametric hierarchical Bayesian model184. 
Such a model can then, similar to WatChat, synthesize new questions 
to ensure that the human doctor’s own medical world model is sound. 
Early work demonstrates that we can use elements of our toolkit, spe-
cifically probabilistic programming, to learn rich generative models for 
oncology and support efficient user queries185. Yet, effective medical 
thought partners beckon a broader view of the ecosystem in which 
they are deployed89,186. If a doctor is over-relying on the output of the 
thought partner or is overburdened amid a surge in patient queries, 
infrastructure around the human and thought partner can modulate 
when a patient query is either routed to a human or the AI thought 
partner, or is deemed to need collaborative planning187. Systems for 
routing based on probabilistic modelling are already proving success-
ful in simulation188.
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Looking ahead
There is much exciting work to be done to characterize when and how to 
build thought partners across modes of collaborative thought, which 
can advance the dissemination and creation of new knowledge along-
side humans. We next lay out several key challenges for researchers and 
designers intent on pursuing a human-centred programme of building 
machines that learn and think with people.

Non-dyad settings
Although there is substantial work to be done characterizing the 
space of possibilities for a single human and a single AI thought part-
ner (‘dyadic’), we envision a future where many humans and many 
machines (‘non-dyadic’), across roles and specialties in increasingly 
complex social systems189, engage in the realm of thought190–192. Already, 
researchers are exploring non-dyadic versions of many of the modes of 
thought and case studies laid out above, including collaborative learn-
ing with groups of humans accompanied by an AI thought partner193 
and medical robot collision avoidance systems that need to account for 
multiple humans194. As in the dyad setting, extensions to non-dyadic set-
tings can be bolstered by a deepening understanding of human behav-
iour in groups—expanding the Bayesian thought partner toolkit—as is 
already underway in the study of convention formation141,195. Looking 
ahead, citizen science is a promising example of the opportunities of 
creating large networks of humans and thought partners: Zooniverse, 
a large-scale galaxy classification crowdsourcing project, serves as a 
case study for exploring smart task allocation, blending human and 
machine classifications, and infrastructure changes that affect human 
participation and performance with outcomes including both iterative 
scientific progress and serendipitous scientific discovery196.

Evaluation
The assessment of thought partners demands a multi-faceted, cross- 
disciplinary suite of approaches. At minimum, the evaluation of AI 
thought partners must include some element of interactivity197. Recent 

works have highlighted deficits in static evaluation of foundation 
models15,198, demonstrating the need for considering the interaction 
process in addition to the final output, the first-person perspective 
in addition to the third-party perspective, and notions of preference 
beyond quality. In addition to interactive user studies, we posit that 
studying different kinds of thought partners across modes of collabo-
rative thought would benefit from a controlled, yet rich, playspace; 
games provide one such domain. Games offer a good formalism for the 
study of repeated interactions between multiple agents and grounds to 
explore rich patterns of thought in social collaborative settings199–202.

Risks and important considerations
Computational thought partners are by no means a guaranteed or uni-
versal good and come with certain risks. We call out three such spheres 
of risk: (1) reliance, critical thinking and access; (2) anthropomorphiza-
tion; and (3) misalignment.

First, AI thought partners could induce over-reliance and impair 
the development of critical thinking skills175,203–205, potentially acting 
as “steroids” for the mind206. We are concerned about these risks; our 
emphasis on the infrastructure around thought partner use is explicitly 
intended to help practitioners to take steps to address these challenges, 
motivating further design of infrastructure modifications such as cogni-
tive forcing functions207,208. Conversely, some people may under-rely on 
a thought partner, particularly if there is inadequate AI literacy training 
for how to best make use of new thought partners209–211. Research has 
already found that the kinds of queries people make of AI systems can 
be informed by the amount of prior experience they have interacting 
with chatbots15, meaning that students, researchers and other practi-
tioners in lower-income communities may be unable to maximize the 
value of thought partnering. It is important to ensure that the benefits 
of thought partners are not confined to an exclusive set of people.

Second, on the topic of anthropomorphization, we highlight an 
important distinction between human-centric and human-like thought 
partners212. Our desideratum ‘I understand you’ advocates for thought 
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Fig. 2 | Case study depictions. a, WatChat infers the user’s buggy mental model 
of the programming environment and interactively helps to ‘patch’ bugs in 
their understanding. b, CLIPS reasons explicitly about agents’ goals, integrating 
(culinary) world knowledge and the human’s utterances to infer appropriate 
actions. Both agents reason about the joint team plan (tomato and dough are 

needed to make pizza). c, Thought partners based on inverse inverse storytelling 
explicitly reason over models of the audience. d, Future thought partners for 
medicine can jointly reason with human doctors across modalities, a shared 
understanding of biology and patient needs, and a model of others’ limitations.
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partners whose behaviour we understand; although this could draw 
on how we understand other humans, we should however be careful 
about interpreting such machine thought partners as we do humans. 
As Weizenbaum6 illuminated with the ELIZA system, there are risks to 
developing computer systems that present themselves as human-like 
in ways that they are not: for example, by leading users to attribute 
undue intention to systems’ responses or (in the long run) leading 
society to devalue human intelligence213. Human-like thought part-
ners should maintain categorical delineation between humans and 
machines to prevent over-reliance203,214 and promote human dignity 
without encroaching on any partner’s self-worth7. The term used to 
refer to a thought partner can affect the assumptions made about their 
capabilities (for example, ‘teammate’ implies the machine and human 
are on equal footing) or can detract from a partner’s human-like nature 
(for example, ‘tool’ would be less anthropomorphic).

Lastly, we note that insufficiently accurate, robust or cogni-
tively grounded models can yield misalignment with humans, lead-
ing intended AI thought partners to act towards the wrong goals215, 
provide wrong or misleading information216, or violate safety con-
straints217. A Bayesian approach to thought partnership can address 
some of these issues, enabling uncertainty-aware decision-making that 
avoids overconfidence180,218,219. Yet, while inferring human thoughts 
and behaviour can be used to design better collaborators, models of 
humans are inherently dual-use and can also be used to mislead, surveil 
or manipulate220. It is crucial to consider whether thought partners are 
aligned with society at large or merely superficially aligned with users 
while serving more powerful interests221.

Conclusion
If we are to build helpful and reliable human–AI thought partnerships, 
we advocate for design that explicitly recognizes and engages with the 
richness and diversity of human thought in an often unpredictable 
world. We have argued, supported by several case studies, that those 
engineering thought partners and the infrastructure around their 
use can benefit from drawing on motifs from computational cogni-
tive science and cognitive AI. The future of collaborative cognition is 
bright, but not without risk; continual collaboration and knowledge 
sharing among behavioural scientists, AI practitioners, domain experts 
and related disciplines is crucial as we strive to build machines that 
truly learn and think with people.
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