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ABSTRACT

Learning from demonstrations is a common way for users to teach

robots, but it is prone to spurious feature correlations. Recent work

constructs state abstractions, i.e. visual representations containing

task-relevant features, from language as a way to perform more

generalizable learning. However, these abstractions also depend on

a user’s preference for what matters in a task, which may be hard

to describe or infeasible to exhaustively specify using language

alone. How do we construct abstractions to capture these latent

preferences?We observe that how humans behave reveals how they

see the world. Our key insight is that changes in human behavior

inform us that there are differences in preferences for how humans

see the world, i.e. their state abstractions. In this work, we propose

using language models (LMs) to query for those preferences directly

given knowledge that a change in behavior has occurred. In our

framework, we use the LM in two ways: first, given a text descrip-

tion of the task and knowledge of behavioral change between states,

we query the LM for possible hidden preferences; second, given

the most likely preference, we query the LM to construct the state

abstraction. In this framework, the LM is also able to ask the human

directly when uncertain about its own estimate.We demonstrate our

framework’s ability to construct effective preference-conditioned

abstractions in simulated experiments, a user study, as well as on a

real Spot robot performing mobile manipulation tasks.
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1 INTRODUCTION

In robot learning, we wish to teach robots how to perform tasks

that human users want. Learning from demonstrations (LfD) is a

common way for doing so, as the user can directly teach the robot

desired task behavior. Unfortunately, LfD requires a lot of data and

often fails to fully specify all the reasons behind the demonstrated

behavior [17]. For example, consider the scenario depicted in Fig. 1,

which shows two demonstrations for the task “throw away the can”.

Is the user demonstrating moving cans, navigating to a specific

goal location, or tossing the can in the trash? Without more data

disambiguating the demonstrations, it’s difficult for the robot to

fully learn what all the features that matter for the task are.

Humans, meanwhile, exhibit extraordinary generalization ca-

pabilities in new environments. A key reason why humans can

learn so quickly is their ability to construct simplified mental rep-

resentations over which to plan [22]. Useful abstractions are task-

dependent, and prior experience, commonsense reasoning, and

direct teaching contribute to humans learning how to best con-

struct these abstractions [23, 27]. Recent work showed how we

can successfully leverage strong priors embedded in LMs to aide in

constructing state abstractions for robots [44]. Given a language de-

scription of the task, language-guided abstraction (LGA) leverages

the strong semantic priors in LMs to model task-relevant features

important for decision-making [44].

Unfortunately, LGA is limited when the features that are impor-

tant to the human are not fully specified in language. This presents

a challenge in real-world robotics settings where we must adapt

to human preferences quickly and efficiently, which can often be

expensive or even intractable for preferences inexpressible through

natural language. How can we ensure that the robot’s state abstrac-

tions are strong enough to enable efficient learning [43, 44] yet

flexible enough to learn individual preferences?

In this work, we propose a framework to use language and be-

havior to query LMs for their possible abstraction preference. Our

observation is how humans behave is indicative of how they see

the world, i.e. their state abstraction. If we are able to observe a

difference in human behavior, this provides meaningful grounds to

infer there are differences in preferences for how their abstractions

are constructed. In this work, we introduce Preference-conditioned

Language-Guided Abstraction (PLGA), a framework for using this

information to infer latent preferences to explain differences in

human behavior. In PLGA, we use the LM in two ways: first, given

a text description of the task and knowledge of behavior change

between states, we query the LM for possible hidden preferences;

second, given the most likely preference, we query the LM for the
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Figure 1: Preference-Conditioned Language-Guided Abstraction (PLGA). (Left) The robot uses the demonstration pair to identify a behavior

change not captured by the language specification. Given this information, we query the LM for potential preferences that could explain this

change. Finally, the robot uses its best preference estimate to query the LM for state abstractions and train a policy. (Right) At test time, the

robot generalizes to new states and language specifications using its preference-conditioned abstractions.

state abstraction. In this framework, the LM is also able to actively

query for human preferences by asking the human when it is uncer-

tain about its own estimate. With these preferences, we construct

preference-conditioned abstractions for downstream learning.

The roadmap for this paper is as follows: In Sec. 2 we formal-

ize our problem formulation and the task of learning preference-

conditioned state abstractions. In Sec. 3 we describe two versions

of our method (PLGA): in passive PLGA, we use LMs to “simulate”

human preferences; in active PLGA, we (may) additionally query

humans for their preferences. We then conduct several experiments

that demonstrate the effectiveness of passive PLGA (Sec. 4) and

active PLGA (Sec. 5) in simulated environments, and passive PLGA

in a real-world robotics environment (Sec. 6). In all settings, we

find that PLGA is able to successfully capture human preferences,

producing state abstractions that enable generalization across tasks,

while also improving the user interaction experience beyond LGA.

2 PROBLEM FORMULATION

2.1 Preliminaries

Markov Decision Processes. We model our problem as a Markov

Decision Process M = 〈S,A,T ,R〉 with states 𝑠 ∈ S, actions

𝑎 ∈ A, transition probability T : S ×A ×S → [0, 1], and rewards
R : S × A → R. We define a trajectory 𝜏 as a sequence of state-
action pairs, 𝜏 = (𝑠0, 𝑎0, · · · , 𝑠𝑇 , 𝑎𝑇 ). We wish to learn a policy

𝜋 : S → A𝜓 , parameterized by𝜓 , that solves the MDP.

Goal-Conditioned Behavioral Cloning.We consider scenarios where

the robot does not know the reward, and instead it learns the policy

𝜋 from user demonstrations 𝑖 𝑛 𝑖 𝑖   D { }𝜓 = 𝜏 = {(𝑠1, 𝑎1 1, ..., 𝑠
𝑖 , 𝑎𝑖 𝑛)}𝑖= 𝑖=1

and a natural language description ℓ ∈ L that sp
𝑇 𝑇

ecifies the goal for

each demonstration. Goal-conditioned behavioral cloning (GCBC)

[16] is a method where the policy can condition on both the current

state 𝑠 and a linguistically-specified goal ℓ to try and imitate human
actions. GCBC attempts to learn a policy 𝜋 that minimizes:

LGCBC = 𝑖 𝑖 𝑖 2
E 𝑖 𝑖 𝑖 [‖𝜋 (𝑠 , ℓ ) −(𝑠𝑡 ,𝑎𝑡 ,ℓ )∼𝐷train 𝜓 𝑡 𝑎 ‖ ]𝑡 ,2 (1)

However, because at its core the algorithm simply imitates the

data it has seen, GCBC alone cannot reliably generalize the policy
  𝜋 𝑖(𝑠 , ℓ𝑖𝜓 ) to novel 𝑖
𝑡 specifications ℓ or states 𝑠𝑖𝑡 .

Language-Guided Abstraction. Our work builds on LGA (Language-

Guided Abstraction) [44], which proposes using LM priors to build

abstract state representations. LGA’s key novelty is an abstraction

function 𝑓 : S × L → Ŝ that contextualizes the state within

the language task specification and produces a task-relevant state

abstraction 𝑠 = 𝑓 (𝑠, ℓ). This extends GCBC to learning policies

𝜋 ˆ : Ŝ → A that operate at the abstraction level:
𝜓

𝑖 𝑖 2L ˆ 𝑖
LGA = E ,𝑎𝑖( ,ℓ𝑖 [ |)∼D 𝜋𝑠𝑖 | ˆ (𝑓 (𝑠 , ℓ )) − 𝑎 | | ] .

𝑡 𝑡 𝜓 𝑡 𝑡 2 (2)

The key to LGA generalizing beyond specific user commands and

demonstrations is the rich language prior that determines which

states and specifications should be treated similarly in the context

of decision-making (e.g. if the robot has learned to “pick up a cup”,

it should also know to “pick up something to drink with”).

In LGA, the abstraction function 𝑓 LGA consists of 3 steps:

(1) In textualization, a state captioner 𝐶 : 𝜙S → L converts

the raw perceptual state 𝑠 into a text-based feature set 𝜙 =
𝐶 (𝑠). This text representation may include common visual
attributes of the state like object type and color, which are

reasonably accessible via segmentation models today [31].

(2) Feature abstraction passes 𝜙 and ℓ to the LM and asks for

the features relevant for the task,𝜙 = LMabs (𝜙, ℓ). We denote
LMabs as queries for the abstraction, e.g. “What features in

the scene matter for the task 〈throw away the can〉?”.

(3) Lastly, LGA instantiates 𝜙 into an abstracted state 𝑠 =
−1𝐶 (𝜙). We assume that the captioner from step 1 is in-

vertible and can, thus, instantiate (potentially abstracted)

perceptual states from feature 1sets, i.e. 𝐶− : 𝜙L → S. For

instance, in Fig. 1 the captioner converts states to a feature

set of object names, and the inverse captioner takes an LM-

obtained feature set and converts it into an abstracted state.

Altogether, the LGA abstraction function can bewritten as 𝑓 LGA (𝑠, ℓ) =
𝐶−1 (LMabs (𝐶 (𝑠), ℓ)).
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2.2 Problem Statement

Unfortunately, LGA is limited when the language utterance does

not fully specify the desired behavior. For example, in Fig. 1, without

explicitly mentioning “avoid electronics” in the utterance ℓ , there is
no recourse for the model to know that “drill” or “laptop” should be

captured by the abstraction, and are thus relevant for robot behavior.

Consequently, the LGA function 𝑓 will ignore it, leading to learning
an incorrect policy 𝜋

𝜓
downstream. In this paper, we present a

method to infer and incorporate such unexpressed preferences.

Formally, we assume the human holds a latent preference 𝜃 ∈ Θ

over what the abstraction 𝑠 should be, i.e. 𝑠 = 𝑓 (𝑠, ℓ, 𝜃 ) for 𝑓 :
ˆS×L×Θ → S. In the example above, the user is a cautious person

who prefers to “avoid electronics”. The challenge is that the robot

does not know 𝜃 and must infer it in order to build the abstraction.
We observe that in providing demonstrations to the robot, hu-

mans reveal information about what matters to them in their tasks.

In otherwords, demonstrations implicitly give evidence forwhat the

latent abstraction preference 𝜃 is [28]. In this paper, we study how
we can use demonstrationsD together with the utterance ℓ to learn

preference-conditioned language-guided abstractions 𝑠 = 𝑓 (𝑠, ℓ, 𝜃 ),
i.e. abstractions that capture how the human represents the task,

using information from both their linguistic specification and physi-

cal behaviors. We expect these preference-conditioned abstractions

will allow flexible adaptation to preferences over task completion.

3 METHOD: PREFERENCE-CONDITIONED
LANGUAGE-GUIDED ABSTRACTION

We present our method for constructing preference-conditioned

language guided abstractions (PLGA). We use an LM to give a

common-sense prior over abstraction preferences given a language

specification and information about user demonstrations. At a high

level, our method consists of two steps: 1) estimating the abstraction

preference 𝜃 and 2) updating the abstraction function 𝑓 with that 𝜃 .
Our use of the LM is, thus, two-fold: first, given ℓ and information
about demonstrations 𝜏 , we query the LM for most likely human

preference 𝜃 ; next, given that preference, we query the LM for

the abstraction. This framing also allows us to actively query the

human for their preference when the LM is uncertain about its set

of hypothesized 𝜃s. We present the full PLGA procedure in Alg. 1.

We use GPT4 [41] as our LM to query for human preferences and

state abstractions given state, language, and trajectory information.

Here, we first focus on LM queries for state abstractions. We discuss

the use of LMs for querying for human preferences in Sec. 3.2.

3.1 LMs as Models of State Abstraction

Moving beyond LGA, we want an abstraction function that is

preference-conditioned. Here, we assume we already have an esti-

mate of the human’s abstraction preference 𝜃 , and we discuss the
estimation process later in Sec. 3.2. We can use the same captioner

from LGA, but the LM must now be queried with preference infor-

mation as well. Hence, in our feature abstraction step we pass 𝜙 , ℓ
and a language description of the estimate 𝜃 to the LM and query

it for the preference-conditioned features that are relevant for the

task, i.e. 𝜙 = LMabs (𝜙, ℓ, 𝜃 ). In the Fig. 1 example, the abstraction
query includes not only the scene and task specification, but also

Algorithm 1: PLGA

1 Input: 𝑁 sampled trajectory pairs (𝜏, 𝜏 ′) ∈ D, specification

ℓ , captioner 𝐶 , entropy threshold 𝜖 , distance threshold 𝜅

2 Init: Abstraction model without preferences 𝑓 LGA

3 for 𝑖 ← 1 to 𝑁 do

4 / / Language can’t explain behavior change

5 if ‖𝜏 − 𝜏 ′ ‖2
2 > 𝜅 and 𝑓 LGA (𝑠, ℓ) = 𝑓 LGA (𝑠′, ℓ) then

6 / / Find hidden preference as in Sec. 3.2

7 Θ𝐿𝑀 , 𝑃 (𝜃 | 𝑠, 𝑠′, ℓ,Δ = 1) ∼

LMpref (𝐶 (𝑠),𝐶 (𝑠
′), ℓ,Δ = 1)

8 / / LM is confident about preference

9 if 𝐻 (𝑃 (𝜃 | 𝑠, 𝑠′, ℓ,Δ = 1)) < 𝜖 then

10 𝜃 ← argmax𝜃 (𝑃 (𝜃 | 𝑠, 𝑠′, ℓ,Δ = 1))

11 else

12 𝜃 ← query H / / as in Sec. 3.3

13 / / Create updated abstractions as in Sec. 3.1.

14 𝑓 PLGA (𝑠, ℓ, 𝜃 ) = 𝐶−1 (LMabs (𝐶 (𝑠), ℓ, 𝜃 ))

← LPLGA (𝑓
𝑃𝐿𝐺𝐴 (𝑠, ℓ, 𝜃 ))15 𝜋

𝜓

the inferred preference “avoid electronics”. Overall, our abstraction

function can be written as 𝑓 PLGA (𝑠, ℓ, 𝜃 ) = 𝐶−1 (LMabs (𝐶 (𝑠), ℓ, 𝜃 )).

Probabilistic Interpretation.Given the state 𝑠 and language speci-
fication ℓ only, wewould ideally like amodel 𝑃 (𝑠 | 𝑠, ℓ) that specifies
what the abstracted state 𝑠 should be. At its core, LGA leverages

the LM’s prior to model this probability, querying the LM for the

most likely abstraction, i.e. 𝑓 LGA (𝑠, ℓ) = argmax𝑠 𝑃 (𝑠 | 𝑠, ℓ).
In real-world settings, however, 𝑠 and ℓ may not contain sufficient

information for the LM to accurately approximate the abstraction.

Rather, there is an additional dependency on the (latent) abstraction

preference 𝜃 , which gives 𝑃 (𝑠 | 𝑠, ℓ) =
∑
𝜃 ∈Θ 𝑃 (𝑠 | 𝑠, ℓ, 𝜃 )𝑃 (𝜃 | 𝑠, ℓ).

Instead of computing the full sum, we simply estimate the most

likely 𝜃 in Sec. 3.2, then use it in 𝑃 (𝑠 | 𝑠, ℓ, 𝜃 ). If we already have an
estimate 𝜃 , PLGA assumes the LM has a strong prior for modeling

𝑃 (𝑠 | 𝑠, ℓ, 𝜃 ) andwe can query the LM for themost likely abstraction,

i.e. 𝑓 PLGA (𝑠, ℓ, 𝜃 ) = argmax𝑠 𝑃 (𝑠 | 𝑠, ℓ, 𝜃 ).

3.2 LMs as Models of Preference

Wenow discuss how PLGA estimates the human’s latent abstraction

preference parameter 𝜃 . Given 𝑠 and ℓ , we could query an LM for

potential human preferences 𝜃𝑖 corresponding to that state and task
specification, i.e. 𝜃𝑖 ∼ LMpref (𝐶 (𝑠), ℓ), but the space of possible
preferences may be intractably large. For example, in Fig. 1 the

more objects in the scene, the combinatorially more preferences

for caring or not caring about each one of them the LM could find.

We observe that given demonstrations 𝜏 , we can derive additional
insights about the abstraction preference beyond the language spec-

ification: human behavior (i.e. demonstrations) implicitly reveals

information about what the human cares about in the world (i.e. the

abstraction). If we had a language description of the demonstrations,

we could include it in our query to the LM. Unfortunately, behaviors

are particularly challenging to caption [47] and asking the human

to narrate every demonstration they give is too burdensome.
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Instead of giving the LM a description of the behavior the human

demonstrates, we indicate initial scenes where behaviors are differ-

ent in ways that the language utterance does not specify. Given a

trajectory pair (𝜏, 𝜏 ′) corresponding to initial states 𝑠 and 𝑠′ and the
specification ℓ , we introduce a binary variable Δ(𝑠, 𝑠′, ℓ) that indi-
cates whether the desired human behaviors in 𝑠 and 𝑠′ are different
in ways not directly specified by ℓ .
Intuitively, Δ signals that an unknown human preference 𝜃 is

′impacting behavior. If Δ is 0, then behaviors 𝜏 and 𝜏 are either the

same despite starting in different states or different but in a way
′conveyed by ℓ . If Δ is 1, then 𝜏 and 𝜏 differ beyond the language

specification. In the Fig. 1 example, the user demonstrations differ

despite the specification “Throw away the can” not explicitly indi-

cating that they should. Our hypothesis is that the context change

between 𝑠 and 𝑠′ can reveal the human preference 𝜃 that resulted
′in the behavior change in 𝜏 and 𝜏 .

When Δ = 1, we query the LM for potential human prefer-

ences 𝜃𝑖 that explain the change in behavior for the two scenes, i.e.
𝜃𝑖 ∼ LMpref (𝐶 (𝑠),𝐶 (𝑠

′), ℓ,Δ = 1). We denote the set of “sampled”

preferences Θ𝐿𝑀 = {𝜃𝑖 }𝑖
𝑘
=0. The PLGA estimate 𝜃 should be the

most likely in Θ𝐿𝑀 . To generate that, we ask the LM to also assign

a normalized probability for how likely it is that 𝜃𝑖 is the hidden
preference, resulting in a distribution 𝑃 (𝜃 | 𝑠, 𝑠′, ℓ,Δ = 1) with

support on Θ𝐿𝑀 . In the passive version of PLGA, we simply select

𝜃 to be the preference in Θ𝐿𝑀 with the highest probability.

Probabilistic Interpretation.Given Δ(𝑠, 𝑠′, ℓ) as a proxy for “inex-
plicable” change in behavior between states, we assume the LM has

a strong prior for modeling 𝑃 (𝜃 | 𝑠, 𝑠′, ℓ,Δ(𝑠, 𝑠′, ℓ)). If Δ(𝑠, 𝑠′, ℓ) = 0,

there is no human preference at play, hence there’s no need to up-

date the abstraction. If Δ(𝑠, 𝑠′, ℓ) = 1, we query the LM for the most

likely preferences that explain the change, acting as a sampler, i.e.

𝜃𝑖 ∼ 𝑃 (𝜃 | 𝑠, 𝑠′, ℓ,Δ = 1), and also for the corresponding probability

values, i.e. 𝑃 (𝜃𝑖 | 𝑠, 𝑠
′, ℓ,Δ = 1)∀𝜃𝑖 ∈ Θ𝐿𝑀 . In passive PLGA, we se-

lect the preference estimate 𝜃 = argmax𝜃𝑖 𝑃 (𝜃𝑖 | 𝑠, 𝑠
′, ℓ,Δ(𝑠, 𝑠′, ℓ)).

3.3 Querying Preferences with Language

If the LM model is uncertain about which of the hypothesised pref-

erences 𝜃𝑖 is the most likely explanation for the behavior change,
PLGA enters an active learning stage where it queries the user

directly for the cause of behavior change. This scenario may apply

when the human preference cannot be captured by a general LM

prior, e.g. “pick up my favorite object" where the robot is uncertain

about what the user’s “favorite object” may be. In such cases, we

expect none of the probability values to stand out. In other words,

the entropy of the LM-queried distribution 𝑃 (𝜃𝑖 | 𝑠, 𝑠
′, ℓ,Δ = 1) is

high. We propose that when this is the case, the robot should query

the human directly for a language description of their preference 𝜃 .

3.4 Policy Learning with PLGA

Once the robot has a preference estimate 𝜃 , our abstraction function

is simply 𝑓 PLGA (𝑠, ℓ, 𝜃 ) = 𝐶−1 (LMabs (𝐶 (𝑠), ℓ, 𝜃 )). We can use this
to train our policies 𝜋

𝜓
, similar to LGA:

LPLGA = E(𝑠𝑡𝑖 ,𝑎𝑖𝑡 ,ℓ𝑖 )∼D [| |𝜋
𝜓
(𝑓 PLGA (𝑠𝑡

𝑖 , ℓ𝑖 , 𝜃 )) − 𝑎𝑡
𝑖 | |22] . (3)

with differences from LGA highlighted in red.

4 INVESTIGATING PASSIVE PLGA AS A PRIOR
FOR GENERAL HUMAN PREFERENCES

We begin our evaluation by testing PLGA’s ability to leverage the

semantic priors in LMs to generate human preferences that explain

changes in behavior. We first conduct simulated experiments to

demonstrate passive PLGA in cases where the LM should be able to

confidently identify the human preference. For cases where the LM

may be unsure about the hidden preference, we will test the active

component of PLGA with real users in Sec. 5. Here, we present

results for nine different scenarios across three different tasks.

Environment. We generate a series of robotic control manipu-

lation tasks from the simulated environment VIMA [30] (Fig. 2).

VIMA is a vision-based simulator where a UR5 arm is tasked with

manipulating a specified target object into a desired goal configura-

tion. Observations are top-down RGB images of the manipulation

space and actions are continuous pick and place poses each consist-

ing of a 2D coordinate and a rotation expressed as a quaternion. We

modify the VIMA feature space to contain up to 48 potential objects

(e.g. bowl) and 17 colors/textures (e.g. glass) (see list in Appendix).

Following standard LGA, we implement a captioner module that

extracts the feature set 𝜙 from the original RGB observation. This

captioner uses a ground truth segmentation mask and labels it with

text descriptions of objects and their properties (texture, object

ID, etc.). Our PLGA algorithm constructs the task-relevant feature

subset 𝜙 using GPT4 [41] as the LM. We query the LM by providing

a language utterance, description of the scene, estimated preference,

and a target feature to evaluate (the full prompt can be seen in the

Appendix). The LM returns a binary response indicating whether

that feature should be included in the preference-conditioned ab-

straction 𝜙 . Finally, we convert 𝜙 to 𝑠 , a binary pixel mask over the
robot observation where all identified task-relevant features are

represented as ones (otherwise zero).

Our algorithm requires finding trajectory pairs in the demonstra-

tion set where the language specification can’t explain the behavior

change. To generate them, we randomly sample trajectory pairs

from D, compute their Euclidean distance and their corresponding

preference-free abstractions 𝑠 = 𝑓 LGA (𝑠, ℓ) and 𝑠′ = 𝑓 LGA (𝑠′, ℓ),
and check for pairs that are more than 𝜅 distance apart while map-
ping to the same abstraction 𝑠 = 𝑠′. In our experiments, we found
𝜅 > 0.2 was a good metric for differentiating trajectories.

Tasks.We investigate three tasks that arise in the context of per-

sonal robotics: 1) pick up the [target], 2) place grasped object on the

[target], and 3) sweep object 1 into object 2 [while avoiding potential

obstacle] (brackets denote objects the user may have a preference

distribution over). For each task, we test three possible (unspecified)

human preferences that may impact the desired abstraction.

(1) For pick: 1) a (ripe) tomato, 2) a (container) to put food in, 3) a

(dry) cereal bowl (parentheses denote the hidden preference).

The robot must determine the correct target object given

behavioral context (e.g. is a green tomato a target pick object?).

(2) For place: 4) a (non-electronic) object such as pan, 5) a (sta-

ble) surface such as coaster, 6) a (desired content) container

such as recycling or trash. For these tasks, the robot must

determine the correct target for the held object to be placed

on/in (e.g. is a laptop a valid place location?);
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Figure 2: We evaluate on three tabletop manipulation tasks: pick, place, and sweep.

(3) For sweep: 7) a hot object such as stove, 8) a sweepable object

such as rug, and 9) a sharp object such as knife. For these

tasks, the robot must assess whether objects are potential

obstacles to be avoided before executing a sweep motion (e.g.

is a red stove an object to be avoided?).

Preferences are instantiated as a distribution over possible object

types and colors in the task. These may include preferred pick ob-

jects (e.g. red or dark red tomatoes for ripe, but not green), preferred

place objects (e.g. container or bin for non-electronic but not laptop),

and avoid obstacles (e.g. a knife for sharp but not flower). These are

selected to illustrate diversity in preferences that PLGA can infer us-

ing strong semantic priors. For each task, the language specification

is given without mentioning the preference (e.g. “Sweep the food

into the sink”). PLGA therefore must infer the hidden preference

from behavioral context (e.g. avoid hot objects). Here we assume

there is a generic but unspecified preference for each scenario (e.g.

users generally prefer to avoid hot objects).

For each preference-task pair, we generate a dataset D via an

oracle demonstrator consisting of 20 demonstrations: 10 expressing

behavior when the tested feature is present in the scene and 10

when the tested feature is not (e.g. 10 trajectories of the sweeping

food around the stove if the stove is hot, and 10 where sweep-

ing food across the stove otherwise). Target objects are randomly

sampled from one of three discretized locations. To create addi-

tional complexity, we additionally sample a distractor object that is

unrelated to the preference (e.g. a flower along with a stove).

Manipulated Variables.We test PLGA’s ability to construct good

preference-conditioned abstractions for each task using the LM

priors alone. We compare the resulting policies trained via PLGA

against two baselines: GCBC (learned directly from raw states and

the specified language utterance as per Eq. (1)) and LGA (learned

from state abstractions constructed via querying 𝜙 against the

language utterance alone as per Eq. (2)). We implement GCBC as a

goal-conditioned CNN architecture that independently processes

language input ℓ into an embedding via BERT [18] and the RGB
image into an embedding via a CNN, then concatenates the outputs

for action prediction via a MLP. We implement LGA and PLGA as

the same CNN architecture processing the state abstraction only.

Dependent Measures.We evaluate success as an executed action

via a pick/place/sweep of the target object within radius 𝛼 of the
goal. For these tasks, we constructed a ground truth test distribution

reflective of the human preference. We manipulate the training and

test distribution such that only a subset of the true preference

distribution (e.g. red tomatoes) are seen at training. We evaluate
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Figure 3: Policy success rate (with standard error) on simulated ex-

periments. PLGA outperforms both LGA and GCBC on task perfor-

mance, showing better preference-conditioned abstraction construc-

tion on downstream task learning.

performance via success rate of the learned policies on 5 states

sampled from the full test distribution during test.

Hypothesis H1: Using information about changes in behavior

(PLGA) leads to state abstractions better able to generalize pol-

icy learning to preference-conditioned test tasks than abstractions

based on language alone (LGA) or no abstractions (GCBC).

Analysis. To compare performance, we show in Fig. 3 the policy

success rates on test scenes for each task. These results illustrate a

trend for better PLGA performance compared to baselines (signifi-

cant for four tasks with a one-sided t-tests 𝑝 < 0.05).
Overall, this illustrates a trend for better PLGA performance than

baselines, supporting the notion that preference-conditioned ab-

stractions enable better generalizable learning. However, one-sided

t-tests confirm statistical significance only for four of the tasks.

The other tasks display high variance at times in the result, indi-

cating that more trials may be necessary to determine significance.

Nevertheless, the qualitative trend softly supports H1.

5 INVESTIGATING ACTIVE PLGA FOR
LEARNING USER-SPECIFIC PREFERENCES

In Sec. 4 we tested PLGA’s ability to construct generic preference-

conditioned abstractions using only the LM’s priors. We now test

its ability to construct abstractions when the preferences are more

personalized, meaning the LM may not be entirely sure about its

sampled hypotheses Θ𝐿𝑀 . We study the active component of PLGA

with a user study to test the ability of PLGA to recognize uncertainty
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about a preference estimation, causing it to query for the human

preference and update its abstraction model accordingly.

5.1 Experimental Setup

Tasks.We now construct a new scenario for each task.

(1) For pick: a (favorite food);

(2) For place: a (preferred dish) for setting food on;

(3) For sweep: a (specific type of object) to avoid.

These tasks are now intended to study 1) PLGA’s ability to mea-

sure uncertainty over the LM’s inferred preferences, or in other

words, know when it does not know the answer and ask for help

and 2) PLGA’s ability to update its abstraction generation process

given a user-specified preference in natural language.

Sanity Check. Before investigat-

ing PLGA’s active querying of

human preferences, we first con-

duct a sanity check to ensure the

measured entropy of the result-

ing LM preference probability is

indeed higher (indicating uncer-

tainty) for these tasks vis-a-vis

those less ambiguously defined

in the previous section. We per-

form the same LM query as be- Ambiguous General0.0

0.5

1.0

1.5

En
tr

op
y

*

fore (e.g. where the LM is tasked

with inferring a hidden favorite Figure 4: Entropy values

food from Δ). As shown in Fig. 4, show PLGA can model its

own uncertainty underwe do see larger uncertainty for
preference ambiguity.tasks containing more ambiguous

preferences, and a one sided t-test

(𝑡 (10) = −3.49, 𝑝 = 0.005) confirms this observation. Based on
these results, we found 𝜖 = 1.0 to be a good entropy threshold for
measuring uncertainty.

Study Design. We conducted a computer-based in-person user

study where participants were shown a text description of the task,

and asked to give a general preference specified in natural language.

The study is split into three phases: familiarization, scenario

generation, and preference querying. During familiarization, we

introduce the user to the task context, the simulation interface,

and full feature list that is available in the environment. We then

show them an example task and text abstraction 𝜙 . In scenario
generation, we introduce six scenarios (two per task), where we

describe a background story for each user (e.g. you are about to

have guests over for dinner or you now need to figure out how to store

food). This was intended to elicit a natural preference for how each

scenario would be interpreted that invoked different downstream

preference-conditioned abstractions (e.g. plate and bowl may be

more relevant for the first scenario, while container and box might

be more relevant for the second). In preference querying, we then

ask the user to specify, in language, their explicit preferences for

the task as our preference query. This preference query is then used

by PLGA to explicitly update its abstraction-generation.

Participants.We recruited 12 participants (50% male, aged 18-29)

from the greater community. We paid participants $30 for partici-

pation. Our study passed institutional IRB review.

Mental demand Physical demand Rushed Perceived perf. Effort Frustration
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Figure 5: User study interaction results (lower is better for all but

perceived performance). The interaction experience with Active

PLGA is rated more favorably by users than with Active LGA.

5.2 Subjective Results: PLGA Enables More
Natural and Easy User Interaction

We first tested if users can easily and effortlessly specify individual-

ized preferences via natural language to the model in a manner that

is less burdensome and frustrating than baseline human-in-the-loop

abstraction construction methods.

Manipulated Variables.We are interested in comparing the user

experience of PLGA vs. a baseline human-in-the-loop abstraction

method. The baseline we select is the active version of LGA where

users are first presented with an LM’s best guess of the correct

abstraction list (without explicitly modeling preference), and then

asked to refine the resulting representation via a text-based inter-

face. We implemented this baseline as an additional condition in

our user study. In the active LGA condition, the preference query-

ing phase is instead replaced with an explicit abstraction querying

phase, where the user is tasked with specifying, in text, the feature

list 𝜙 that contains all task-relevant aspects for their preferences in

each task. We provide a full list of environment features for easy

access. We counterbalance conditions and record qualitative task

experience post-conclusion of both conditions.

Dependent Measures. For measuring interaction experience, we

administered the subjective 7-point Likert Scale survey, inspired

by the NASA-TLX [21]. We presented the survey after the user

completed both conditions, and recorded responses for each.

Hypothesis H2: Describing a language preference (Active PLGA)

is a more natural and less effortful user interaction experience than

manually filtering relevant abstraction features (Active LGA).

Analysis. Fig. 5 illustrates our subjective user study results with

the NASA TLX scores aggregated across participants. We addition-

ally ran paired t-tests with significance level 𝛼 = 0.05, marked
with orange asterisks. We see that users found PLGA to be sig-

nificantly less mentally (𝑡 (11) = −2.46, 𝑝 < 0.05) and physically
demanding (𝑡 (11) = −2.54, 𝑝 < 0.05), and the results are even more
pronounced for feeling rushed (𝑡 (11) = −7.40, 𝑝 < 0.001), frus-
trated (𝑡 (11) = −8.48, 𝑝 < 0.001), or expending a great deal of effort
(𝑡 (11) = −8.99, 𝑝 < 0.001). Meanwhile, we found no statistically
significant difference in perceived performance (𝑡 (11) = 1.60, 𝑝 =

577
Authorized licensed use limited to: Princeton University. Downloaded on December 23,2024 at 21:22:38 UTC from IEEE Xplore.  Restrictions apply. 



Preference-Conditioned Language-Guided Abstraction HRI ’24, March 11–14, 2024, Boulder, CO, USA

favorite food preferred dish object to avoid
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

*

*

*

Active PLGA
Passive PLGA

Passive LGA
GCBC

Figure 6: Learned policy success rates for tasks with ground truth

preference specified by user study participants. PLGA (active) outper-

formsPLGA (passive), LGA (passive), andGCBCon task performance,

demonstrating an ability to flexibly incorporate natural language

human preferences into abstraction construction.

0.14), suggesting that Active PLGA offers a more natural and ef-

fortless interaction experience than Active LGA with no loss in

performance quality. Overall, results support our hypothesis H2.

The result is not surprising – after all, it is to be expected that

giving a natural language utterance is an easier experience than

inspecting a list of features and selecting the right subset. However,

we wanted to verify that users overall find it easy to explicate their

preference in words, and that training the robot this way does

not decrease their perception of its performance. From this point

of view, the results are positive and even encouraging for future

research using natural language to explicate human preferences.

5.3 Objective Results: Active PLGA Successfully
Learns from Human Preference Queries

Now that we have established active PLGA enables a more natu-

ral and less effortful user interaction, we measure whether query-

ing users for their preference in natural language results in good

preference-conditioned abstractions as compared to baselines.

Manipulated Variables.We compare the performance of active

PLGA to non-interactive abstraction construction algorithms: Pas-

sive PLGA (where the LM did not explicitly query the human for

their preference and instead used its best estimate 𝜃 ∈ Θ𝐿𝑀 ), Pas-

sive LGA (where the LM builds an abstraction without explicitly

modeling preference), and GCBC. We would like the comparison

to validate the importance of identifying when the LM is unsure in

its hypotheses and asking the human, when compared to taking its

best guess (Passive PLGA), not reasoning about preferences at all

(Passive LGA), or not even using state abstractions (GCBC).

Dependent Measures. For measuring downstream task success,

we report the same success rate as in Sec. 4. Note, instead of as-

suming ground truth test distributions constructed by the exper-

imenters, we now assume the abstractions explicitly specified by

the human manually during the Active LGA querying in Sec. 5.2

are the ground truth test distributions by which to evaluate. This

is a reasonable assumption considering previous work [10, 11, 43]

has demonstrated the ability of humans to perform task-specific

feature selection to their individualized preferences.

Hypothesis H3: Abstractions learned with human preference

queries (Active PLGA) result in better performing policies com-

pared to passive methods (Passive PLGA, Passive LGA, GCBC).

Analysis. Fig. 6 shows that active PLGA outperforms other pas-

sive baselines in learning good preference-conditioned abstractions

from human queries in natural language, supportingH3. We further

confirmed this by running one-sided t-tests (marked with orange

asterisks) between Active PLGA and Passive LGA, our strongest

competing baseline, confirming significance at 𝑝 < 0.05. This illus-
trates the ability of PLGA to integrate information queried from

the user meaningfully in constructing state abstractions. Moreover,

while every method has its natural user effort vs. information gain

tradeoff, PLGA’s ability to query seamlessly for natural human

feedback while reducing user frustration and effort is an exciting

testament to the value of strong priors for preference learning.

6 INVESTIGATING PLGA ON A SPOT ROBOT

We demonstrate the real world abstraction construction utility of

PLGA on a Spot robot1 performing mobile manipulation tasks.

Robotic Platform. Spot is a mobile manipulation legged robot

equipped with six RGB-D cameras (one in gripper, two in front, one

on each side, one in back), each producing an observation of size

480x640. We only use observations taken from the front camera.

Tasks and Data Collection. We collected demonstrations of a

human teleoperating the robot while performing two mobile manip-

ulation tasks with household objects: place the drink in the bin and

throw away the can. The manipulation action space consists of the

following three actions along with their parameters: (xy, grasp), (xy,

move), (drop) while the navigation action space consists of a SE(3)

group denoting robot waypoints2. For place the drink, the robot is

tasked with bringing an already-grasped soda can to a specified

location and dropping it into a trash can. We assume the user has

a preference for avoiding electronics in the way, otherwise taking

the shortest path. For throw away, the robot is tasked with picking

up a drink on a table, bringing it to a correct bin (either recycling or

trash), and successfully dropping the drink into the bin. We assume

the user has a preference for placing cans in a recycling bin if one

is available, and otherwise placing them in the trash. Both tasks

include possible distractors like drills and brushes.

For place the drink, we generate demonstrations of the robot

placing a soda can into the recycling if available, otherwise trash.

At test time, we evaluate the robot on the scenarios with a water

bottle instead. For throw away the can, we generate demonstrations

of the robot walking directly to the trash can when a shirt is on the

ground, but avoiding the drill when it is present. At test time, we

evaluate the robot on two new scenes: a laptop (to avoid) and pants

(walk across). While the robot sees a trajectory of a user avoiding a

drill during train, it is not exposed to laptops prior to test.

Training and Test Procedure.We first extract a segmented image

from the observations using Segment Anything [31] and captioner

Dedic [61] to perform a check for behavior Δ (e.g. is the robot

taking a different trajectory when a laptop is present in the scene

vs. shorts). If the answer is yes, we instantiate the full PLGA pipeline.

1Our Spot’s name is Moana.
2For ease of data generation, we perform imitation learning over the trajectory rather
than each state (i.e. predict a sequence of actions from an initial observation).
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First, we perform a preference query to the LM with the initial two

scenes and task description; next, we use this preference to query

the LM to construct a preference-conditioned abstraction; lastly,

we map this abstraction back into the observation dimension.

Takeaway. PLGA produced policies capable of successfully com-

pleting both tasks consistently, even when faced with new distrac-

tor objects, target object colors, or unseen linguistic specifications.

Excitingly, we were able to observe non-trivial generalization capa-

bilities, particularly in the avoid task (the robot successfully learned

to avoid laptops from only seeing a demonstration of avoiding a

drill). The failures we did observe were largely due to captioning

errors (e.g. the segmentation model detected the object but was

unable to produce a good text description). Our demonstration of

PLGA on real robotic hardware indicates an exciting future in using

LMs to help generate preference-conditioned state abstractions.

7 RELATEDWORK

Learning from Human Input. Existing frameworks for inter-

active querying for downstream learning, like TAMER [32] and

COACH [39], use human feedback to train policies, but are re-

stricted to binary or scalar labeled rewards [1, 57]. Another line of

work looks at learning from human preferences, often by asking

them to compare or rank trajectory snippets [8, 13]. There are also

works that actively learn from human teachers, where the emphasis

is on generating actions or queries that are maximally informative

for the human to label [6, 12]. Unfortunately, these approaches all

are limited by the fact that the feedback asked of the human is

overfit to specific failures or desired data points, and rarely scale

well relative to human time or effort [7].

LanguageModels for Human Preferences. LMs are increasingly

being used for personalized applications. Prior work has explored

using LMs for recommendation systems [29, 37, 40, 52, 55], user-

specific chatbots [35, 38, 45, 49, 58, 60], or even sorting household

objects according to personal preferences [54].

A range of techniques have been introduced to specify human

preferences and inject them into LMs. With the popularization of

prompting-based techniques, users simply have to write a textual

description (called a prompt) specifying their preferred task and

condition LMs on this prompt to induce their desired behavior

[9]. In order to encourage LMs to produce outputs in line with

users’ preferences, recent work has explored techniques such as

instruction-tuning [15, 24, 42, 53, 59] and reinforcement learning

from human feedback (RLHF) [5, 14, 20, 50, 63].

Furthermore, having been pre-trained on large corpora of human-

generated text [46], LMs often possess sensible priors over “typi-

cal”3) human preferences and behaviors [9, 34, 62]. Because of this,

LMs have at times even been used as simulations of humans [2, 4, 19].

As part of prompting, LMs must implicitly perform language un-

derstanding on human-written prompts to infer their preferences.

However, LMs have also been used to explicitly infer human prefer-

ences from linguistic specifications. For example, recent work has

examined reward learning using LMs [33, 36].

3It is worth noting that text scraped from the internet, which constitutes the bulk
of what today’s LMs are trained on, is biased and does not capture a representative
sample of human preferences globally.

Language Models in Robotics. LMs hold commonsense knowl-

edge about object properties, functions, and their relevance to var-

ious tasks. This is why many recent works have explored using

LMs to output plans directly, i.e. generate primitives or high-level

action sequences [3, 25, 26, 48]. These approaches use priors em-

bedded in LMs to produce better instruction following models, or in

other words, better compose base skills to generate more complex

behavior [3, 34, 51, 56]. In contrast, we use LM priors to learn it

preferences over relevant features. Recent work [44] has also pro-

posed to use LMs to perform state abstraction for learning better

skills from scratch, instead leveraging the LM’s priors to identify

task-relevant features for state abstraction construction.

8 DISCUSSION

We presented PLGA, a framework for learning preference condi-

tioned state abstractions from language and demonstration infor-

mation. Particularly, we focused on settings where the language

task specification does not list everything the human cares about.

We introduced LM preference queries for inferring user preferences

present in demonstrations directly from LM priors. Our simulated

experiments, user study, and Spot robot demos illustrate that natu-

ral language can be a convenient vehicle to communicate hidden

preferences for constructing state abstractions, and those abstrac-

tions result in improved downstream task performance. Although

we demonstrated PLGA’s real-world applicability in home manip-

ulation tasks, we are excited about future opportunities in shared

autonomy tasks (where the humanmay have a preference for which

aspects of the task the robot assists with), or autonomous driving

(where users have a preference for what objects to avoid).

Limitations and Future Work. In our work, we assumed we had

no further information regarding differences in user behavior be-

yond the initial states that induced these behaviors. However, we do

not use the information about how exactly user behavior changed.

A natural direction would be to extend PLGA’s preference query

abilities to user trajectories, where richer features, like obstacle

avoidance distance, can be explored. Such a path would open more

meaningful opportunities for grounding natural language to the

language of human behavior.

Moreover, while we focused here on using language priors to

construct state abstractions for imitation learning, a natural parallel

would be to explore this framework in the context of rewards, where

rich semantic priors could be extremely meaningful to few-shot

downstream learning from demonstrations. Furthermore, our algo-

rithm is not designed to be iterative, whichmeans that there is no op-

portunity for continual preference learning after repeated exposure

to different interactions. However, there are many trajectory-based

features that arise in the context of robotics that would require

more text-based motion information regarding user actions that

we currently do not have.

Lastly, while we broached the subject of active preference elic-

itation, we did not conduct a deep dive into meaningful ways to

interact with the user when trying to learn their preference (opt-

ing instead to query them directly if uncertain). Future work can

explore different ways of performing preference elicitation with

language models, including iterative approaches that perform se-

quential updates to the reward or preference model.
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