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Abstract

Most cognitive psychology experiments evaluate models of human cognition using a relatively

small, well-controlled set of stimuli. This approach stands in contrast to current work in neuro-

science, perception, and computer vision, which have begun to focus on using large databases of

natural images. We argue that natural images provide a powerful tool for characterizing the statis-

tical environment in which people operate, for better evaluating psychological theories, and for

bringing the insights of cognitive science closer to real applications. We discuss how some of the

challenges of using natural images as stimuli in experiments can be addressed through increased

sample sizes, using representations from computer vision, and developing new experimental meth-

ods. Finally, we illustrate these points by summarizing recent work using large image databases to

explore questions about human cognition in four different domains: modeling subjective random-

ness, defining a quantitative measure of representativeness, identifying prior knowledge used in

word learning, and determining the structure of natural categories.

Keywords: Natural images; Computer vision; Categorization; Representativeness; Word learning;

Big data; Randomness

1. Exploring human cognition using large image databases

Over the last century, cognitive psychology has moved toward using more and more

abstract stimuli in order to maximize experimental control. An example is the literature
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on category learning. Hull (1920), in his classic work exploring how people learn novel

concepts, used Chinese characters as stimuli—a relatively naturalistic choice. In the

1950s, when the rigor of cognitive psychology was in question, Bruner, Goodnow, and

Austin (1956) began studying concept learning using stimuli that had a very clear set of

discrete features—the number, fill pattern, shape, and borders of a set of objects on a

card. These abstract stimuli have become standard in category learning experiments (e.g.,

Medin & Schaffer, 1978; Shepard, Hovland, & Jenkins, 1961), with contemporary work

using methods like multidimensional scaling to confirm the dimensions that people use to

represent these stimuli (e.g., Nosofsky, 1987).

Abstract stimuli support precision. Research on category learning, for example, has

reached the point where it is possible to test the fine-grained predictions of a variety of

detailed mathematical models of human behavior (for an overview, see Pothos & Wills,

2011). However, this precision comes at the potential cost of ecological validity: By

using ever more abstract stimuli to improve the precision of our measurements, there is

the chance that the cognitive processes that we are measuring no longer correspond to the

phenomena that we were originally interested in understanding. Do the same processes

support learning abstract categories of geometric figures and the development of a child’s

ability to discriminate dogs from cats?

One approach to improving the ecological validity of cognitive psychology has been to

use stimuli that allow people to make use of prior knowledge, making it possible to study

the effects of this knowledge on category learning (Murphy & Medin, 1985). In this

paper, we highlight another axis along which methodological practices might change: the

use of natural images, of the kind that can be found in large online image databases. This

approach follows an emerging trend toward the use of natural images in research on com-

puter vision (e.g., Deng et al., 2009; Torralba, Fergus, & Freeman, 2008), neuroscience

(e.g., Naselaris, Prenger, Kay, Oliver, & Gallant, 2009; Simoncelli & Olshausen, 2001),

perception (e.g., Geisler, 2008; Geisler, Perry, Super, & Gallogly, 2001), and visual cog-

nition (e.g., Brady, Konkle, Alvarez, & Oliva, 2008). Large image databases have facili-

tated significant advances in these fields, bringing theories and empirical results into

closer alignment with the problems people face in everyday life.

Natural images can be used in cognitive science research in several different ways. In

this paper, we explore these different uses of natural images, consider how some of the

challenges of working with large image databases might be addressed, and use a series of

case studies based on our own work to illustrate how these issues are negotiated in prac-

tice.

2. When are natural images valuable?

Natural images have been used in two ways in neuroscience and perception research:

as a source of information about human environments, and as stimuli in experiments.

These uses are sufficiently different that researchers can advocate one while arguing

against the other (e.g., Rust & Movshon, 2005). We think that both uses are potentially
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important for the study of human cognition. However, in arguing for more widespread

use of natural images in cognitive science research, we are not arguing against the utility

of simple abstract stimuli. These are complementary methods, useful in exploring differ-

ent kinds of questions about human cognition.

In the remainder of this section, we highlight three contexts where natural images are

particularly valuable: estimating distributions that characterize the environment in which

human beings operate, evaluating psychological theories, and taking those theories out-

side the laboratory and turning them into real applications. These three contexts differ in

the way in which natural images are used: The first treats images as data, while the sec-

ond and third use images either as data or stimuli. In discussing these contexts, we thus

also consider how the use of natural images interacts with more traditional experimental

methods.

2.1. Estimating distributions

A natural question to ask about any aspect of cognition or perception is how much of

people’s behavior can be explained by the statistics of their environment. But estimating

those statistics can be a challenge. Research on visual perception has made extensive use

of images of natural scenes as a source of information about the probability distributions

that arise in our natural environment. For example, Geisler et al. (2001) measured the fre-

quencies with which edges co-occurred in images of natural scenes and showed that the

resulting distribution could be used to explain people’s perception of contours.

Images are an obvious source of distributional information relevant to vision, but they

can also potentially give us clues about other, more cognitive capacities. To return to our

running example, consider what information might be extracted relevant to categorization.

Current work in computer vision aims to develop automated systems for labeling the con-

tents of images, and large databases of images annotated by humans already exist (e.g.,

Russell, Torralba, Murphy, & Freeman, 2008). Annotated images carry information about

the baserates with which people encounter different categories and the correlations

between categories (a source of contextual cues to category membership). When used in

combination with tools for extracting high-level visual features (e.g., Donahue et al.,

2013), these images also provide a source of hypotheses about the kinds of features peo-

ple might find highly diagnostic of category membership. Exactly, this approach has been

used to explore human categorization of scenes (Greene, 2013), and it can potentially be

pursued for other aspects of categorization.

2.2. Evaluating theories

Using natural images to estimate distributions does not require a commitment to using

natural images as stimuli in experiments. In visual neuroscience, this approach has been

productively combined with traditional experimental methods using abstract stimuli (for a

discussion, see Rust & Movshon, 2005). In the same way, distributions estimated from

image databases concerning the features of objects and how they relate to category
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membership can be valuable in calibrating models of human category learning, even if

the experiments on which those models are tested use traditional abstract stimuli.

In neuroscience, images of natural scenes have come to play a key role in evaluating

theories of neural representation. One example is the idea of “sparse coding”—the notion

that the brain seeks to find a representation of its environment that results in relatively

few neurons firing in response to any one stimulus. Olshausen and Field (1996) showed

that this assumption, when paired with input corresponding to images of natural scenes,

resulted in artificial neurons acquiring receptive fields very similar to those seen in pri-

mary visual cortex. Subsequently, this approach has been used to explain neural represen-

tations for several different aspects of perception, explaining results collected using

traditional experimental methods (Simoncelli & Olshausen, 2001).

Similar potential exists for evaluating theories in cognitive psychology. In the context

of categorization, annotated image databases might be used to examine whether the way

that people extend labels to images conforms to standard models of category learning

such as prototype (e.g., Reed, 1972) and exemplar (e.g., Medin & Schaffer, 1978; Nosof-

sky, 1986) models. By simply examining the way in which people have applied labels to

images in existing datasets, we might be able to discover how natural categories are

structured.

Taking the further step of using natural images as experimental stimuli offers a differ-

ent way to probe the structure of human mental representations. Rather than having to

rely on, say, categories learned in the laboratory, we can explore people’s beliefs about

the structure of categories that they have learned naturalistically—a learning process that

unfolds over years rather than hours. The scale of this learning process—both in terms of

the amount of time and the amount of data that it is based on—might support more com-

plex category structures than those that can be studied in the laboratory. As a conse-

quence, experiments that use natural images can provide a different kind of test of the

assumptions behind theories of human cognition.

2.3. Developing applications

Using real images makes it easier to develop real applications for theories developed

in cognitive science. Again, an example from the study of visual perception is instructive.

A current growth area in neuroscience is the development of techniques for “brain read-

ing”—identifying what people are seeing or thinking based on measurements of neural

signals. Early work in this area showed that people’s neural activity when viewing simple

geometric figures could be used to reconstruct those figures (Miyawaki et al., 2008; Thir-

ion et al., 2006). But the first system that might support real applications—such as

recording the contents of mental imagery or dreams—was based on natural images (Nase-

laris et al., 2009). This system built a model of the responses of voxels in a functional

magnetic resonance imaging (fMRI) scan to information contained in real images, and

then used Bayesian inference to work back from the activity of a set of voxels to a likely

image.

572 T. L. Griffiths, J. T. Abbott, A. S. Hsu / Topics in Cognitive Science 8 (2016)



Conducting experiments with more realistic stimuli—and evaluating models on more

realistic tasks—likewise creates the opportunity to put the findings of cognitive psychol-

ogy in more direct contact with applications. Applied problems in computer vision such

as image labeling and image search naturally involve elements that parallel cognitive

tasks—categorization and generalization, respectively. Reducing the gap between the

approaches taken by computer vision and cognitive psychology provides a natural way to

increase the flow of ideas between these disciplines, allowing insights from cognitive

science to be used more widely in machine learning and robotics.

3. Overcoming the challenges of working with natural images

Working with natural images poses challenges, particularly when those images are

used as experimental stimuli. Even as natural images have become widely used as tools

for estimating distributions and evaluating theories in neuroscience and vision research,

the use of natural images as experimental stimuli has remained controversial (e.g., Rust

& Movshon, 2005). The properties of artificial stimuli are well understood, making it pos-

sible to conduct experiments with precision and make clear assumptions about how peo-

ple are representing the stimuli. Working with natural images requires developing

strategies to address the lower precision and greater uncertainty about representations that

result.

Technological developments—in particular, the World Wide Web—make it far easier

to get access to large image databases that can be used in research. This increased avail-

ability accounts in part for the increased use of natural images in other fields such as

computer science. But the other part is that these fields have developed new methods for

analyzing and representing natural images that make it possible to work with them in a

rigorous fashion. Similar innovations are required for cognitive psychology to make the

most effective use of large image databases. Some of the relevant technological advances

are already in place, but others—such as defining new experimental methods that make

the most of these complex stimuli—are a source of important open research questions.

3.1. Increasing precision with large samples

Careful control of experimental stimuli is important for reducing one source of noise

from the already noisy signal provided by human behavior. Natural images are going to

vary along many dimensions other than those the experimenter aims to manipulate—there

might be multiple objects in a scene, factors that provide undesired cues to context, and

so on. This introduces additional variability into experiments. But the alternative—using

artificial stimuli—potentially introduces bias, if the goal is to develop theories that are

applicable to the real world. Arguably, variance is a lesser evil than bias, as it can be

reduced by increasing sample sizes.

In particular, the technological innovations that have made it possible to easily gain

access to large image databases also offer a tool for addressing this problem: increasing
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the number of participants who take part in experiments, via crowdsourcing websites such

as Amazon’s Mechanical Turk (http://mturk.com; for further details of this population see

Mason & Suri, 2012). Crowdsourcing massively increases the bandwidth of psychological

experimentation, providing the opportunity to collect quantities of behavioral data that

rival the data about the brain produced by fMRI (and at similar cost—an hour of MRI

time will pay for several hundred participants in an experiment on Mechanical Turk).

Rather than using this increased bandwidth to run the same kind of experiments that

would be run in the laboratory, we can make use of the greater precision it offers to give

up some precision in control of stimuli and run experiments with greater ecological validity.

3.2. Finding appropriate representations for images

Using simple stimuli makes it easier to make uncontroversial claims about how those

stimuli are represented. Geometric shapes with clear binary features (e.g., Bruner et al.,

1956; Medin & Schaffer, 1978; Shepard et al., 1961) can be assumed to be represented

using those features. Stimuli that vary along easily identified dimensions can likewise be

put into correspondence with multidimensional scaling solutions to confirm that people

represent those dimensions (e.g., Nosofsky, 1986). But natural images—with many com-

plex features, and no easily identified underlying dimensions—pose quite a different chal-

lenge. One strategy is to use information that accompanies the images, rather than the

images themselves, as a source of representational assumptions. For example, ImageNet

(Deng et al., 2009) provides 14 million images that are identified with the nodes of the

directed graph comprising WordNet (Miller & Fellbaum, 1998). Consequently, WordNet

provides a source of representational assumptions for those images and a way of measur-

ing the similarity between them without analyzing the images themselves. Other image

databases, such as the Corel database, are labeled with tags that carry semantic informa-

tion.

A second strategy is to try to identify representations directly from the images.

Research in computer vision has resulted in a variety of schemes for identifying the

features of images, such as SIFT features (Lowe, 1999), the GIST descriptor (Oliva &

Torralba, 2001), and spatial-temporal “words” extracted from video (Niebles, Wang, &

Fei-Fei, 2008). These features have already been used in psychological models (e.g.,

Buchsbaum, Canini, & Griffiths, 2011; Greene & Oliva, 2009; Torralba, Oliva, Castel-

hano, & Henderson, 2006). More recently, computer vision researchers have started to

use features generated by “deep” neural networks, which have resulted in significantly

higher performance on a range of computer vision tasks (Donahue et al., 2013; Kriz-

hevsky, Sutskever, & Hinton, 2012) and are motivated in part by parallels with the hierar-

chical processing of images in human visual cortex (e.g., Riesenhuber & Poggio, 1999).

Image features developed by computer scientists are useful for developing computa-

tional models of human inferences from images, but they may be a poor proxy for psy-

chological representations. For example, recent work has highlighted ways in which the

features discovered by deep networks differ from those identified by the human visual

system (Nguyen, Yosinski, & Clune, 2014). However, these features provide a starting
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point for designing experiments that might gather more precise representational informa-

tion. For example, graph-based methods for identifying representations such as Isomap

(Tenenbaum, De Silva, & Langford, 2000) only require a measure of similarity that is

accurate for the most similar stimuli—something that the kinds of features used in com-

puter vision might provide.

3.3. Defining new methods

One of the main arguments that Rust and Movshon (2005) made against the use of natural

images as stimuli is that existing methods for identifying people’s representations from

those stimuli—such as reverse correlation (Ahumada & Lovell, 1971)—work poorly with

natural images. Rather than an insurmountable obstacle, we view this as a research chal-

lenge: Can we develop new behavioral methods that can make the best use of these stimuli?

In addressing this challenge, it may also be instructive to look to computer science.

Statisticians and computer scientists have developed a variety of sophisticated methods

for estimating complex unknown quantities from high-dimensional data, and these meth-

ods can be adapted to behavioral research. We present an example of one such method—
Markov chain Monte Carlo with people—below.

4. Examples of using natural images to explore human cognition

Having discussed the general value and use of natural images for research in cognitive

science, we now turn to specifics. In this section, we present four examples from our own

research of ways in which natural images can be used to address questions about human

cognition. These four examples illustrate the uses for large image databases discussed

above, and show how some of the challenges posed by using real images in cognitive

psychology research might be overcome.

4.1. Estimating distributions: Modeling subjective randomness

People have strong intuitions about whether a sequence of heads and tails or a pattern

of dots seems random (Falk & Konold, 1997). A natural question is where these intu-

itions come from. A Bayesian analysis of the problem of detecting randomness suggests

that subjective randomness might be viewed as reflecting the relative likelihood that a

stimuli was produced from a random generating process, rather than from one with a

more regular structure (Feldman, 1997; Griffiths & Tenenbaum, 2003). For example,

Griffiths and Tenenbaum (2003) defined the following measure of randomness:

randomðXÞ ¼ pðXjrandomÞ
pðXjregularÞ ð1Þ

where p(X|random) and p(X|regular) are the probability of a stimulus X being generated

by a random and regular process, respectively. But this raises an important problem: How
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do we know what constitutes a regular process, or what distribution over stimuli it

implies?

Hsu, Griffiths, and Schreiber (2010) addressed this problem using the strategy intro-

duced above: looking to natural images as a source of information about a probability

distribution. They hypothesized that the perceived randomness of a binary array (in this

case, a 4 9 4 grid of black and white squares) could be determined in part by estimating

the probability of that array occurring in an image of a natural scene. For these stimuli, p
(X|random) was readily calculated assuming that each cell in the array takes on a value

of 1 or 0 with equal probability. p(X|regular) was estimated by an exhaustive tabulation

of the frequency with which all 4 9 4 patterns appeared in a set of natural images.

The images used to estimate p(X|regular) consisted of 62 photographs of natural sce-

nes containing trees, flowers, and shrubs (Doi, Inui, Lee, Wachtler, & Sejnowski,

2003). There were no images of humans, animals, or cityscapes. Image patches of

varying sizes were extracted from each natural image to measure statistics at a range

of scales. A total of 700,000 patches were sampled at random from among the 62

images using n 9 n patches, for n = 4, 8, 16, 32, 64, 128, and 256 pixels. All the

patches were then reduced through averaging and intensity thresholding down to 4 9 4

binary arrays. The resulting 4,900,000 binary arrays were then divided into the 216

possible patterns, and the frequency of each pattern was recorded. Normalizing these

frequencies provided an estimate for the probability distribution p(X|regular) in the

equation for random(X).
To evaluate this approach, a set of stimuli were selected from 50 evenly spaced quan-

tiles on either side of the neutral stimulus with random(X) = 0, for a total of 100 images.

The full set of stimuli, ordered by random(X), is shown in Fig. 1. A group of 77 partici-

pants were asked to label each test image as either random or not-random. A significant

linear correlation was found between random(X) and the probability that the stimulus

would be classified as random (r(98) = .75, p < .001), and the rank-order correlation (tak-

ing into account only the relative ordering of these different measures) was r(98) = .75,

p < .01. This strong correlation suggests that natural images provide a good source for

estimates of p(X|regular), and that the environment may influence the regularities people

naturally identify when they are assessing randomness.

Extending this work to more complex stimuli requires estimating the probabilities of

more complex perceptual objects. Small binary arrays were used in order to make it pos-

sible to simply enumerate the full distribution, but working with larger arrays—or stimuli

that ultimately look more like images—will require specifying a probabilistic model that

describes the joint probabilities of pixel values. Defining such a model will require mak-

ing some choices about the kinds of regularities expressed in the distribution. For exam-

ple, while seeing a plaid elephant is extremely unlikely, this complex perceptual stimulus

is composed of many simple parts, all of which might arise fairly commonly in natural

images. Identifying what the components are that people use to represent the content of

images is a major theoretical challenge, but perhaps one that we can begin to explore

through a more systematic exploration of human subjective randomness.
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4.2. Evaluating theories: Measuring the representativeness of images

The images in Fig. 2A have all been labeled as having some aspect of “coast” in

them. Clearly, some of these images are bad examples of coasts, but a few are good

examples. How do people determine what makes something a good example of a con-

cept? A common proposal in cognitive psychology is that people use representativeness,

a similarity-based heuristic, to make these decisions (e.g., Kahneman & Tversky, 1972).

However, exactly what our intuitive sense of representativeness corresponds to remains

elusive.

The notion of “representativeness” appeared in cognitive psychology as a proposal for

a heuristic that people might use in the place of performing a probabilistic computation

(Gigerenzer, 1996; Kahneman & Tversky, 1972). For example, we might explain why

people believe that the sequence of heads and tails HHTHT is more likely than HHHHH

to be produced by a fair coin by saying that the former is more representative of the out-

put of a fair coin than the latter. This proposal seems intuitive, but it raises a new

Fig. 1. One hundred 4 9 4 binary arrays, ordered by their predicted subjective randomness based on the

frequency with which they appear in natural scenes.
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problem: How is representativeness itself defined? Various proposals have been made,

connecting representativeness to existing quantities such as similarity (Kahneman & Tver-

sky, 1972), or likelihood (Gigerenzer, 1996).

Tenenbaum and Griffiths (2001) took a different approach to this question, providing a

rational analysis of representativeness by trying to identify the problem that such a quan-

tity solves. They proposed that one sense of representativeness is being a good example

of a concept, and then showed how this could be quantified via Bayesian inference.

Given some observed data d and a set of hypothetical sources, H, Tenenbaum and Grif-

fiths (2001) defined the representativeness of d for h to be the evidence that d provides in

favor of a specific h relative to its alternatives,

Rðd; hÞ ¼ log
pðdjhÞ

P
h0 6¼h pðdjh0Þpðh0Þ

ð2Þ

where pðh0Þ in the denominator is the prior distribution on hypotheses, re-normalized over

h0 6¼ h. Essentially, being a good example means providing strong evidence for the target

concept relative to possible alternatives. The resulting model outperformed alternative

(A)

(B) (C)

Fig. 2. Assessing the representativeness of images. (A) A diverse set of images that have been given the

label “coast” by human judges. (B) The top nine and (C) bottom nine ranked images according to the Baye-

sian representativeness model.
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accounts of representativeness based just on similarity in predicting human representative-

ness judgments for two kinds of simple stimuli. However, this formal model was not

evaluated beyond these specific, hand-constructed domains.

The Bayesian measure of representativeness introduced by Tenenbaum and Griffiths

(2001) indicated the representativeness of data d for a hypothesis h. However, in many

cases, we might not know what statistical hypothesis best describes the concept that we

want to illustrate through an example. For instance, in an image retrieval problem, we

might just have a set of images that are all assigned to the same category, without a clear

idea of the distribution that characterizes that category. To address these concerns,

Abbott, Heller, Ghahramani, and Griffiths (2011) extended this Bayesian measure of rep-

resentativeness to apply to sets of objects and showed that the resulting model was clo-

sely mathematically related to an existing machine learning method of clustering-on-

demand known as Bayesian Sets (Ghahramani & Heller, 2005). More formally, given a

data collection D, and a subset of items Ds ¼ fx1; . . .; xNg � D representing a concept,

the Bayesian Sets algorithm ranks an item x� 2 fD n Dsg by the following scoring crite-

rion

Bscoreðx�Þ ¼ pðx�;DsÞ
pðx�ÞpðDsÞ ð3Þ

This ratio intuitively compares the probability that x� and Ds were generated by some

statistical model with the same, though unknown, model parameters h, versus the proba-

bility that x� and Ds were generated by some statistical model with different model

parameters h1 and h2. Extending the rational model of representativeness from Tenen-

baum and Griffiths (2001) to connect with the Bayesian Sets algorithm of Ghahramani

and Heller (2005) provides a link between the cognitive science literature on representa-

tiveness and the machine learning literature on information retrieval, allowing for the

evaluation of psychological theories on large-scale datasets.

Abbott et al. (2011) exploited this link to provide a detailed evaluation of a set of

representativeness models using a large database of natural images. Here, the problem

is formulated as one of determining how representative an image is of a labeled set of

images. The dataset that was used was first presented by Heller and Ghahramani

(2006), being a subset of images taken from the Corel database commonly used in con-

tent-based image retrieval systems. The images in the dataset are partitioned into 50

labeled sets depicting unique categories, with varying numbers of images in each set

(the mean is 264). The dataset is of particular interest for testing models of representa-

tiveness as each image from the Corel database comes with multiple labels given by

human judges. The labels have been criticized for not always being of high quality

(M€uller, Marchand-Maillet, & Pun, 2002), which provides an additional (realistic) chal-

lenge for the models of representativeness that were evaluated. The images in this data-

set are represented as 240-dimensional feature vectors, composed of 48 Gabor texture

features, 27 Tamura texture features, and 165 color histogram features. The images
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were additionally preprocessed through a binarization stage based on the skewness of

feature distributions, transforming the entire dataset into a sparse binary matrix that rep-

resents the features which most distinguish each image from the rest of the dataset.

Details of the construction of this feature representation are presented in Heller and

Ghahramani (2006).

Abbott et al. (2011) compared their Bayesian model against a likelihood model and

two similarity models, building upon a simple leave-one-out framework to allow a fair

comparison of the different representativeness models. Given a set of images with a

particular category label from the set of 50 above, the leave-one-out algorithm iterates

through each image in the set and computes a score for how well this image repre-

sents the rest of the set. Abbott et al. (2011) then took the top 10 and bottom 10

ranked images from the output of each model and used each as stimuli in a large

experiment run on Amazon Mechanical Turk. Each of 500 participants was shown a

series of images and was asked to rate how good an example each image was of the

assigned category. Fig. 2 presents an example of this ranked output for the category

“coast.” Overall, the Bayesian model of representativeness provided the best account

of peoples judgments of which images were good and bad examples of the different

categories.

Using a large database of natural images allowed Abbott et al. (2011) to extend and

evaluate a model of representativeness under a rational analysis, with results that pro-

vide strong evidence for this characterization of representativeness. In addition, utilizing

a standard image database from the computer vision community opens up the opportu-

nity to test theories of representativeness in more applied settings and over other image

databases and ontologies (Sun, Wang, Yao, & Zhang, 2013).

4.3. Developing applications: Large-scale word learning

How do people learn to appropriately apply new labels to concepts from only a few

example observations? Xu and Tenenbaum (2007) examined how people generalize a

novel word to new objects based on the diversity and number of objects shown as exam-

ples of the word. For example, a participant saw the word “FEP” applied to three images

of Dalmatians and was asked to select what other objects they would label “FEP” from a

set of other Dalmatians, other dogs, other animals, vehicles, and vegetables (see Fig. 3

for a set of example trials). Xu and Tenenbaum (2007) found that participants would use

“FEP” to label only the other Dalmatians in this case, but if they saw “FEP” applied to

three different types of dogs, participants would extend the label to represent all dogs,

not just Dalmatians, and not to other (non-dog) animals as well. To account for these

results, Xu and Tenenbaum (2007) developed a Bayesian word learning model and found

a high correspondence in the degree of generalization shown by the model and by peo-

ple.

While Xu and Tenenbaum (2007) showed that their Bayesian word learning model did

a good job of capturing human judgments, both the model and the experiment used to

evaluate it were based on a very small set of stimuli—a total of 45 objects divided into

580 T. L. Griffiths, J. T. Abbott, A. S. Hsu / Topics in Cognitive Science 8 (2016)



(A) 1

.5

0

1

.5

0

1

.5

0

(B) 1

.5

0

1

.5

0

1

.5

0

(C)

(A1)

(B1)

(C1) 1

.5

0

1

.5

0

1

.5

0

Fig. 3. Bayesian word learning with natural images. The images in the left-most column are the stimuli pre-

sented as example observations of a concept. Panel (A) displays three subordinate examples (Dalmatians),

(B) three basic examples (dogs), and (C) three superordinate examples (animals). The images on the right are

the test stimuli to select from, with the gray bars next to them indicating the percentage of participants select-

ing that image as an extension of the test word.
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animals, vegetables, and vehicles. Making and evaluating a model of word learning that

can be used in real applications—such as teaching new words to a robot designed to

interact with humans—requires scaling this up significantly. The Bayesian word learning

model assumes that hypotheses about the meanings of words correspond to a taxonomic

hierarchy, being subsets of one another. For example, the same object might be repre-

sented at three different levels of abstraction: subordinate (e.g., a Dalmatian), basic (e.g.,

a dog), and super-ordinate (e.g., an animal). To be able to use the model, a taxonomy

was constructed from similarity ratings that each person provided for each pair of objects

in the stimulus set. With just 45 images, this corresponded to roughly 400 judgments per

participant. This approach cannot scale, as it requires on the order of n2 judgments for n
objects.

Abbott, Austerweil, and Griffiths (2012) presented an alternative approach to hypothe-

sis space construction, making it possible to use the Bayesian word learning framework

with a natural set of concepts on a large scale without eliciting any judgments from par-

ticipants. They developed a hypothesis space automatically derived from the structure of

a large online word ontology, WordNet (Miller & Fellbaum, 1998). WordNet is a lexical

database of English represented as a network of words linked by directed edges denoting

semantic relatedness. As WordNet is hierarchically structured like the hypothesis space

used by Xu and Tenenbaum (2007), it is an ideal candidate for constructing the hypothe-

sis space. Furthermore, for each node in WordNet, there are at least 500 high-quality

images in the ImageNet database (Deng et al., 2009). These naturalistic images can be

used to generate better features as input to models, and as the source of stimuli for large-

scale behavioral experiments.

From the 82,115 noun-node subtree of Wordnet, Abbott et al. (2012) created a hypoth-

esis space that is a binary matrix, H, whose rows are the objects (64,958 leaf nodes from

the subtree) and columns are the hypotheses (82,115 nodes, 17,157 of which are inner

nodes and 64,958 are leaf nodes). Each entry (i, j) of the matrix H denotes whether or

not hypothesis node j is an ancestor of leaf node i in the WordNet graph (with a 1 indi-

cating it is). The leaf nodes are included as hypotheses so that the model distinguishes

between subordinate objects. While this space has no clear taxonomic labeling (e.g., there

is no well-defined “basic-level”), this allows the testing of generalization for categories at

different levels of abstraction. The prior probability of different hypotheses was defined

to be Erlang distributed in the size of the hypothesis (the number of leaf nodes under the

hypothesis node h), a standard prior over sizes in Bayesian models (Shepard, 1987;

Tenenbaum, 2000).

Using this hypothesis space and the experimental paradigm from Xu and Tenenbaum

(2007), Abbott et al. (2012) ran a large online experiment via Amazon Mechanical Turk.

Stimuli were images sampled from ImageNet for the three object taxonomies of animals,

vehicles, and vegetables used in Xu and Tenenbaum (2007). Fig. 3 displays example

results for the domain of animals. Overall, the Mechanical Turk participants displayed

the characteristic patterns of generalization similar to adults in Xu and Tenenbaum

(2007). The Bayesian word learning model with a hypothesis space derived from
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WordNet also captured these trends, providing validation of the original model in a natu-

ralistic setting.

With ImageNet as a source of natural stimuli and WordNet as the source of their rep-

resentations, it was possible to extend the Bayesian word learning framework from 45

objects to over 14 million images. One of the key advantages of adopting this framework

is that it is relatively simple to conduct new experiments with different sets of stimuli

and hypothesis spaces using exactly the same word learning model. Abbott et al. (2012)

demonstrated this in an additional experiment with the same design as above, but with

three new domains, and obtained qualitatively similar gradients of generalization between

model and people. This model has most recently been extended to incorporate perceptual

uncertainty, gaining leverage from a low-level visual classifier itself trained using Ima-

geNet (Jia, Abbott, Austerweil, Griffiths, & Darrell, 2013). Here, rather than using Ima-

genet as just a source for experimental stimuli, Jia et al. (2013) used ImageNet to train a

convolutional neural network and provide a more robust featural representation for the

Bayesian word learning model. The resulting hybrid model outperforms state-of-the-art

computer vision systems for the problem of appropriately generalizing from a set of input

images, and it approaches human performance on this task. Given the scale of ImageNet

and WordNet, these results bring us closer to using the Bayesian word learning frame-

work in real-world applications.

4.4. Defining new methods: Exploring natural categories

The growing number of large image databases presents new opportunities for psycho-

logical research. However, it is challenging to collect relevant human judgments using

these databases. Because of the sheer number of images they contain, only a small pro-

portion are likely to be relevant to a particular research question. Thus, new experimental

methods are needed in order to make the most of the opportunities they offer.

One example of such a method focuses on the question of how to measure people’s

beliefs about the structure of categories using large sets of discrete stimuli, such as

images. This method is called discrete Markov chain Monte Carlo with people (d-

MCMCP) (Hsu, Martin, Sanborn, & Griffiths, 2012), and it is based on ideas from the

well-known class of Markov chain Monte Carlo (MCMC) algorithms from computer

science. Previous work has shown how Markov chain Monte Carlo algorithms can be

adapted to be used as the basis for psychological experiments, provided the stimuli can

be represented in terms of underlying features or dimensions (Sanborn, Griffiths, & Shif-

frin, 2010). d-MCMCP extends this approach to work with discrete, realistic stimuli such

as the contents of large online databases.

A brief overview of the d-MCMCP method is as follows: First, it is assumed that peo-

ple’s representation of a category C can be expressed as a probability distribution over a

set of items X, p(X|C). Given this assumption, d-MCMCP works by combining the basic

methods of a standard MCMC algorithm with human judgments. The human judgments

are obtained using a two alternative forced choice task where people are asked to make a

choice between a pair of items, for example, “Which image looks more like a dog?” The
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d-MCMCP procedure presents pairs of items in a manner such that the sequence of

chosen items forms a “chain,” with each pair consisting of the previously chosen item

and a closely related variant. With some general assumptions about people’s pairwise

choice behavior (see Sanborn et al., 2010), this chain can be treated as providing samples

from p(X|C), providing insight into the structure of the corresponding category.

Hsu et al. (2012) used d-MCMCP to explore peoples representations of seasonal

images defined over images from a large online database. Specifically, they explored the

categories associated with the seasons Spring, Summer, Autumn, and Winter, using

images obtained from online image databases. A set of 4,000 colored season-related

images was assembled by searching for public domain web images using the phrases

“spring season,” “summer season,” “autumn season,” and “winter season” in Google

Image Search and on Flickr.com. The top 500 results for searches on Google and Flickr

for each season were downloaded. All images were resized so that the maximum dimen-

sion was 250 pixels while preserving the original ratio of image height to width. Each

participant made pairwise choices between images by answering questions such as

“Which image is more representative of Spring?”. The study was run through Amazon

Mechanical Turk, making it possible to recruit a large number of participants.

Spring

Summer

Autumn

Winter

Fig. 4. Distributions over images for different seasons estimated using discrete Markov chain Monte Carlo

with people. The images on the left are the top 10 images (out of 4,000) for each season. The distribution

over colors associated with each season, estimated by averaging over the images selected for that season, are

shown on the right.
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The top 10 images that were chosen most often over all three chains for each season are

shown in Fig. 4. Clearly, the images are very indicative of each season. Convergence

within each category was quantified by calculating the distance between 11-bin color his-

tograms for cumulative images, both between chains for the same season and between

chains corresponding to different seasons. Within-chain distance decreased over numbers

of trials, and it was typically lower than the similarity between chains, supporting the idea

that chains are converging toward different parts of the space of images. The right-hand

column of Fig. 4 shows a simple example of the kind of statistical analyses that can be

done on the resulting samples. The color histograms for the different seasons are quite dif-

ferent from one another, and they correspond to palettes that intuitively match the seasons.

These results illustrate that the d-MCMCP method can be used to extract psychologically

meaningful information about the structure of categories from large image databases.

5. Conclusions

Large image databases provide unique opportunities for cognitive psychology, making

it possible to explore the statistical structure of people’s environment, test theories in a

more realistic way, and work toward more direct applications of those theories. The chal-

lenges posed by using natural images as stimuli are significant—a decrease in precision,

and difficulty in identifying appropriate representations. However, those challenges can

be overcome by developing new experimental methods that make use of the additional

resources provided by running experiments online, and by exploring new ways to com-

bine ideas from cognitive psychology and computer science.
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