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Abstract

Game elements like points and levels are a popular tool to
nudge and engage students and customers. Yet, no theory can
tell us which incentive structures work and how to design them.
Here we connect the practice of gamification to the theory of
reward shaping in reinforcement learning. We leverage this
connection to develop a method for designing effective incen-
tive structures and delineating when gamification will succeed
from when it will fail. We evaluate our method in two behav-
ioral experiments. The results of the first experiment demon-
strate that incentive structures designed by our method help
people make better, less short-sighted decisions and avoid the
pitfalls of less principled approaches. The results of the sec-
ond experiment illustrate that such incentive structures can be
effectively implemented using game elements like points and
badges. These results suggest that our method provides a prin-
cipled way to leverage gamification to help people make better
decisions.
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nality; Reinforcement Learning; Decision-Support

Introduction
Most decisions have both immediate and delayed conse-
quences. For instance, investing in a pension plan entails less
fun today than buying a wide-screen TV but a higher standard
of living 25 years later. Unfortunately, the immediate out-
comes often dominate people’s considerations because future
outcomes are discounted disproportionately (Berns, Laibson,
& Loewenstein, 2007). One of the reasons for this myopia is
that optimal long-term planning is often intractable because
the number of possible scenarios grows exponentially as you
look ahead further. Consequently, people have to rely on falli-
ble heuristics to limit the length and number of scenarios they
consider (Huys et al., 2015). While these heuristics can make
us short-sighted in some situations (Huys et al., 2012), they
work very well in others (Gigerenzer, 2008). Thus, perhaps,
it is not our heuristics that are broken but the decision envi-
ronments in which they fail (Gigerenzer, 2008; McGonigal,
2011).

The myopic nature of human decision-making (Berns et
al., 2007) suggests that decision environments can be repaired
by aligning each action’s immediate rewards with the value of
its long-term consequences. This could be achieved through
gamification (Deterding, Dixon, Khaled, & Nacke, 2011).
Gamification is the use of game elements such as points, lev-
els, and badges in non-game contexts like education, the work
place, health, and business. This approach has become ex-
tremely popular in the past five years. It is now widely used to
engage people and nudge their decisions (Hamari, Koivisto,
& Sarsa, 2014), and it has also inspired tools that help peo-

ple achieve their goals and improve themselves (McGonigal,
2015; Kamb, 2016; Henry, 2014).

While gamification can have positive effects on motivation,
engagement, behavior, and learning outcomes (Hamari et al.,
2014), it can also have unintended negative consequences
(Callan, Bauer, & Landers, 2015; Devers & Gurung, 2015).
Unfortunately, it is currently impossible to predict whether
gamification will succeed or fail (Hamari et al., 2014; Devers
& Gurung, 2015), and there is no principled way to deter-
mine exactly how many points should be awarded for a given
action. Here we address these problems by connecting the
practice of gamification to the theory of pseudo-rewards in
reinforcement learning. We leverage this connection to of-
fer a mathematical framework for gamification and a com-
putational method for designing optimal incentive structures.
Our method offloads the computations of long-term planning
from people by building the optimal decision into the incen-
tive structure so that foresight is no longer necessary. This
helps people make better decisions that are less short-sighted.

The plan for this paper is as follows: We start by introduc-
ing the theory of pseudo-rewards from reinforcement learn-
ing. We then apply this theory to derive a method for design-
ing optimal incentive structures. Finally, we test the effective-
ness of our method in two behavioral experiments. We close
with implications for decision support and gamification.

Formalizing Gamification

Each sequential decision problem can be modeled as a
Markov Decision Process (MDP)

M = (S ,A ,T,γ,r,P0) , (1)

where S is the set of states, A is the set of actions, T (s,a,s′)
is the probability that the agent will transition from state s to
state s′ if it takes action a, 0 ≤ γ ≤ 1 is the discount factor,
r(s,a,s′) is the reward generated by this transition, and P0 is
the probability distribution of the initial state S0 (Sutton &
Barto, 1998). A policy π : S 7→ A specifies which action to
take in each of the states. The expected sum of discounted
rewards that a policy π will generate in the MDP M starting
from a state s is known as its value function

V π
M(s) = E

[
∞

∑
t=0

γ
t · r (St ,π(St),St+1)

]
. (2)



The optimal policy π?
M maximizes the expected sum of dis-

counted rewards, that is

π
?
M = argmax

π
E

[
∞

∑
t=0

γ
t · r (St ,π(St),St+1)

]
, (3)

and its value function satisfies the Bellman equation

V ?
M(st) = max

a
E [r (st ,a,St+1)+ γ ·V ?

M(St+1)]. (4)

We can therefore rewrite the optimal policy as

π
?
M(s) = argmax

a
E [r(st ,a,St+1)+ γ ·V ?

M(St+1)] , (5)

which reveals that it is myopic with respect to the sum of the
immediate reward and the discounted value of the next state.

Here, we leverage the MDP framework to model game el-
ements like points and badges as pseudo-rewards f (s,a,s′)
that are added to the reward function r(s,a,s′) of a de-
cision environment M to create a modified environment
M′ = (S ,A ,T,γ,r′,P0) with a more benign reward function
r′(s,a,s′) = r(s,a,s′)+ f (s,a,s′). From this perspective, the
problem with misaligned incentives is that they change the
optimal policy π?

M of the original decision problem M into a
different policy π?

M′ that is optimal for the gamified environ-
ment M′ but not for the original environment M. To avoid this
problem we have to ensure that each optimal policy of M′ is
also an optimal policy of M.

Fortunately, research in reinforcement learning has identi-
fied the necessary and sufficient conditions pseudo-rewards
have to satisfy to achieve this: according to the shaping the-
orem (Ng, Harada, & Russell, 1999) adding pseudo-rewards
retains the optimal policies of any original MDP if and only
if the pseudo reward function f is potential-based, that is if
there exists a potential function Φ : S 7→R such that

f (s,a,s′) = γ ·Φ(s′)−Φ(s), (6)

for all states s, actions a, and successor states s′.
Pseudo-rewards can be shifted and scaled without chang-

ing the optimal policy, because linear transformations of
potential-based pseudo-rewards are also potential-based:

a · f (s,a,s′)+b = γ ·Φ′(s′)−Φ
′(s), (7)

for Φ
′(s) = a ·Φ(s)− b

1− γ
. (8)

Shifting all pseudo-rewards f (s,a,s′) by the rewards r(s,a,s′)
also retains the optimal policy, because it is equivalent to mul-
tiplying all rewards by 2 and positive linear transformations
of the rewards preserve the optimal policy (Ng et al., 1999).

If gamification is to help people achieve their goals, then
the pseudo-rewards added in the form of points or badges
must not divert people from the best course of action but make
its path easier to follow. Otherwise gamification would lead
people astray instead of guiding them to their goals. Hence,
the practical significance of the shaping theorem is that it
gives the architects of incentive structures a method to rule
out incentivizing counter-productive behaviors:

1. Model the decision environment as a MDP.

2. Define a potential function Φ that specifies the value of
each state of the MDP.

3. Assign points according to Equation 6.

This method may be useful to avoid some of the dark sides of
gamification (Callan et al., 2015; Devers & Gurung, 2015).
To make this proposal more concrete and actionable, the next
section presents a method for designing good potential func-
tions.

Designing Optimal Incentive Structures
While the shaping theorem constrains pseudo-rewards to be
potential-based there are infinitely many potential functions
that one could choose. Given that people’s cognitive limita-
tions prevent them from fully incorporating distant rewards
(Huys et al., 2012; Berns et al., 2007), the modified reward
structure r′(s,a,s′) should be such that the best action yields
the highest immediate reward, that is

π
?
M(s) = argmax

a
r′(s,a,s′). (9)

Here, we show that this can be achieved with our method by
setting the potential function Φ to the optimal value function
V ?

M of the decision environment M, that is

Φ
?(s) =V ?

M(s) = max
π

V π
M(s). (10)

First, note that the resulting pseudo-rewards are

f (s,a,s′) = γ ·V ?
M(s′)−V ?

M(s), (11)

which leads to the modified reward function

r′(s,a,s′) = r(s,a,s′)+ γ ·V ?
M(s′)−V ?

M(s). (12)

Hence, if the agent was myopic its policy would be

(13)
π(s) = argmax

a
E
[
r(s,a,s′) + γ ·V ?

M(s′)−V ?
M(s)

]
= argmax

a
E
[
r(s,a,s′) + γ ·V ?

M(s′)
]
.

According to Equation 5, this is the optimal policy π?
M for

the original decision environment M. Thus, people would
act optimally even if they were completely myopic. And
they should perform equally well, if they do optimal long-
term planning to fully exploit the gamified environment M′ or
learn its optimal policy π?

M′ through trial-and-error, because
the shaping theorem (Eq. 6) guarantees that the gamified en-
vironment M′ has the same optimal policy, that is π?

M′ = π?
M .

This suggests that potential-based pseudo-rewards derived
from V ?

M should allow even the most short-sighted agent who
considers only the immediate reward to perform optimally.
In this sense, the pseudo-rewards defined in Equation 11 can
be considered optimal. In addition, optimal pseudo-rewards
accelerate learning when the agent’s initial estimate of the
value function is close to 0 (Ng et al., 1999).



Computing the optimal pseudo-rewards requires perfect
knowledge of the decision environment and the decision-
maker’s preferences. This information may be unavailable
in practice. Yet, even when the optimal value function V ?

M
cannot be computed, it is often possible to approximate it. If
so, the approximate value function V̂M can be used to approx-
imate the optimal pseudo-rewards (Eq. 11) by

f̂ (s,a,s′) = γ ·V̂M(s′)−V̂M(s). (14)

For instance, you can estimate the value of a state s from its
approximate distance to the goal s?:

V̂M(s) = V̂M(s?) ·
(

1− distance(s,s?)
maxs distance(s,s?)

)
, (15)

where V̂M(s?) is the estimated value of achieving the goal.
Based on previous simulations (Ng et al., 1999), we predict
that approximate pseudo-rewards (Eq. 14) can have beneficial
effects similar to those of optimal pseudo-rewards but weaker.
We tested these predictions in two behavioral experiments.

Experiment 1: Modifying Rewards
Methods
We recruited 250 adult participants on Amazon Mechanical
Turk. Participants were paid $0.50 for playing the game
shown in Figure 1. In this game, the player receives points
for routing an airplane along profitable routes between six
cities. In each of the 24 trials the initial location of the air-
plane was chosen uniformly at random, and the task was to
earn as many points as possible. Participants were incen-
tivized by a performance dependent bonus of up to $2. This
game is based on the planning task developed by Huys et al.
(2012). Our version of this task is isomorphic to a MDP with
six states, two actions, deterministic transitions, and a dis-
count factor of γ = 1− 1/6. The locations correspond to the
states of the MDP, the two actions correspond to flying to the
first or the second destination available from the current loca-
tion, the routes correspond to state-transitions, and the points
participants received for flying those routes are the rewards.
The current state was indicated by the position of the aircraft
and was updated according to the flight chosen by the par-
ticipant. The number of points collected in the current trial
was shown in the upper right corner of the screen. After each
choice there was a 1 in 6 chance that the game would end
and the experiment would advance to the next trial, and a 5
in 6 chance that the participant could choose another flight.
The participants were instructed to score as high as possible,
and their financial bonus was proportional to the rank of their
score relative to the scores of all participants in the same con-
dition. The optimal policy in this MDP is to move counter-
clockwise around the circle in all states except Williamsville
and Brownsville (see Figure 1). Importantly, at Williamsville
the optimal policy incurs a large immediate loss, and no other
policy achieves a positive reward rate.

Participants were randomly assigned to one of four con-
ditions: In the control group, there were no pseudo-rewards

Figure 1: Interface of the control condition of Experiment 1.
The map shows the unmodified rewards r.

Pseudo-Rewards Smiths- Jones- Williams- Browns- Clarks- Bakers-
None 140 30 −30 −70 −30 −70 −30 30 −30 −70 −30 −70
Optimal 2 −76 2 −5 −12 2 −4 2 2 0 2 −42
Approximate 8 −102 −22 −4 −22 −4 36 38 −34 −16 24 −32
Non-Potential-Based 119 9 −51 −41 −51 −41 −1 9 −51 41 −1 9

Table 1: Rewards in Experiment 1. The first entry of each cell
is the (modified) reward of the counter-clockwise move and
the second one is the (modified) reward of the other move.

(Figure 1). In this condition finding the optimal path required
planning 4 steps ahead. In the three experimental condi-
tions the rewards were modified by adding pseudo-rewards.
To keep the average reward constant, the pseudo-rewards
were mean-centered by subtracting their average; since mean-
centering is a linear transformation this retained the guaran-
tees of the shaping theorem (see Eq. 7). Next, the mean-
centered pseudo-rewards were added to the rewards of the
control condition (see Figure 1) yielding the modified rewards
shown in Table 1, and the flight map was updated accordingly.
In all other respects the interfaces of the experimental condi-
tions were exactly the same as the interface of the control
condition (see Figure 1). All participants were thus unaware
of the existence of pseudo-rewards. In the first experimental
condition the pseudo-rewards were derived from the optimal
value function according to the shaping theorem (Eq. 11). In
this condition, looking only 1 step ahead was sufficient to find
the optimal path. The second experimental condition used
the approximate potential-based pseudo-rewards defined in
Equation 14 with the distance-based heuristic value function
defined in Equation 15 where s? was Smithsville, Φ(s?) was
its highest immediate reward (i.e., +140), and distance(a,b)
was the minimum number of actions needed to get from state
a to state b. The resulting pseudo-rewards simplified plan-
ning but not as much as the optimal pseudo-rewards. Find-
ing the optimal path required planning 2-3 steps ahead and
the immediate losses were smaller. In the third experimental
condition, the pseudo-rewards violated the shaping theorem:
the pseudo-reward was +50 for each transition that reduced
the distance to the most valuable state (i.e. Smithsville) but
there was no penalty for moving away from it.



Figure 2: Performance and reaction times in Experiment 1.

Results and Discussion
The average completion time of the experiment was 13:37
min. The median response time was 1.3 sec. per choice. We
excluded 3 participants who invested less than one third of the
median response time of their condition and 11 participants
who scored lower than 95% of all participants in their con-
dition. The boxplots in Figure 2 summarize the median per-
formance and reaction times of participants in the four condi-
tions. The median performer of the control group lost 18.75
points per trial. By contrast, the majority of the group with
optimal pseudo-rewards achieved a net gain in the unmod-
ified MDP (median performance: +5.00 points/trial). The
median performance in the group with approximate potential-
based pseudo-rewards was −5.00 points per trial, and in the
group with non-potential-based pseudo-rewards the median
performance was −21.25 points per trial. A Kruskal-Wallis
ANOVA revealed that the type of pseudo-rewards added to
the reward function significantly affected people’s perfor-
mance in the original MDP (H(3) = 40.35, p < 10−8) as
well as their reaction times (H(3) = 29.96, p < 10−5). Given
that the pseudo-reward type had a significant effect, we per-
formed pairwise Wilcoxon rank sum tests to compare the
medians of the four conditions. The non-potential-based
pseudo-rewards failed to improve people’s performance (Z =
0.72, p = 0.47). By contrast, the approximate potential-
based pseudo-rewards succeeded to improve their perfor-
mance (Z = 2.86, p = 0.0042) and led to better performance
than the heuristic pseudo-rewards that violated the shaping
theorem (Z = 3.61, p = 0.0003). People performed even
better when gamification was based on the optimal pseudo-
rewards: adding optimal pseudo-rewards led to better deci-
sions than adding the approximate potential-based pseudo-
rewards (Z = 2.68, p = 0.0074), presenting the true reward
structure (Z = 4.76, p < 10−5), or adding the non-potential-
based pseudo-rewards (Z = 5.34, p < 10−7).

In addition, some pseudo-rewards accelerated the deci-
sion process (Figure 2): optimal pseudo-rewards decreased
the median response time from 1.72 to 1.14 sec/decision
(Z = −4.19, p < 0.0001), and non-potential-based pseudo-
rewards decreased it to 1.12 sec/decision (Z = −3.38, p =
0.0007). But approximate potential-based pseudo-rewards
had no significant effect on response time (1.65 sec/decision;
Z =−0.28, p = 0.78).

Figure 3: Choice frequencies in each state of Experiment 1
by condition. Error bars enclose 95% confidence intervals.

Next, we inspected how the pseudo-rewards affected the
choices our participants made in each of the six states (see
Figure 3). The optimal pseudo-rewards significantly changed
the choice frequencies in each of the six states and suc-
cessfully nudged participants to follow the optimal cycle
Smithsville → Jonesville → Williamsville → Bakersville →
Smithsville (see Figure 1). Their strongest effect was to elim-
inate the problem that most people would avoid the large loss
associated with the correct move from Williamsville to Bak-
ersville (χ2(2) = 1393.8, p < 10−15). The optimal pseudo-
rewards also increased the frequency of all other correct
choices along the optimal cycle, that is the decisions to fly
from Bakersville to Smithsville (χ2(2) = 326.5, p < 10−15),
from Smithsville to Jonesville (χ2(2) = 7.9, p = 0.0191), and
from Jonesville to Williamsville (χ2(2) = 299.8, p < 10−15).
In addition, the optimal pseudo-rewards increased the fre-
quency of the correct move from Clarksville to Bakersville
(χ2(2) = 92.0, p< 10−15). The only negative effect of the op-
timal pseudo-rewards was to slightly increase the frequency
of the suboptimal move from Brownsville to Clarksville
(χ2(2) = 13.2, p = 0.0013). By contrast, the non-potential-
based pseudo-rewards misled our participants to follow the
unprofitable cycle Jonesville → Clarksville → Smithsville
→ Jonesville by raising the frequency of the reckless moves
from Jonesville to Clarksville (χ2(2) = 1578.6, p < 10−15)
and from Clarksville to Smithsville (χ2(2) = 813.7, p <
10−15). The effect of the approximate pseudo-rewards was
beneficial in Smithsville, Williamsville, and Bakersville, but
negative in Jonesville, Brownsville, and Clarksville (see Fig-
ure 3). This explains why only potential-based pseudo-
rewards had a positive net-effect on performance (Figure 2).

Finally, we investigated learning effects by comparing the
average choice frequencies in the first five trials versus the last
five trials. While people’s decisions improved with learning
in the conditions with potential-based pseudo-rewards, learn-
ing had a negative effect when the pseudo-rewards violated
the shaping theorem: In the condition with non-potential-
based pseudo-rewards learning reduced the frequency of the
correct choice in Jonesville (χ2(2) = 9.22, p= 0.01). By con-



trast, in the condition with optimal pseudo-rewards learning
improved people’s choices in Smithsville (χ2(2) = 13.02, p =
0.0015), and in the condition with approximate potential-
based pseudo-rewards learning improved people’s choices in
Jonesville (χ2(2) = 11.44, p = 0.0033). In the control con-
dition, learning made people more likely to take the correct
action in Williamsville (χ2(2) = 24.16, p < 0.0001) and Bak-
ersville (χ2(2) = 22.74, p < 0.0001) but less likely to take
the correct action in Clarksville (χ2(2) = 8.80, p = 0.0123).
In summary, while learning with potential-based pseudo-
rewards guided people closer towards the optimal policy,
non-potential-based pseudo-rewards lured them away from it.
This is consistent with the shaping theorem’s assertion that
pseudo-rewards have to be potential-based to always retain
the optimal policy.

In summary, we found that pseudo-rewards can help peo-
ple make better decisions–but only when they are designed
well. The results support the proposed method for design-
ing incentive structures: Assigning pseudo-rewards accord-
ing to the shaping theorem avoided the negative effects of
non-potential-based pseudo-rewards. Furthermore, using the
optimal value function as the shaping potential lead to the
greatest improvement in decision-quality.

Experiment 2: Explicit Pseudo-Rewards
To assess the potential of gamification for decision-support
in real life, Experiment 2 conveyed pseudo-rewards by points
without monetary value.

Methods
We recruited 400 participants on Amazon Mechanical Turk.
Participants were paid $2.50 for about 20 min of work plus
a performance dependent bonus of up to $2 that averaged at
$1. We inspected the data from the 355 participants who had
not participated in earlier versions of the experiment and ex-
cluded 19 participants who responded in less than one third
of the median response time of all participants or performed
worse than 95% of the participants in their condition.

The task from Experiment 1 was modified by adding stars
in two new experimental conditions (see Figure 4). To make
it easy for participants to add rewards plus pseudo-rewards,
the rewards were scaled down by a factor of 10 and the opti-
mal pseudo-rewards were recomputed according to Equation
11. The pseudo-rewards awarded for each action were then
shifted by the expected return of the optimal policy ($0.90)
so that they predict how much money the player will earn in
the long-run if they choose that action and act optimally af-
terwards. The experiment had four conditions: In the control
condition no pseudo-rewards were presented. Three exper-
imental conditions presented the optimal pseudo-rewards in
three different formats: condition 2 embedded the pseudo-
rewards into the reward structure as in Experiment 1; con-
dition 3 presented them separately in the form of stars; and
in condition 4 the number of stars communicated the sum
of pseudo-reward plus immediate reward. All numbers were
rounded to one significant digit. In the conditions with stars

Figure 4: Screenshot of Experiment 2.

the instructions stated that the stars were designed to help the
pilots make better decisions and explained their meaning. In
addition, the instructions included the tip that the better flight
is the one with the higher sum of stars plus dollars (condition
3) or that it is the one awarded more stars (condition 4). The
stars had no monetary value, but they determined whether
and when the character played by the participant would be
promoted. The character could rise from Trainee to ATP se-
nior captain via 15 intermediate levels. The number of points
required to reach the next level increased according to the
difficulty curve proposed by Bostan and Öğüt (2009). Partic-
ipants were told how many stars and dollars were required to
reach the next level (see Figure 4). The current score and the
shoulder batch corresponding to the current level were shown
at the top of the screen, and a feedback message appeared
whenever the character was promoted. The player started the
game with +$50 so that their balance would remain positive
as they learned to play the game. In all conditions a quiz en-
sured the participants understood the task and its incentives
before they could start the game. This quiz comprised three
questions on how the participant’s financial bonus would be
determined and three questions testing they understood the
mechanics of the task.

Results and Discussion
Overall, presenting pseudo-rewards in one of the three for-
mats significantly improved people’s performance (Z = 3.43,
p = 0.0006). Most importantly, adding points (i.e., stars)
without monetary value can be just as effective as directly
modifying the reward structure of the environment: Inte-
grated pseudo-rewards significantly increased people’s per-
formance from −0.73 dollars/trial to +0.17 dollars/trial (Z =
3.69, p = 0.0002). The resulting level of performance was
not significantly different from the performance in the condi-
tion with embedded pseudo-rewards (+0.42 dollars/trial, Z =
0.52, p = 0.62). By contrast, presenting pseudo-rewards sep-
arately failed to significantly increase people’s performance



Figure 5: Choice Frequencies in Experiment 2: Effects of
stars and badges on performance

(median performance: −0.5 dollars/trial; Z = 0.22, p= 0.83).
Inspecting the choice frequencies (Figure 5) confirmed

that the three presentation formats had significantly different
effects: Embedded pseudo-rewards and integrated pseudo-
rewards were more beneficial than separately presented
pseudo-rewards in all 6 states (all p ≤ 0.0218). Embedded
pseudo-rewards were more beneficial than integrated pseudo-
rewards in Jonesville and Clarksville (both p ≤ 0.0001), but
integrated pseudo-rewards were more beneficial than embed-
ded pseudo-rewards in Brownsville (p< 10−9). Furthermore,
participants were significantly faster when pseudo-rewards
were embedded in the decision environment than when they
were presented separately (Z = −4.06, p < 0.0001) or in the
integrated format (Z =−2.78, p = 0.0053).

In conclusion, adding points that convey the sum of opti-
mal pseudo-rewards plus immediate reward can be as effec-
tive as changing the reward structure itself.

Conclusion
We have proposed a general method for improving incentive
structures based on the theory of MDPs and the shaping theo-
rem. Its basic idea is to offload the computation necessary for
long-term planning into the reward structure of the environ-
ment such that people will act optimally even when they con-
sider only immediate rewards. The results of Experiment 1
provide a proof of principle that our approach can help people
make better sequential decisions. Our findings suggest that
the shaping theorem can be used to delineate when gamifica-
tion will succeed from when it will fail and to design incentive
structures that avoid the perils of less-principled approaches
to gamification. Experiment 2 illustrated that the incentive
structures designed with our method can be implemented
with game elements like points and badges. In both ex-
periments the pseudo-rewards helped people overcome their
short-sighted tendency to avoid an aversive action with desir-
able long-term consequences in favor of immediate reward–a
cognitive limitation that can manifest in procrastination and
impulsivity. Therefore, our method might be useful for im-

proving inter-temporal choice. Our findings are consistent
with the view that the limitations of human decision-making
can be overcome by reshaping incentive structures that make
us prone to fail into ones that our heuristics were designed for.
Our method achieves this by solving people’s planning prob-
lems for them and restructuring their incentives accordingly.
The program providing the pseudo-rewards can be seen as a
cognitive prosthesis because it compensates for people’s cog-
nitive limitations without restricting their freedom. In con-
clusion, optimal gamification may provide a principled way
to help people achieve their goals and procrastinate less.
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