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Evolution in Mind:;
Evolutionary Dynamics,
Cognitive Processes, and
Bayesian Inference
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Evolutionary theory describes the dynamics of population change in settings
affected by reproduction, selection, mutation, and drift. In the context of human
coghnition, evolutionary theory is most often invoked to explain the origins of
capacities such as language, metacognition, and spatial reasoning, framing
them as functional adaptations to an ancestral environment. However, evolu-
tionary theory is useful for understanding the mind in a second way: as a
mathematical framework for describing evolving populations of thoughts,
ideas, and memories within a single mind. In fact, deep correspondences exist
between the mathematics of evolution and of learning, with perhaps the deep-
est being an equivalence between certain evolutionary dynamics and Bayesian
inference. This equivalence permits reinterpretation of evolutionary processes
as algorithms for Bayesian inference and has relevance for understanding
diverse cognitive capacities, including memory and creativity.

Linking Evolution and Cognition

In settings as diverse as cancer biology and color vision, evolutionary dynamics provides a
unifying mathematical framework for understanding how populations of replicators evolve
when subject to mutation, selection, and random drift [1]. The explanatory power of evolution-
ary dynamics is not limited to biology and medicine — from the notion of a ‘meme’ [2—-4] to
influential models of cultural evolution [5-8], explanations of cultural phenomena such as
cooperation [9,10], social learning, and language change often appeal to evolutionary concepts
such as selection and mutation [11-14].

As evolutionary dynamics does for changes in populations, Bayesian inference provides a
unifying mathematical framework for describing changes in beliefs [15]. When acquiring a
language, learning a concept, or inferring a causal mechanism, the mind is faced with an
inductive inference problem and must transform incomplete information into updated thoughts,
beliefs, or knowledge. To learn the meaning of a new word, for example, the learner must
integrate prior knowledge of plausible word meanings with data in the form of a few observed
examples of the word’s usage, a process well described as Bayesian inference [16].

Evolutionary dynamics and Bayesian inference are thus two frameworks for describing change:

changes to a population, and changes to beliefs. What happens, then, when the population
under consideration is not external to the mind, but within it? In this Opinion, we argue that an
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Correspondences between the
mathematics of evolution and learning
permit reinterpretation of evolutionary
processes as algorithms for Bayesian
inference.

Cognitive processes such as memory
maintenance and creativity can be for-
mally modelled using the framework of
evolutionary dynamics.

Maintenance in working memory can
be modeled as a particle filter that
repeatedly attempts to estimate the
state of the world through a sample-
based approximation whose fidelity is
limited by the availability of computa-
tional resources.

Creative search during problem sol-
ving can be seen as a stochastic
search algorithm with stages of blind
variation and selective retention.

"Department of Psychology, University
of California, Berkeley, CA, USA

*Correspondence:
suchow@berkeley.edu (J.W. Suchow).

1

http://dx.doi.org/10.1016/j.tics.2017.04.005

© 2017 Elsevier Ltd. All rights reserved.



mailto:suchow@berkeley.edu
http://dx.doi.org/10.1016/j.tics.2017.04.005

TICS 1676 No. of Pages 9

equivalence between evolutionary dynamics and Bayesian inference enables reinterpretation of
evolutionary processes as algorithms for inductive inference. From this vantage point,
evolutionary theory is promoted from a metaphor for the inner workings of the mind to a
mathematical framework that can explain the dynamics of diverse cognitive processes. After
two case studies showing that evolutionary processes over mental representations have
interpretations as algorithms for Bayesian inference, we close with thoughts on what is gained,
and what stands to be gained, by keeping evolution in mind.

Evolutionary Dynamics and Bayesian Inference

On the surface, evolution and learning have much in common — both can be viewed as
optimization processes, finding the best among a set of alternatives. (Strictly speaking,
optimization applies only to evolution with haploid organisms, a single locus, and no mutation.
Under these circumstances, the replicator dynamics implements gradient descent on the mean
fitness of the population.) Mathematical biologists have sometimes pointed out that the
theoretical tools they use to study evolution are just as relevant to other adaptive processes.
For instance, what came to be known as the Price equation, a mathematical description of how
a trait’s frequency changes in response to selective pressures, was noted as having possible
application to students improving their mathematical abilities through instruction [17]. However,
there are also deeper correspondences, and one of the deepest is the link between evolutionary
dynamics and Bayesian inference.

Astandard mathematicalmodelofevolutioninvolves ‘replicatordynamics’. Inthesimplestversionof
thismodel, generationsareassumedtobediscrete,andeachagent producesanumber of offspring
proportional to its fitness. Letting p,“) denote the proportion of a population corresponding to
variant / at time t and f; denote the fithess of variant /, the replicator dynamics assumes

ot -1 [
where f is the mean fithess across all variants, f = ij/-p;t). This equation indicates that the
proportion of the population of type i will increase if type i has greater than average fitness.

Equation 1 should look familiar to those who craft models of human cognition. In fact, it takes
exactly the same form as Bayes’ rule, which stipulates how a rational agent should update his or
her beliefs in light of evidence. If each hypothesis f; is assigned a prior probability p(h;) before
observing data d, then the posterior probability p(h;|d) is given by

plnfd) = PP _ 2
> p()e(n)

which has the same interpretation as Equation 1: hypothesis i will increase in probability if the

probability of the data d under that hypothesis is greater than the average over all hypotheses. If

we take proportions of a population of hypotheses to correspond to degrees of belief in those

hypotheses pft) = p(h;) and take the probability of observed data under each hypothesis to

correspond to its fitness f; = p(d|h;), Equations 1 and 2 are isomorphic [18,19].

Given the link between the replicator dynamics and Bayesian inference, it is sensible to ask
whether proposals concerning evolutionary processes as cognitive processes might be rein-
terpreted in terms of algorithms for Bayesian inference. We explore the consequences of this
idea in two case studies of human cognitive processes: memory and creativity. In the first, a
population of memories evolves as they are maintained in working memory. In the second, a
population of ideas evolves in a creative process.
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Glossary

Algorithm: a procedure for carrying
out a computation.

Bayesian inference: a normative
framework for updating beliefs in light
of evidence through application of
Bayes’ rule.

Evolutionary dynamics: a
mathematical framework for
describing a reproducing population
subject to selection, mutation, and
drift.

Forgetting function: a function that
tracks the amount of information
remembered as it falls over time after
initial exposure to an event or
experience.

Wright-Fisher model: a neutral
model from population genetics with
a fixed population size. In each
successive generation, individuals
copy a randomly selected member of
the previous generation.
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Memory

Working memory is a core component of our cognitive architecture: it holds and manipulates
information in mind, providing a workspace for thought [20]. The capacity of working memory is
limited to only a handful of objects or events. Across individuals, working-memory capacity is
positively correlated with general intelligence, suggesting a key role in higher-order cognition
[21]. Recent research has provided detailed insight into the dynamics of working memory, and
suggested that they have parallels with evolutionary dynamics.

Memory Maintenance As an Evolutionary Process

Since the 1950s, theories of working memory have posited a population of discrete, flexible
representations that support ongoing maintenance of information held in mind. These represen-
tations go by many names — stimulus samples [22], chunks [23], slots [24], and resources [25],
among others [26] - and typically take form as alimited commaodity, at least partially shared across
memories, whose availability affects our ability to maintain information in working memory. The
commaodity may be instantiated as (for example) cycles of a time-based refreshing process [27] or
populations of neurons in prefrontal cortex representing ‘token’ encodings of visual events [28].

The dynamics of this commodity — this population of representations in the mind — can be
considered in the context of evolutionary theory. In the evolutionary interpretation, selection is a
cognitive control process that redirects maintenance, giving preference to some information
over others, perhaps in accordance with the demands of the task or the salience of the held
information [29,30]. Drift is a process of forgetting by which memories degrade, perhaps due to
time or interference, losing fidelity or becoming misattributed. In addition, mutation alters the
contents of memory, causing what we remember to become unhinged from our experiences.

Considering working memory in this evolutionary framework can account for diverse effects
related to the capacity of working memory and the dynamics of forgetting [30,31]. For example,
neutral drift or a stochastic pure-death process (Figure 1; also see Box 1) may explain why the
fidelity of working memory varies stochastically across objects [32]. Also, a generalization of the
Moran process outfitted with a stability threshold can capture the full time-course of the
forgetting functions of working memory, including exponential-like decay, the dependence
of decay rate on the number of objects, and the curious fact that the asymptote is one object
[30]. However, the relationship between evolutionary dynamics and Bayesian inference outlined
above offers a different way to understand the success of these models.
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Figure 1. Simple Evolutionary Models from Population Genetics. Instantiations of the pure death process (A), the
Moran process (B), and the Wright-Fisher process (C). In all three, the population begins with a population of nine
individuals, evenly distributed across three types (red, purple, and orange). An unfilled circle marks a death event and a +
marks a birth (copying) event.

Adapted from [55].
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Box 1. Evolution in Discrete, Finite Populations

The pure death process, the Moran process, and the Wright—Fisher process are three models of evolution in discrete,
finite populations.

Pure Death. The pure death process is a simple model of population change that provides a starting point for thinking
about evolutionary processes. Starting with a set of N individuals, at each time step one individual is selected at random
and removed from the population. Eventually, none remain.

Moran. The Moran process is a model of evolution that was originally used to describe the dynamics of allele frequencies
[63] and which has more recently been leveraged to describe evolutionary processes in diverse settings, including
frequency-dependent selection, emergence of cooperative behavior, and cultural evolution of language [54,55]. The
Moran process begins with a population of N individuals. At each time step, one individual is replaced by a copy of
another individual, selected at random. The long-term dynamics of the Moran process dictate that, in the limit, the entire
population reaches fixation, converging to one type.

Wright-Fisher. The Wright-Fisher model is similar to the Moran process, except that it has nonoverlapping generations.
Like the Moran process, it begins with a population of N individuals. However, in the Wright-Fisher model, at each time
step the entire population is replaced by a new generation of N individuals. Critically, each member of the new
generation inherits from a randomly selected member of the previous generation.

The Wright-Fisher Model As a Particle Filter

An interesting relationship can be found between the Wright-Fisher model of evolutionary
dynamics in a finite population (Box 1) and the particle filter, a sample-based Monte Carlo
inference algorithm that estimates a posterior probability distribution through maintenance of a
discrete sample-based approximation that is updated over time [33]. The particle filter starts
with a set of particles (hypotheses) sampled from the prior distribution p(h;) . (There is the
possibility that the set of particles will contain several copies of a hypothesis if it has a high prior
probability, or if there are few hypotheses or many particles.) Upon observing data, each
particle (hypothesis) is assigned a weight proportional to the probability of observing the data
given that hypothesis, p(d|h;) . These weights are then normalized (i.e., divided by their sum,
so that the weights across all hypotheses sums to 1) and used to sample a new set of
particles. Each particle in the new set is sampled from the previous set in proportion to their
normalized weights. The new hypotheses will reflect both the original proportions of hypothe-
ses and the information contained in the data. This can be seen as being formally equivalent to
the Wright—Fisher model with selection, where the ‘fitness’ of each hypothesis corresponds to
the probability of the observed data under that hypothesis, as in the general correspondence
between the replicator dynamics and Bayesian inference given above.

The Wright-Fisher model and the Moran model, two ways of simulating finite-population
evolutionary dynamics (see Box 1), yield similar conclusions in a wide range of situations
[34]. This suggests that we might be able to reinterpret the success of the Moran process as a
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Figure 2. Particle Filters and the Forgetting Functions of Visual Memory. Each subpanel shows a forgetting function, which tracks the number of remembered
objects as it falls over time, for a particular load of k objects. The data are fit with a particle filter model adapted to have a threshold number of particles, below which the

memory is inaccessible (48 particles, 200 time steps). Data originally from [55].
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model of human memory in terms of the solution to a probability estimation problem. Particle
filters have already been proposed as models of cognitive processes in other settings [35,36].

The estimation problem faced by a memory maintenance system is that of representing the
environment in a way that is useful for the planning and execution of future action. In the
approximate solution to this problem offered by the particle filter, that representation is a set of
particles (i.e., sampled hypotheses). Consider, for example, a single trial of a typical memory
experiment where a participant is asked to hold in mind a complex shape that is briefly
presented. Initially, because direct exposure to the object provides strong evidence in favor
of the hypothesis that the object has a particular shape, the filter quickly encodes that
hypothesis into memory. However, as time progresses beyond the initial exposure, the
circumstances rapidly change because the input ceases to provide new relevant data. In
the absence of evidence, the process becomes one of neutral drift.

These features of the particle filter can explain several important features of the encoding and
forgetting functions of visual memory within a unified framework. Because particles are
initialized with hypotheses sampled from the prior, encoding of information into memory is
not instantaneous and will depend on the strength of evidence present in the input, explaining
graded benefits of increased encoding time on the fidelity of memory representations [37].
Assuming a fixed information capacity of a particle, increasing the number of objects will
decrease the fidelity of any one object’s representation across the particles, explaining the
fragility and quick decay at higher loads (Figure 2). Most of all, framing the process of memory
maintenance as a particle filter makes it possible to break out of the trial-based nature of typical
laboratory experiments and to consider use of the working memory system in our everyday life,
with its stream of experiences embedded in continuous time.

Creativity
The capacity to generate new and useful ideas is one of the defining characteristics of human
cognition. It has also been frequently described using ideas borrowed from biological evolution.

The Evolution of Thoughts

One of the first examples of an analogy between creativity and evolution comes from William
James in his 1880 lecture ‘Great Men and Their Environment’, where he outlines a correspon-
dence between ‘zoological evolution’ in nature and the evolution of ideas during creative
synthesis:

‘...throughout the whole extent of those mental departments which are highest, which are
most characteristically human ... new conceptions, emotions, and active tendencies which
evolve are originally produced in the shape of random images, fancies, accidental out-births
of spontaneous variation in the functional activity of the excessively instable human brain,
which the outer environment simply confirms or refutes, adopts or rejects, preserves or
destroys — selects, in short, just as it selects morphological and social variations due to
molecular accidents of an analogous sort.” [38]

The view of creative ideation as an evolutionary process defined over a population of ideas was
expressed more precisely in the blind variation and selective retention theory (BVSR) [39]. The
theory characterizes human creative activity using a two-stage model in which ideational
variants were first generated at random (blind variation) and then culled according to their
utility within a given domain (selective retention). The utility of this perspective was seen to be
primarily metaphysical: just as natural selection did for biological evolution, the BVSR model
offered an explanation for a seemingly purposive process without appealing to dubious
teleological arguments. Indeed, these ideas were later developed into a theory of sociocultural
evolution and evolutionary epistemology that sought to apply the principles of blind variation
and selective retention to the philosophy of science [39,40].
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The evolutionary perspective has enjoyed significant attention within the creativity literature,
most notably in work formalizing the mechanisms implicated at each stage of the BVSR model
and quantitatively evaluating the model’s predictions [41,42]. This updated theory offers an
extended review of the notion of ‘blindness’ during generation, ultimately leaving room for
ideational variants to be generated along a blind-sighted continuum, with both internal and
external selective mechanisms occurring sequentially and in parallel according to the nature of
the domain and task [41,42]. These clarifications and additions have permitted the BVSR’s
predictions to be tested empirically against collections of historical and behavioral data,
providing support for many of its claims. As a result, the evolutionary perspective has been
described as possessing ‘a rigor that is unsurpassed by any other major theory of creativity’
[43], and has been successfully used to model scientific and artistic career trajectories [44], the
acquisition and development of creative expertise [45], and ratios of creative success to total
output [46], amongst other phenomena.

Blind Variation and Selective Retention As Stochastic Search

Inthe analogy to evolution made in the case of human creativity, the notion of a population ofideas
competing against one another is replaced with an account of how individual ideas are generated
and retained. Consideration of equivalencies between evolutionary processes and Bayesian
inference suggests a different way to think about how this blind variation and selective retention
process can be applied in the context of creativity: as elements of a stochastic search algorithm.

Markov chain Monte Carlo (MCMC) algorithms are one of the most commonly used methods
for stochastic search. Algorithms in this family excel at exploring state spaces that would
otherwise be intractable to systematic investigation [47]. The algorithms achieve this feat by
offering a method for defining a stochastic process (a Markov chain) over a state space that can
be used to generate samples in proportion to a desired probability distribution. This distribution
can subsequently be approximated using a finite number of samples from this process (the
Monte Carlo principle). This technique has enjoyed success in cognitive modeling as a bridge
between optimal but computationally intractable Bayesian accounts of cognition and psycho-
logically plausible approximations that retain many of the same performance guarantees [35].

The evolutionary account of creativity suggests a two-stage search model incorporating both
generation and selection components. The Metropolis—-Hastings algorithm [48,49] is an MCMC
search algorithm that exhibits such a structure: at each step of the search it proposes a new
state based on the value of its current state, and then makes a decision about whether to retain
this proposed state based on the utility ratio of the proposal to its current state (Box 2). Critically,
the proposal stage proceeds in a way that is independent of the utility of the possibilities, and
the retention stage uses the utility function to select proposals in proportion to their overall
quality. In the context of creativity, the states over which the search operates might correspond
to solutions to a difficult problem or ideas for a creative work. Initial support for such an account
of creative search is provided by work inspired by BVSR theory, in which a Metropolis—Hastings
process on a semantic network is used to simulate creative search during problem solving [50]
(Figure 3). When the model is evaluated against human responses on the remote associates
test (RAT) [51], a verbal test of creativity which required participants to come up with a word
which related three seemingly independent cues to one another (e.g., generating the response
‘party’ to relate the cues ‘surprise’, ‘line’, and ‘birthday’), the stochastic search model repro-
duced many of the patterns present in the intermediate responses generated by humans as
they worked on the RAT questions. These include significant correlations between human and
model accuracies, local dependencies between responses, and undirected search trajectories
through the state space that did not appear to differentially ‘hone in’ on the correct answer [50].
Most importantly, these results serve to highlight the link between creative ideation, evolution-
ary processes in the mind, and (approximate) Bayesian inference.
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Box 2. The Metropolis—-Hastings Algorithm

The Metropolis—-Hastings (M—H) algorithm [48,49] is a general-purpose algorithm for defining a Markov chain on a state
space whose stationary distribution corresponds to an arbitrary distribution of interest. Given a (potentially infinite) state
space {1,...,M} and a distribution over proposed transitions conditioned on the currently occupied state, Q(x’, x),
the M-H algorithm proposes a tentative state to transition to, x' from the proposal density Q(x’,x) defined by its
currently occupied state, x. To determine whether to transition its current state to the proposed value, the M-H
algorithm uses an acceptance procedure:

a_ P (x)Q(x,X")

e

where P*(-) is a distribution of interest, evaluated up to a multiplicative constant. If a > 1, the new state is accepted
automatically. Otherwise, the new state is accepted with probability a. It can be shown that for any proposal
distribution Q such that Q(x’; x) > 0Vx, X/, as t — oo, the probability distribution over states, P(x), approaches %
where Z is the normalizing constant.
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Figure 3. Creativity As Stochastic Search in a Semantic Network. A sample trajectory is illustrated from the
Metropolis-Hastings model of creative search on the RAT problem ‘Falling Actor Dust’. The model begins by selecting a
single problem cue (actor) and initializing its search at the corresponding node in a semantic network. The search proceeds
iteratively by proposing a node to transition to from the set of neighbors for the current state, and either accepting or
rejecting the transition in proportion to their relative utility (operationalized as the inverse of the average distance between a
proposal and the three problem cues in the semantic network). If a proposal is rejected, the model generates a new
proposal and retries until a transition is accepted. In the diagram above, rejected proposals are shown with dashed lines,
while accepted transitions are shown as solid lines. The model moves through the network in this fashion until it arrives at
the node corresponding to the correct answer to the question — in this case, ‘star’.

Concluding Remarks and Future Perspectives

As illustrated by the account of creativity offered by William James, the suggestion of parallels
between evolution and cognition date back aimost as far as the idea of natural selection itself. In
the years since, both evolutionary biology and cognitive science have made progress in
formalizing their respective objects of study. As a consequence, it has become possible to
create models of human cognition based on mathematical models from evolutionary biology
and consider how those models are related to other frameworks for understanding human
cognition. In particular, there is a deep connection between evolutionary dynamics and
Bayesian inference that can be used to join these two perspectives.

Rather than suggesting that one perspective should simply be reduced to the other, we see
value in being able to go back and forth between these two ways of thinking about cognitive
processes. Theoretical evolutionary biology and Bayesian statistics are two quite distinct
literatures, offering complementary insights about the mind. For example, the Price equation
[17] is a fundamental observation about how the relationship between the traits of organisms
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Outstanding Questions

Can modelling of other cognitive pro-
cesses exploit equivalencies between
evolutionary processes and algorithms
for Bayesian inference?

Can social processes such as collec-
tive sense-making, cumulative culture,
transactive memory, and contagion be
approached in the same way?

Can concepts from evolutionary theory
such as population size, mutation rate,
and selection temperature be mapped
to elements of approximate algorithms
for resource-rational inference?

What can knowledge about the neural
implementation of Bayesian computa-
tion tell us about the relevant time-
scales for evolutionary processes in
the mind?

Trends in Cognitive Sciences, Month Year, Vol. xx, No. yy

7




TICS 1676 No. of Pages 9

and their fitness influences the progress of selection. Translated into a cognitive context, it
indicates how the relationship between properties of hypotheses and the probability of
observing data under those hypotheses will govern the degree to which beliefs about those
properties will change. Biologists use the Price equation to prove abstract results about the
nature of evolution, suggesting that a similar approach could be applied to understanding
learning (and Bayesian inference).

Links between evolution and human cognition also have the potential to produce insights that
run in the other direction — from our understanding of individual human minds to theories of how
species and societies can adapt. One of the deepest questions in the study of cultural evolution
is how societies can accumulate knowledge over time. This is fundamentally a question of how
a society can exhibit a property that we see displayed by individuals — learning through
experience. The link between evolutionary dynamics and Bayesian inference suggests a
way to approach this question (for an example of recent work taking this approach, see [52]).

When an evolutionary process is considered as a candidate model for a cognitive process by
way of the evolutionary process’s connection to Bayesian computation, the evolutionary
process is best viewed as an algorithm for approximate inference in the context of a particular
computational problem faced by the mind. For example, in the case of memory, the compu-
tational goal is to continually infer the state of the world in the absence of new input, and the
solution takes the form of a particle filter algorithm where particles are units of a memory-
supporting commodity. In the case of creativity, the computational goal is to generate useful
solutions to a problem or valuable ideas and the solution takes the form of a stochastic search
algorithm over a semantic network. The evolutionary processes are algorithms.

When will an evolutionary process be a reasonable candidate model of a given cognitive
process? Two criteria seem key. First, because the tightest links between evolutionary and
cognitive processes have been found through equivalences between evolutionary processes
and algorithms for inference, cognitive processes well described as inferential processes are
more likely to find an evolutionary counterpart. Second, it helps if existing models or concep-
tualization of the cognitive process include at least some of the key components of an
evolutionary process — a population of replicators, selection, random drift, mutation, etc.

In this Opinion, we suggest that the formal equivalence between certain simple evolutionary
processes and algorithms for Bayesian inference is relevant to understanding human cognitive
processes such as learning, memory, and creativity. In doing so, we hope to encourage new
work that keeps evolution in mind: finding equivalencies between particular evolutionary
processes and algorithms for inference drawn from statistics and machine leamning; creating
process models of other cognitive capacities using the framework of evolutionary dynamics;
and exploring the rich array of phenomena studied in modern evolutionary biology and what
connection, if any, they may have to the similarly rich array of processes studied in the cognitive
sciences.
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