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Abstract
With the explosion of Bbig data,^ digital repositories of texts and images are growing rapidly. These datasets present new
opportunities for psychological research, but they require new methodologies before researchers can use these datasets to yield
insights into human cognition. We present a new method that allows psychological researchers to take advantage of text and
image databases: a procedure for measuring human categorical representations over large datasets of items, such as arbitrary
words or pictures.We call this method discrete Markov chainMonte Carlo with people (d-MCMCP).We illustrate our method by
evaluating the following categories over datasets: emotions as represented by facial images, moral concepts as represented by
relevant words, and seasons as represented by images drawn from large online databases. Three experiments demonstrate that d-
MCMCP is powerful and flexible enough to work with complex, naturalistic stimuli drawn from large online databases.
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Big data is transforming society and offers a significant op-
portunity for psychology research: Large databases of text and
images are potentially rich resources for understanding human
cognition. However, the current usefulness of big data in psy-
chology is limited, in part because of its size—constructing

psychological tasks that engage with large datasets is a chal-
lenge. Labels for images and other kinds of data can be col-
lected through online experiments and crowdsourcing
(Carvalho, Lease, & Yilmaz, 2011; Greengard, 2011; Howe,
2006; Kittur, Chi, & Suh, 2008; Kleemann, Vob, & Rieder,
2008), but there is still a need for methods that can extract the
psychological content of large databases more efficiently and
meaningfully. In particular, the relevance of a piece of data
(e.g., text, image, or sound) to a given psychological concept
is often more suitably represented as a subjective probabilistic
judgment than as a binary label. Understanding the distribu-
tional representations of people’s mental categories is relevant
both for automating tasks that simulate cognitive processes,
such as for artificial intelligence applications and also for un-
derstanding principles of human psychology. For example, if
one were building an emotion detector for automated conver-
sational agents, one would need an estimate of how likely it
would be that different combinations of features of spoken
stimuli (combinations of words and tone) would be indicative
of the category of anger. Another example is gaining insight
into the biases that inform our social prejudices by under-
standing how likely various combination of profiling features
are to be associated with the concept of Bsocially threatening,^
and comparing this with actual statistics of criminal profiles.
Capturing the labels corresponding to such subjective judg-
ments becomes prohibitively time-consuming for large,
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discrete datasets. This article presents a new method for effi-
ciently inferring the structure of psychological categories de-
fined over arbitrarily large datasets, such as of text and images.

Taking the view that categories are often viewed as
subjective probability distributions over stimuli (Ashby
& Alfonso-Reese, 1995), categorical representations can
be revealed through asking people for their judgments of
how relevant a stimulus is to a category. Similarly, insight
into categorical representations can be revealed through a
set of stimuli in which each sample is labeled with a
subjective probability rating that represents how relevant
the sample is to the category. However, it is difficult to
efficiently obtain such judgments over large sets of stim-
uli. One solution to this problem comes from the key
insight that if an experimenter can draw samples from this
subjective distribution, the samples will be concentrated
on the relevant stimuli, and irrelevant stimuli will be
ignored. Using this insight, Sanborn, Griffiths, and
Shiffrin (2010) adapted the well-known Markov chain
Monte Carlo (MCMC) algorithm from computer science
to sample from subjective probability distributions, a
method they called Markov chain Monte Carlo with
people (MCMCP). MCMCP has been used to estimate
the structure of categories defined on continuous, easily
parameterized stimuli, such as stick-figure animals and
basic fruit shapes (Sanborn et al., 2010) or computer-
generated faces (Martin, Griffiths, & Sanborn, 2012;
McDuff, 2010).

Although the introduction ofMCMCP has made it easier to
explore complex, high-dimensional representations, it re-
quires parameterized stimuli, and thus is inappropriate for da-
tabases of discrete items. To allow exploration of representa-
tions over large sets of discrete items we introduce a new
method called discrete Markov chain Monte Carlo with
people (d-MCMCP). This method allows estimation of sub-
jective probability distributions over arbitrary datasets, such as
images or text snippets. The resulting distributions can be used
to identify the structure of people’s psychological representa-
tions in these domains.

The outline of this article is as follows. The next section
introduces the key ideas behind MCMCP. We then present
our new method, d-MCMCP, for discrete sets of stimuli. The
remainder of the article focuses on three experiments showing
a range of applications of d-MCMP. The first experiment ex-
plores categories of happy and sad faces using real photo-
graphic images, allowing us to compare against previous re-
sults using the MCMCP algorithm (Martin et al., 2012). The
second experiment applies d-MCMCP to text, exploring the
words perceived to be representative of the concept of morality
for people with liberal and conservative political affiliations
(Graham, Haidt, & Nosek, 2009). The third experiment dem-
onstrates how d-MCMCP can be applied to large databases of
images, by investigating how people represent seasons.

Markov chain Monte Carlo with people

A standard approach to measuring human categories is to ask
people to rate how likely a stimulus is to be a member of a
given category. However, this approach has two serious lim-
itations. First, when datasets become too large, collecting in-
dividual ratings is impractical. Second, questions such as
BHow good an example is this of a happy face?^ can be dif-
ficult to answer. A better-defined question is to ask for
pairwise judgments—for example, BWhich is a better example
of a happy face?,^ but collecting all possible pairwise judg-
ments requires even more trials, on the order of n2 for n items.

To address these issues, we introduced a class of algo-
rithms from computer science and statistics called
MCMC. Although algorithms exist for sampling from cer-
tain distributions with well-defined mathematical forms—
for example, a normal or binomial distribution—it is often
difficult to directly generate samples from arbitrary prob-
ability distributions, especially distributions that are not
readily described with a mathematical formula, such as
subjective category representations over arbitrary stimuli.
MCMC algorithms solve the problem of generating sam-
ples from arbitrarily complex probability distributions
using a statistical method. These algorithms work by
drawing samples from a simpler distribution (from which
direct samples are possible; e.g., a Gaussian or binomial
distribution), and keeping or discarding these samples on
the basis of a function of the difference between the sim-
pler distribution and the target distribution. The samples
that are kept result in a chain, and once the number of
sequences in the chain is long enough, the frequencies
represented in the chain become equivalent to those of
samples from the true underlying distribution, p(x)
(Gilks, Richardson, & Spiegelhalter, 1996).

A popular method for constructing Markov chains is the
Metropolis–Hastings algorithm (Metropolis, Rosenbluth,
Rosenbluth, & Teller, 2012). The sequence of the chain’s state
is initialized at an arbitrary value, x. The next value in the
sequence is generated via a two-step process. First, a candidate
for the next value, x', is chosen by sampling from a proposal
distribution conditioned on x, q(x'; x)—for example, a normal
distribution with mean x. Second, a decision is made as to
whether that proposed value will be accepted, using an accep-
tance function that evaluates the relative probability of x to x'
under the target distribution p(x). For example, one might com-
pare the value of p(x) to the value of a normal distribution with
mean x evaluated at x'. If the proposal is accepted, the state of
the chain moves to x', or else it remains at x. This process
continues until the chain converges to its stationary distribution.

A variant of the Metropolis–Hastings acceptance function
is at the heart of MCMCP. In a standard categorization task,
people make a series of pairwise decisions, choosing the best
category member from two proposed stimuli. The stimuli in
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each pair actually correspond to the values x and x' in the
Metropolis–Hastings algorithm. The choices that people make
determine which proposals are accepted. If we offer people a
choice between x and x' and they choose x' with probability

Pchoice x
0
; xjc

� �
¼ p x

0 jc� �
p x0 jcð Þ þ p xjcð Þ ; ð2Þ

where p(x | c) indicates the degree to which stimulus x is
perceived to be a member of category c, then their judgment
is equivalent to the Barker acceptance function (Barker,
1965). AMarkov chain based on this acceptance function will
converge to p(x | c). Fortunately, Eq. 2 is a well-known model
of human choice probabilities, referred to as the Luce choice
rule or ratio rule (Luce, 1963; Shepard, 1987). This rule has
provided a good fit to human data for people choosing be-
tween two stimuli on the basis of a particular property
(Bradley, 1954; Clarke, 1957; Hopkins, 1954), and is also
the decision rule used in many models of cognition (Ashby,
1992; McClelland & Elman, 1986; Nosofsky, 1986, 1987).
With enough of these decisions, MCMCP converges to the
probability distribution associated with that category, and in-
dividual stimuli will be encountered with probability p(x | c).
On the basis of this correspondence, the MCMCP method
implements Metropolis–Hastings by using people’s choices
to determine which proposals are accepted (Sanborn et al.,
2010). Furthermore, a variety of different assumptions for
how participants are responding in proportion to Bayesian
probabilities result in the same decision rule. For example,
motivated participants can produce behavior that is more de-
terministic than probability matching. This kind of behavior is
usually modeled using an exponentiated Luce choice rule, in
which each term on the right-hand side of Eq. 2 is raised to an
exponent γ (Ashby & Maddox, 1993). Previous work
(Sanborn et al., 2010) has shown that if choices are made
according to the exponentiated Luce choice rule, then
MCMCP (and, so, also d-MCMCP) will converge to the dis-
tribution p(x)γ. Thus, if γ is unknown, we can only estimate
p(x) up to a constant exponent, meaning that the relative prob-
abilities cannot be directly evaluated, but the probabilities of
different objects will remain in the same order. The efficiency
of the d-MCMCP algorithm will depend on the target distri-
bution, and thus on γ as well.

Although MCMCP is able to tackle large datasets by ask-
ing people well-defined questions, it introduces a new issue:
MCMCP requires a symmetric proposal distribution q(x'; x),
meaning that the probability of choosing a proposal given the
current state would be the same if the proposal and the current
state were reversed. When stimuli are described by a fixed set
of parameters, this is easy—Gaussian or uniform distributions
can be used to generate proposals for continuous parameters,
and multinomial distributions can be used for discrete fea-
tures. However, datasets consisting of images and text are

not composed of easily parameterized items. In the remainder
of this section we present a scheme for making reasonable
proposals for exploring stimuli that are not easily parameter-
ized. We call this method d-MCMCP.

The d-MCMCP method requires three additional steps.
The first step is obtaining a database of stimuli. The second
step is computing a symmetric similarity matrix, S, as a rough
measure of the similarity between all possible item pairs. The
similarity metric is chosen as is appropriate for the domain and
need only provide a rough guide to the perceived similarity of
human participants. For example, similarity between color
histograms can be used to quantify the similarity of color
images. The third step is constructing a graph of the stimuli
based on these similarities. The d-MCMCP proposal distribu-
tion is then defined by a randomwalk on this graph. Howwell
these assumed similarities correspond to the similarities of the
human participants does not affect the algorithm in the long
run: As long as the resulting graph is fully connected, free of
closed cycles, and aperiodic, we are guaranteed to converge to
the stationary distribution over time. Only the quality of the
match between the graph and people should affect the algo-
rithm’s efficiency, and indeed the efficiency of d-MCMCP
does degrade as the difference between the assumed and ac-
tual similarities becomes large. See the supplementary mate-
rials for simulation results relating to the effects of noise in the
similarity measure used.

To produce symmetric proposals using a random walk
on a graph, the edges must be symmetric (i.e., the walk can
traverse an edge in each direction), and each node in the
graph must have the same degree (i.e., each node must
have the same number of neighbors). Just choosing the b
most similar neighbors for each node does not suffice, be-
cause although node i might be one of b nearest neighbors
of node j, the reverse is not necessarily true, and the nodes
could have different degrees.

To address this issue, we construct the graph that maxi-
mizes the similarity along edges while keeping the degree of
each node constant. Formally, we want to find

argmaxG∑ijGijSij such that∑ijGij ¼ b;Gii ¼ 0;Gij ¼ Gji;

where G is the adjacency matrix of the graph, with Gij = 1 if
there is an edge from i to j, and Gij = 0 otherwise. This is an
instance of the maximum-weight b-matching problem
(Papadimitriou & Steiglitz, 1998). Exact algorithms exist for
solving this problem, such as the blossom algorithm
(Edmonds, 1965), but these are impractical for large-scale
applications. Consequently, we use an approximate algorithm
based on max-product message-passing in order to find a b-
matching (Jebara & Shchogolev, 2006).

Given this similarity graph, proposals for the d-MCMCP
algorithm can be made in many ways. The most straightfor-
ward is to choose a proposal uniformly from all b neighbors,
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where the value of b is chosen at the experimenter’s discretion.
Alternatively, an iterative geometric proposal of step length
ngeom can be chose. Here, the proposal is generated iteratively
using a number of steps, ngeom, that is chosen from a geometric
distribution with a fixed parameter. A random walk of length
ngeom is then performed, choosing the next node uniformly
from the b neighbors of the most recent one, and the proposal
is the node at the end of the random walk. Geometric pro-
posals allow a wider search over the stimulus space than with
the uniform proposal. Additionally, it is prudent to allow for
some small probability of choosing uniformly from all possi-
ble stimulus items, to allow the algorithm to move between
local maxima. See Fig. 1.

D-MCMCP expands on the initial possibilities of the
MCMCPmethod to measure distributional mental representa-
tions over real discrete datasets. As we discussed above, our
representation of structure in the world is probabilistic, and
thus the most complete understanding of our mental represen-
tation of world structures comes from a distributional repre-
sentation. Furthermore, the distributions underlying many of
our representations are complex and may be bimodal or have
nonlinear interactions in the feature space. For example, an
exceptionally quiet and an exceptionally loud voice could
both be indications of upset emotions. As another example,
larger containers may be preferred for cheaper olive oils,
whereas smaller containers are preferred for high-end varie-
ties. D-MCMCP offers the capability to efficiently reveal a
richer and more accurate understanding of the distributions
that underlie our categorical representations.

Experiment 1: Happy and sad faces

As a first test of d-MCMCP, we examined the categories of
happy and sad faces using images of real faces. Previous work
had applied the MCMCP method to estimating these catego-
ries using parameterized face stimuli, where a continuous
space was derived from eigenfaces computed from a set of

images (Martin et al., 2012). We used the same image data-
base to directly compare the results of d-MCMCP and
MCMCP on a matched stimulus set. Example code and the
face stimuli can be found at https://osf.io/u5sz4/.

Method

Participants A total of 60 undergraduates participated in ex-
change for course credit. Sample sizes were selected on the
basis of previous experience with this experimental paradigm.

Stimuli A database of 1,271 images of faces was assembled
from the California Facial Expression (CAFE) database, a
collection of 1,280 normalized 40 × 64 pixel grayscale por-
traits containing 64 individuals (Dailey, Cottrell, & Reilly,
2001). These images express approximately eight distinct
BFACS-correct^ emotions, classified according to the taxono-
my of the Facial Action Coding System (Ekman & Friesen,
1978). Details of how the graph was constructed are available
in the supplemental online material.

Procedure Face images were convolved with Gabor filters at
eight scales and five orientations. Principal component analy-
sis (PCA) was then applied to the whole set of convolved
images, and the Euclidean distance between the top 50 com-
ponents was used as the similarity metric for defining the
matrix S. Two graphsGwere produced using the approximate
b-matching algorithm from Jebara and Shchogolev (2006),
one with b = 6 and one with b = 16. This algorithm gives an
approximate solution to the b-matching problem, so there was
still some minor variation in the degree of individual nodes.
Our empirical evaluation of the performance of the d-
MCMCP procedure will thus also help indicate whether this
residual variation affects the results. There is no guarantee that
a maximal b-matching will be connected, so we used the larg-
est connected component as the basis for the d-MCMCP pro-
cedure. The largest connected components contained 1,216
images with b = 6, and all 1,271 images with b = 16.

Fig. 1 Steps for measuring category representations using d-MCMCP. (a)
Assemble the database of items that are candidate category members. (b)
Quantify similarity (using a suitably chosen metric) for all item pairs in

the database. (c) Enter the similaritymatrix into a b-matching algorithm to
obtain a graph in which each item is connected to itsN neighbors. (d) Run
d-MCMCP using the neighbors as nearby proposals
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We compared three different methods for defining the pro-
posal distributions, run as three separate conditions. For all
three proposal methods, we allowed a 10% chance of propos-
ing a jump to a node chosen uniformly at random. The three
methods for choosing the remaining proposals were uniform
random walk on the graph with b = 6 (U6), uniform random
walk on the graph with b = 16 (U16), and the geometric
proposal with ngeom = .5 on the graph with b = 6 (G6).

Participants were randomly assigned to conditions. Trials
were presented on three different computers, one for each pro-
posal type. Following previous work, each participant complet-
ed trials corresponding to different d-MCMCP chains (Martin
et al., 2012; Ramlee, Sanborn, & Tang, 2017). There were four
chains: two for happy faces and two for sad faces. There were
100 trials for each of the four chains. On a given trial, the
participant decided which of a pair of faces was either more
happy or more sad. Twelve initial practice trials were not in-
cluded in the analysis. Forty catch trials were presented of face
pairs for which the more happy or sad face was clearly obvious
(in this case, we used the emotion designations in the CAFE
database to select faces that should be clearly happy or sad).
Thus, each participant responded to 100 × 4 + 12 + 40 = 452
trials, which took approximately 25 min. The responses were
linked in chains of ten participants each: The last trial of each of
the four chains was passed along to the next participant as his or
her first nonpractice trial, to form a linked chain of 1,000 trials.
Participants who did not correctly answer at least 27 of the catch
trials (p < .01 under random guessing) were not included in the
results or added into a chain. We collected two chains of ten
participants for each proposal type, corresponding to four
happy and sad chains with 1,000 trials in each chain.

Results

The previously used MCMCP method drew samples gen-
erated from a continuous eigenface space, and thus did
not result in ratings being applied directly to the discrete
images from the dataset. Previous work showed by aver-
aging the generated images in the chain that the samples
generated by MCMCP more quickly converged to being
representative of people’s mental representations of each
category than did alternative methods (i.e., reverse
correlation; Martin et al., 2012). Here, to directly compare
the previous MCMCP with the present d-MCMCP results,
the images selected on each d-MCMCP trial were aver-
aged together to produce the average faces shown in Fig.
2. All three proposal methods produced mean faces that
appeared reasonably consistent with the target emotions.
Also included in Fig. 2 are the results reported in Martin
et al. (2012), using MCMCP in a parameterized space
based on the eigenfaces derived from the image database
we used for d-MCMCP. Qualitatively, the results from d-
MCMCP are at least as good as, and perhaps better than,
those produced using eigenfaces.

To quantify the performance of the different variants of the
algorithm, we conducted a follow-up experiment in which a
group of 40 participants recruited via Amazon Mechanical
Turk provided ratings of the emotions exhibited by the faces
derived from our chains. For each proposal type (and for the
chains based on eigenfaces used in Martin et al., 2012), cu-
mulative average faces were computed for each of 40 loga-
rithmically spaced numbers of trials, averaging across all four
chains that corresponded to each emotion. Trial numbers

Eigenfaces

Happy

U6 U16 G6

Sad

Fig. 2 Average faces for MCMCP (eigenfaces) and for each type of d-MCMCP proposal. Averages are taken across all trials and all four chains
corresponding to happy and sad
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greater than 50 images were averaged only over the 50 most
recent trials, meaning that no more than 200 faces contributed
to any single image. Participants rated the emotion exhibited
by each of these mean faces on a scale from 1 to 9, where 1
indicates very sad and 9 indicates very happy. All participants
rated all faces and received $1 in compensation for their time.
No participant data were excluded.

The results of our follow-up experiment are shown in Fig.
3. The d-MCMCP method results in statistically significantly
higher ratings for faces derived from happy chains, regardless
of the proposal type, perhaps as a consequence of being able to
explore a larger space of faces than the eigenface method.
Looking at the 95% confidence intervals of differences in
the mean ratings across all trials (i.e., each participant’s ratings
across all trials are averaged into one rating), a d-MCMCP
face is significantly more likely to be perceived as happy for
all proposal types (positive values are Bbetter^ ratings for hap-
py faces):CI = [1.18, 1.68], d = 1.43 for U6;CI = [1.36, 1.82],
d = 1.59 for U16; CI = [0.95, 1.40], d = 1.17 for G6. The
results for sad chains are more comparable to the eigenface
method (negative values are Bbetter^ ratings for sad faces): U6
was significantly better, CI = [– 0.64, – 0.11], d = – 0.37; U16
was significantly worse, CI = [ 0.023, 0.52], d = 0.27 ; and G6
was not significantly different, CI = [– 0.35, 0.17], d = –
0.092. For both happy and sad chains, there is some variation
in the emotion ratings of mean faces over time, consistent with
MCMCP exploring the distribution of faces associated with
the category (and possibly moving between modes of that
distribution) rather than finding the most extreme instance of
that category.

Experiment 2: Moral foundations

Our second experiment applied d-MCMCP to concepts in
text. Here, we used d-MCMCP to examine and further support
a theory from social psychology that conservatives and lib-
erals have different concepts of morality. In particular, conser-
vatives’moral intuitions have been claimed to reflect values in
the five Bmoral foundations^ of harm/care, fairness/reciproci-
ty, ingroup/loyalty, authority/respect, and purity/sanctity,
whereas liberals primarily endorse only the first two principles
(Graham et al., 2009). This difference has previously been
observed in abstract assessments of moral judgments of state-
ments and scenarios, reactions to taboo trade-offs, and use of
foundation-related words in the moral texts of sermons in
liberal versus conservative churches. Here, we examined dif-
ferences in the concept of morality between liberals and con-
servatives by employing d-MCMCP over a set of words.

Method

ParticipantsA total of 251 US-based participants were recruit-
ed via Amazon Mechanical Turk and were paid $1 each for
their time. The sample sizes were selected on the basis of
previous experience with this experimental paradigm.

Stimuli In Graham et al. (2009), a dictionary of words was
assembled that were closely related to each of the moral foun-
dations. We chose 32 of these words from each of the five
foundations, for a total of 160 words.
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Fig. 3 Comparison of MCMCP and d-MCMCP: MCMCP using
eigenfaces compared with d-MCMCP with a variety of proposal
methods, executed on the same set of face stimuli. Happiness ratings
are shown for average faces for the three types of d-MCMCP proposals
as well as for the original MCMCP method as a function of trial number
(error bars show 95% confidence intervals). Averages are taken across the

50 most recent trials (or starting from the first trial, for trials less than 50)
and across all four chains corresponding to the same emotion, happy or
sad. Also included are face ratings for the results of a previous MCMCP
experiment that used eigenfaces derived from the same image database
(Martin et al., 2012).
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Procedure Similarities between all possible word pairs were
measured using latent semantic analysis results made avail-
able online at http://lsa.colorado.edu/cgi-bin/LSA-matrix.
html (Landauer & Dumais, 1997). The similarity between all
pairs was represented as a similarity matrix that was fed into
the b-matching algorithm. A graph was found using b = 10,
which was roughly between the values used in Experiment 1.
We used a proposal distribution corresponding to a uniform
random walk on this graph. Also, as in Experiment 1, we
allowed for a 10% chance of proposing a jump to a node
chosen uniformly at random. Each participant completed trials
corresponding to four d-MCMCP chains, all of which ex-
plored the single concept of Bmorality.^ On a given trial, par-
ticipants were given the choice of two words and answered the
question: BWhich of these two words is most relevant to mo-
rality?^ We used a proposal distribution corresponding to a
uniform randomwalk on this graph, but with a 10% chance of
proposing a jump to a node chosen uniformly at random.
There were 100 trials for each of the four chains. Twelve trials
in the beginning were offered as practice, which were not
included in the analysis. Thus, each participant responded to
100 × 4 + 12 = 412 trials, which took approximately 25 min.
The responses were not linked between participants (as had
been done in Exp. 1). At the end of the experiment, following
Graham et al. (2009), participants were also asked BWhich
best describes your political identification?^ and given the
choices (1) extremely liberal, (2) somewhat liberal, (3)
middle , (4) somewhat conservative , (5) extremely
conservative, and (6) none of these.

Results

Because we were interested in contrasting responses be-
tween people who self-identified as conservatives versus
liberals, we only analyzed the responses of participants
who responded extremely liberal and somewhat liberal
(classified as liberals, N = 131) or somewhat conservative
or extremely conservative (classified as conservatives, N =
52) to the political identification question. For each of
these participants, we calculated the frequency with which
words corresponding to the five foundations were select-
ed. Figure 4 shows the normalized frequencies for conser-
vatives (top) and liberals (bottom). Normalized frequen-
cies over all 160 words, along with the 20 most morally
relevant words for conservatives and liberals, are shown
in Supplementary Figs. 2 and 3. Under the statistically
conservative assumption that each participant counted as
a single sample, the difference between the normalized
histograms from the two conditions was significant by a
Pearson’s χ2 test [χ2(4) = 9.76, p < .05]. A two-way
analysis of variance (ANOVA) over moral foundations
and political identification showed a main effect of foun-
dations [F(4, 905) = 24.24, MSE = .95, p < .00001, ηp

2 =
.097], as well as an interaction [F(4, 905) = 15.87, MSE =
.62, p < .0001, ηp

2 = .066], supporting the idea that con-
servatives and liberals find different amounts of relevance
in the five moral foundations. An ANOVA over founda-
tions for conservative participants showed a main effect of
foundations [F(4, 255) = 17.41, MSE = .74, p < .00001,
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Fig. 4 Relevance of moral foundations for conservatives versus liberals:
Results of d-MCMCP over words that are associated with the five moral
foundations hypothesized by Graham et al. (2009) for participants who
self-identified as conservatives (top) versus liberals (bottom). The values

p(relevance | morality) are normalized counts—that is, the proportions of
times words associated with the given moral foundation were chosen as
being more relevant to the concept of morality.
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ηp
2 = .79], with the foundation of purity (M = .41, SD =

.31) being significantly more relevant (with Bonferroni
correction) than the other four foundations: harm (M =
.15, SD = .15), t(51) = 4.67, p < .0001, d = 1.08, CI =
[.15, .37]; fairness (M = .19, SD = .21), t(51) = 3.45, p =
.0011, d = 0.82, CI = [.091, .34]; in-group M = .10, SD =
.14), t(51) = 5.57, p < .0001, d = 1.27, CI = [.19, .41]; and
authority (.15, SD = .18), t(51) = 4.60, p < .0001, d =
1.015, CI = [.14, .36]. An ANOVA over foundations for
liberal participants also showed a main effect of founda-
tions [F(4, 650) = 23.36, MSE = .88, p < .00001, ηp

2 =
.87]. Post-hoc analysis shows the foundation of purity (M
= .21, SD = .22) being more relevant (with Bonferroni-
adjusted significance) than in-group (M = .10, SD = .12),
t(130) = 4.36, p < .0001, d = .57, CI = [.055, .15], and
authority (M = .13, SD = .13), t(130) = 3.15, p = .0020, d
= 0.41, CI = [.03, .12]. There was also a trend (not sig-
nificant after Bonferroni adjustment) toward purity being
less relevant than harm (M = .27, SD = .24), t(130) = –
2.03, p = .045, d = – 0.30, CI = [– .13, – .0017], and
fairness (M = .29, SD = .23), t(130) = – 2.43, p = .016, d
= – 0.36, CI = [– .14, – .015]. Harm and fairness were
both significantly more relevant than the other three foun-
dations. The foundation of harm was significantly more
relevant (with Bonferroni adjustment) than in-group,
t(130) = 6.91, p < 1e-09, d = .91, CI = [.12, .22], and
authority, t(130) = 5.30, p < e-06, d = .75, CI = [.090,
.20]. Harm also had a trend (not significant with
Bonferroni adjustment) toward being more relevant than
purity, t(130) = 2.0, p = .045, d = 0.30, CI = [.0017, .13].

Similarly the foundation of fairness was significantly
more relevant (with Bonferroni adjustment) than in-group,
t(130) = 7.38, p < 1e-10, d = 1.0, CI = [.13, .23] and
authority, t(130) = 6.44, p < 1e-08, d = .84, CI = [.11,
.20]. Fairness also had a trend (not significant with
Bonferroni adjustment) toward being more relevant than
purity, t(130) = 2.43, p = .016404, d = 0.35613, CI =
[.015, .14].

These results are consistent with those of Graham et al.
(2009), who found that conservatives believed that all five
moral foundations were relevant to morality, whereas liberals
tended to mostly value the foundations of harm and fairness.
However, the relative importance of purity as compared with
all other foundations for conservatives, and in comparison
with in-group and authority, was not seen in Graham et al.,
for whom the relative importance of various foundations var-
ied between experiments, suggesting an interesting direction
for future research.

Experiment 3: Seasons

In our third experiment, we used d-MCMCP to explore cate-
gories defined on images from a large online database.
Specifically, we explored the categories associated with the
seasons spring, summer, autumn, and winter, using 4,000 im-
ages obtained from online image databases. By applying the
d-MCMCP procedure to these stimuli, we could identify high-
probability images and compute informative aggregate

Spring

Summer

Autumn

Winter

Fig. 5 Seasonal images: The top ten most popular images over all chains for each season, decreasing in popularity from left to right.
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statistics for each category, such as determining the distribu-
tion of colors associated with each season.

Method

Participants A total of 90 participants were recruited using
Amazon Mechanical Turk. Each participant was paid $1 for
completing the 25-min experiment. The sample size was se-
lected on the basis of previous experience with this experi-
mental paradigm.

Stimuli A set of 4,000 colored season-related images was as-
sembled by searching for public-domain web images using the
phrases Bspring season,^ Bsummer season,^ Bautumn season,^
and Bwinter season^ in Google Image Search and on Flickr.
com. The top 500 results for searches on Google and Flickr
for each season were downloaded. All images were resized so
that the maximum dimension was 250 pixels, while preserving
the original ratio of image height to width.

Procedure The similarity between all possible image pairs
(7,998,000 pairs for 4,000 images) was quantified using both
the basic color histogram (BCH) descriptor (Griffin, 2006) and
the scale-invariant feature transform (SIFT; Lowe, 1999). BCH
classifies and counts pixels as belonging to one of 11 basic
colors (black, white, gray, red, orange, yellow, green, blue,
purple, pink, and brown). SIFTapplies local filters to transform
images into collections of local feature vectors that are invari-
ant to scaling, rotation, and translation of the image. Similarity
results over all pairs of images for both methods were normal-
ized to have unit variance and then added together, thus yield-
ing a similarity measure that combined the results of both BCH
and SIFT. The similarity between all pairs was represented as a
similarity matrix that was fed into the b-matching algorithm. A
graph was found using b = 5, which was the smallest value
such that all 4,000 images remained fully connected.We used a

proposal distribution corresponding to a uniform random walk
on this graph.

Each participant made pairwise choices between images by
answering questions such as BWhich image is more represen-
tative of spring?^We used a proposal distribution correspond-
ing to a uniform random walk on this graph. There were 100
trials for each of four chains, one for each season. There were
also 12 practice trials, as well as 40 catch trials for which one
image of the pair obviously corresponded to a particular sea-
son (as judged by the experimenter). Thus, each participant
completed 452 trials. We included catch trials with the inten-
tion of excluding participants who did not get at least 27 of the
catch trials correct (corresponding to a less than 1% chance
that the answers were completely random guesses) from the
chains and later analyses. All participants passed our criteria
and were included in the analysis. We collected data by
linking three sets of ten participants, forming three chains of
1,000 trials for each of the four seasons.

Results

The top ten images that were chosen most often over all
three chains for each season are shown in Fig. 5. Clearly,
the images are very indicative of each season. Figure 6a
shows, as a function of the number of trials, the L1 distance
between 11-bin color histograms calculated for the cumu-
lative images, both between chains for the same season and
between chains corresponding to different seasons. The
within-chain distance decreases over time and is typically
lower than the similarity between chains, supporting the
idea that chains are converging toward different parts of
the space of images. Figure 6b shows a simple example
of the kind of statistical analyses that can be done on the
resulting samples. The color histograms for the different
seasons are quite different from one another and corre-
spond to palettes that intuitively match the seasons.
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Fig. 6 Color histograms for seasonal images. 11-bin color histograms
were calculated for all cumulative images in all three chains as a function
of the number of trials. (a) Average L1 distance between the cumulative
histograms of a single chain and of the other two chains that correspond to

the same season (solid line) or of another three chains that correspond to a
different season (one dotted line for each other season). (b) Color histo-
grams of all images, averaged over all chains for each season.
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Conclusion

We have introduced a new method that can be applied to
arbitrary sets of items, making it possible to measure people’s
representations of categories defined over those items. Of
course, a wide variety of methods can be applied to eliciting
categories from people. Our d-MCMCPmethod outperformed
MCMCP on eliciting the categories of happy faces. Previous
work has shown that MCMCP both outperforms complex
regression and predicts an individual’s category preferences
better than those of other individuals do (Huszár, Noppeney,
& Lengyel, 2010). Thus, it seems likely that d-MCMCP
would show similar advantage over these other approaches.
In future work, it would be useful verify this by directly com-
paring d-MCMCPwith these methods, as well as comparing it
to approaches, such as active learning (Myung & Pitt, 2009)
and cognitive tomography (Houlsby et al., 2013). D-MCMCP
generally makes weaker assumptions about the decision-
making process than do these other methods, so it may well
prove more advantageous with real-world tasks and stimuli, a
context in which the assumptions the other methods make
about cognitive processes are less likely to be correct.
Although our textual example used only words, one could
easily extend the method to evaluate lines of texts, paragraphs,
and documents. Furthermore, one can also use d-MCMCP to
tag video clips and other data types. As with most data-driven
models, the quality and generalizability of d-MCMCP’s re-
sults are influenced by biases present in the dataset used. For
example, if one wanted to compare representative male versus
female faces, and if the data had more examples of young
female faces and of old male faces, the final categorical rep-
resentations might be dominated by age-dependent rather than
gender-dependent features. Thus, the limitations and biases
present in the dataset used should be considered when making
conclusions about mental representations. Our method is like-
ly to be valuable to data scientists, as well as to machine-
learning and computer vision researchers interested in training
systems to automate categorizing images and other complex
stimuli. Our method can be used to retrieve human judgments
for concepts in a wide variety of domains, including stereo-
typed judgments from individual characteristics, consumer
preferences as a function of variations in product offerings,
or mood/conversational intent from word usage patterns. For
psychologists, conducting experiments using d-MCMCP on a
large scale will allow us to build up a catalog of human cate-
gory representations, taking a step toward understanding how
those categories are formed.
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