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a b s t r a c t

Previous work on iterated learning, a standard language learning paradigm where a sequence of learners
learns a language from a previous learner, has found that if learners use a form of Bayesian inference,
then the distribution of languages in a population will come to reflect the prior distribution assumed by
the learners (Griffiths and Kalish 2007). We expand these results to allow for more complex population
structures, and demonstrate that for learners on undirected graphs the distribution of languages will
also reflect the prior distribution. We then use techniques borrowed from statistical physics to obtain
deeper insight into language evolution, finding that although population structure will not influence the
probability that an individual speaks a given language, it will influence how likely neighbors are to speak
the same language. These analyses lift a restrictive assumption of iterated learning, and suggest that
experimental and mathematical findings using iterated learning may apply to a wider range of settings.

© 2016 Elsevier Inc. All rights reserved.
Language changes; English today is slightly different from a
hundred years ago, and radically different from a thousand years
ago. An important cause of language change is the variation that
occurs during the language learning process (see, e.g., DeGraff,
2001). One of the major tools that has been used to study the
impact of language learning on the structure of languages is the
iterated learning model (Kirby, 2001). In iterated learning, a set
of simulated learners each learn language from the utterances
of other learners and then produce utterances themselves that
are provided to other learners. Repeating this process, the
learners reshape the language. Simple learning algorithms can
lead to significant changes, increasing the regularity of languages
(Brighton, 2002; Kirby, 2001; Smith, Kirby, & Brighton, 2003) and
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expressing or even emphasizing the biases of learners (Griffiths &
Kalish, 2007; Kirby, Dowman, & Griffiths, 2007).

The simplest iterated learning model – the case that submits
most easily tomathematical analysis – is the transmission chain, in
which each learner learns from the previous learner and generates
utterances for the next. However, more complex models are
possible. Exploring these models is important in two ways. First, it
lets us establish the generality of results obtained for transmission
chains, which represent the majority of previous analyses. Second,
it allows us to explore phenomena that only emerge in more
complex models. For example, speakers of the same language tend
to cluster together spatially — something that is hard to explain
using transmission chains.

In this paper, we explore how more complex population
structures influence the outcome of iterated learning. We begin
by introducing a formal framework for analyzing iterated learning
in which learning is modeled as Bayesian inference. We then
build on previous analyses of transmission chains by Griffiths and
Kalish (2007), showing that similar analytic results can be obtained
with populations where the relationships between learners can
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be expressed as a heterogeneous graph. We verify these results
using simulations with two-dimensional lattices, small-world
graphs (Watts & Strogatz, 1998) and scale-free graphs (Barabasi
& Albert, 1999), population structures that mimic some of the
properties of real populations. These simulations show that
neighbors in a graph are more likely to share the same language
than is expected by chance. To quantify this effect we utilize
techniques developed for voter models (Castellano, 2012; Sood,
Antal, & Redner, 2008) and show that although the graphical
structure of a population does not change how likely an individual
learner speaks a certain language, it does impact how likely it is
that neighbors will be able to communicate.

1. Iterated Bayesian learning

In the simplest iterated learningmodel, a population is assumed
to be a series of parallel transmission chains. At each step in the
chain, a learner learns a language from a single teacher and then
transmits a language to a single student. The dynamics of this
process depend on the learning algorithm that is used by the
students.

One way to specify a learning algorithm is to assume that
learners use a form of Bayesian inference (Griffiths & Kalish, 2007).
Adopting a language then becomes a statistical inference task
where the inductive biases of learners – those factors other than
the data that lead them to favor one language over another – are
expressed as a prior probability distribution over languages. Under
this assumption, learners choose to speak a language, L, based
on hearing linguistic data, D. We assume that the probability of
speaking L is the same as the posterior probability of the language,
calculated using Bayes’ rule,

p(L|D) =
p(D|L)p(L)

p(D)
, (1)

where p(L) is the prior probability of the language, which may not
be equal across languages.

Griffiths and Kalish (2007) showed that for transmission chains
the probability that a learner speaks a language, L, after a large
number of generations is the same as the prior probability of the
language, p(L). Formally, the stationary distribution of the resulting
stochastic process is the prior distribution over languages. This
result is interesting because it suggests that the variation observed
in modern languages can be directly connected to the inductive
biases of human language learners. Kirby et al. (2007) expanded
on this result, showing that variations on Bayesian learning in
which learners are more likely to choose languages with higher
posterior probabilities can exaggerate the impact of the prior on
the stationary distribution, allowing weak inductive biases to have
a strong effect on the structure of the languages produced by
iterated learning.

However, this simplest iterated learning model may not accu-
rately represent real populations. To explore the generality of these
results, Smith (2009) relaxed the assumption of learning from a
single teacher and examined populations of learnerswho learned a
single language from multiple teachers. Using simulations, Smith
showed that the language such learners acquire is highly depen-
dent on the initial distribution of languages in a population, and
more weakly influenced by prior probabilities. Burkett and Grif-
fiths (2010) pursued these results further, and found that if learn-
ers could learn multiple languages from multiple teachers, the
distribution of languages in the population over a number of gener-
ations will still mirror the prior probability of each language. Con-
vergence to a stable equilibrium that is not the prior distribution
can also occur if fitness is added into the model (Kalish, 2007).

In the remainder of the paper, we relax a different assumption
and consider learners in a structured population who each learn
from a single teacher. The goal of this model is to examinewhether
the structure of a population will affect the long-term distribution
of languages in the population.

2. Introducing population structure

A natural way to capture population structure in cultural
evolution is to analyze evolutionary dynamics on graphs, where
each node is an agent and edges indicate connections between
those agents (e.g., Nowak, 2006). In this section, we analyze
iterated Bayesian learning on heterogeneous graphs.

2.1. Bayesian language learning on graphs

Represent a population as a set of N learners arranged on
a graph. Each learner speaks one of two languages, L0 or L1.
Population dynamics are included using a birth–death process: at
each time step, a random learner is replaced by a novice learner,
the novice learner randomly selects a neighbor, hears an utterance
from them, and selects a language based on that utterance. This
birth–death process is an abstraction of the biological and cultural
processes that shape when and how a learner learns a new
language. Although a ‘‘birth’’may represent an actual birth of a new
learner, it might also represent an individual who has chosen to
change the language they speak.

Under a Bayesian learning algorithm, learners adopt a language
based on a linguistic utterance, D, by selecting a language
proportional to the posterior probability of each language,

p(Li|D) =
p(D|Li)p(Li)

p(D|L0)p(L0) + p(D|L1)p(L1)
. (2)

We assume that each utterance is consistent with either L0 or
L1, and when asked to speak, a teacher correctly produces an
utterance consistent with their language with probability 1 − ϵ,
where ϵ represents an error rate in production. If an utterance,
D, is consistent with a language, Li, then p(d|Li) = 1 − ϵ. Innate
linguistic preferences are included through the prior probability of
each language, p(Li).

2.2. Stationary distribution of languages

In this section,wedemonstrate thatwhen learning froma single
teacher on heterogeneous graphs, the probability that a specific
learner speaks a language after many generations is the same as
the prior probability of that language. This extends the result that
Griffiths and Kalish (2007) proved for transmission chains to more
complex population structures.

An intuition for this result can be obtained by re-imagining
the transmission of languages across a graph as a set of chains.
In each update, we consider updating the value of a single
learner by having that learner learn from a teacher. If we look
back in time, that teacher learned their language from someone
else, so consider the teacher’s teacher. We can then construct a
chain of teacher–learner pairs from any individual back to one
of the individuals in the initial population. This chain is akin to
a transmission chain. The probability that the learner at the end
of a chain speaks a language should thus converge to the prior
distribution as the chain gets longer.

To make this intuition more precise, we introduce the notion
of a Markov process: a process where the probability of future
states depends only on the current state. The birth–death process
we describe above is a Markov process: each update only depends
on the current languages that the learners have adopted, not on
the languages spoken by deceased learners. This process is also
ergodic: because of the noise in transmission, each learner has a
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small chance of adopting a different language than their teacher,
preventing a certain assignment of languages to learners in the
population becoming fixed.

The Markov property allows us to examine the long-term dy-
namics of language change in this population. Given a population
ofN learners, let the binary vector s represent that state of learners
in the population (the language that each learner speaks). Because
this process is Markov, the probability of a future state st just de-
pends on the current state, st−1. This process allows us to define a
probability distribution on future outcomes, pt , where pt(s) is the
probability of s after t time steps. Because this process is ergodic,
there exists a stationary distribution, p, over future states defined
by pt(s) → p(s) as t → ∞. To find the probability that a specific
learner, i, adopts a language, L1 (or alternatively L0) wemarginalize
over the language spoken by i in state s by the likelihood of s in the
stationary distribution,

vi =


s

δL1(si)p(s). (3)

δL1(si) is an indicator function that is 1 if si speaks language L1 and
0 otherwise.

To find this value, we note that the stationary distribution is
characterized by its invariance to future time steps; if pt(s) =

p(s) then pt+1(s) = p(s). Since v depends only on p, then v is
also invariant to future time steps. Given the transition dynamics
described above, we find that vi = p(L1) for all i satisfies this
requirement, and is unique in this regard. The probability that a
given learner speaks L1 at the stationary distribution is the same
as the prior distribution. A complete proof is provided in the
Supplementary Materials (see Appendix A).

2.3. Simulations on heterogeneous graphs

In order to verify the analytic predictions above, we used
agent-based simulations to find the stationary distribution of a
population on a series of graphs. We found that, on average, the
population converged to the prior distribution on each graph.

In each simulation, learners in the population had the option
of learning two languages. Each population consisted of 100
learners on an undirected graph. We considered learners living on
a complete, small world1 and scale free graphs,2 as well as two-
dimensional lattices. These graphs were chosen as types of graphs
that are thought to mimic some of the properties of real world
populations (Barabasi & Albert, 1999; Watts & Strogatz, 1998).

At the beginning of each simulation, learners randomly adopted
one of the two languages with equal probability. At each time step,
a learner was randomly selected from the population and replaced
by a new learner. The new learner randomly sampled a linguistic
utterance from one of its neighbors and adopted a language using
the Bayesian learning algorithm described above. The production
error rate was ϵ = 0.05. Each generation consisted of 100 time
steps, enough so that on average each individual is replaced once.

To examine how the prior distribution changed the long
term behavior of the population, we varied the prior on L1 in
0.1 increments between 0.5 and 0.9. We found that in most
simulations the population reached its stationary distribution in
50 generations. We averaged the proportion of learners who
spoke each language after 50 generations across 1000 simulations.
The results are given in Fig. 1(a). We found that the stationary
distribution for each social structure was the same as the prior
distribution.

1 Created through reattachment of a neighbor graph (for more details see Watts
& Strogatz, 1998). The reattachment probability was 0.1.
2 Created through preferential attachment (see Barabasi & Albert, 1999).
These simulations verify our analytic predictions. However, we
also found that for non-complete graphs neighbors were more
likely to share a language than predicted by chance. To visual-
ize this phenomenon we ran a series of simulations on a two-
dimensional lattice. Fig. 1(b–d) shows a sample result, showing
that the population contained a number of large clusters of
language speakers where most of the learners spoke the same
language. This suggests that even though the population may not
converge on a single language, the distribution of languages in the
population is not random; individuals are able to speak to their
neighbors.

3. Capturing correlations among learners

One of the criticisms leveled at iterated learning models is that
instead of ending up in a heterogeneous mix of languages at the
stationary distribution, real-world populations tend to converge
on a single language. Fig. 1(b–d) shows that iterated learning on
a lattice converged to a mixture of languages characterized by
local clusters where neighbors generally spoke the same language.
This finding suggests that introducing population structure might
let locally homogeneous populations of learners arise, while still
allowing for an overall heterogeneous distribution of languages in
the population. This would reduce concerns that at the stationary
distribution learnersmay not be able to speakwith their neighbors,
and thereby potentially increasing the value that language gives
the learner (Smith & Kirby, 2008). To investigate this behavior
further we borrow tools from statistical physics developed to
analyze a general class of dynamic models, which our Bayesian
model is an specific example of, voter models.

3.1. Voter models

Votermodels are a general framework for analyzing howbeliefs
diffuse across socially structured populations (Castellano, 2012),
and are akin toMoranmodels, anothermodel that has been used to
capture the dynamics of language learners in spatially structured
populations (Kalish, 2007). In the standard voter model, the nodes
of a graph represent learners. Each learner adopts one of two
states. At each time step, a single learner is randomly selected
and replaced by a novice learner. The novice learner adopts a
state based on the states of its neighbors. Two common learning
strategies are selecting the state of the majority, or copying the
state of a random neighbor. This process is directly analogous to
themodelwepresented in the previous section,where the learners
use a Bayesian learning rule to adopt a new state. Previous analyses
of voter models have demonstrated that population structure can
have a substantial effect on both the convergence probabilities and
convergence rates (Castellano, 2012; Sood et al., 2008).

While most work on voter models has concentrated on de-
terministic learning rules (e.g. copy a neighbor without er-
ror), Schweitzer and Behera (2009) analyzed a probabilistic model.
They showed that in thismodel, two beliefs could co-exist in a pop-
ulation. Given two states, 0 and 1, the expected rate of change of
the proportion of learners with state 1 at time t is given by the dif-
ferential equation

d
dt

x1(t) =


σ

[w(1|0, σ )x0,σ (t) − w(0|1, σ )x1,σ (t)], (4)

where σ denotes the neighborhood of a point, w(i|1 − i, σ )
the probability of an node in state 1 − i to adopt state i if the
neighborhood of the node is σ , and xi,σ the frequency of nodes in
state i with neighborhood σ .
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Fig. 1. Dynamics of learners on heterogeneous graphs. (a) The stationary distribution for the population as a function of learners’ prior beliefs. (b–d) A sample distribution
of learners simulated on a 50 by 50 lattice where the prior for L1 was set to (a) 0.5, (b) 0.6, and (c) 0.8.
The iterated learningmodel analyzed in the previous section is a
special case of this probabilistic voter model. In this case the states
of learners represent the languages that those learners adopt, and
the update rule w(i|1 − i, σ ) can be computed using Eq. (2). Our
assumptions about the language learning process also lead us to
two equivalences: since the probability of adopting a language
does not depend on what state the node was in before, and since
each learner must adopt a language, w(i|i − 1, σ ) = w(i|σ), and
w(i|σ) + w(1 − i|σ) = 1.

3.2. Learning on heterogeneous graphs

In this section we analyze Eq. (4) when learners learn from a
single teacher. For convenience, let 1 − a denote the probability
that a learner adopts language L0 after learning from a teacher
who speaks L0. Let 1 − b denote the probability that a learner
adopts language L1 after learning from a teacher who speaks L1.
a and b act as error rates in language transmission. Values for
a and b corresponding to Bayesian learning are provided in the
Supplementary Materials (see Appendix A).

Applying this to Eq. (4) gives that the rate of change of L1
learners is

d
dt

x = a
M

m=1

m
k=0

xσm
k
(t) + (1 − a − b)

M
m=1

m
k=0

k
m

xσm
k
(t) − x, (5)

where σm
k denotes all nodes with m neighbors (up to a maximum

degree of M), k of which have adopted language L1. After
simplifying, the summation is

d
dt

x = a + (1 − a − b)E[f ] − x, (6)

where E[f ] is the frequency that nodes in a neighborhood have
state 1. E[f ] must be calculated on a graph by graph basis. For
degree-regular graphs, in which every node has the same number
of edges, E[f ] = x. This means that for degree-regular graphs the
stationary distribution of x is the same as what we found in the
previous section,

x =
a

a + b
. (7)

We demonstrate through simulations that this is also the station-
ary distribution for non-degree regular graphs like small world or
scale free graphs.

In the Supplementary Materials, we demonstrate that in our
formulation of Bayesian learners a

a+b = p(L1). More generally
however, for a given transmission process, the stationary distribu-
tion of languages will simply depend on the relative error rates, a
and b (see Appendix A). Other models of language transmission,
potentially including other Bayesian models of language learning,
may produce different error rates for a and b and alter the sta-
tionary distribution of languages in the population. This replicates
the result obtained using aMarkov Process, demonstrating that the
prior distribution of the languages will be the stationary distribu-
tion of languages in the population. Using the tools developed here,
we can push further on this result and examine what the average
number of pairs of same-language speaking nodes are.
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Fig. 2. Predictions from the voter model compared with simulations on different
types of graphs. (a) Frequency of learners in the population speaking L1 as a function
of the number of generations. (b) Proportion of learner pairs that speak the same
language.

3.3. Predicted correlations between pairs of learners

Wedefine x1,1 to be the frequency of edges where both learners
speak language L1, and develop a differential equation to express
how the frequency of pairs changes over time. If the graph is
degree-regular, with each node having degreem, this equation is

d
dt

x1,1 = (1 − x)
m

k=0

kw(1|0, σm
k )xσm

k ,0

− x
m

k=0

kw(0|1, σm
k )xσm

k ,1. (8)

By adding in the assumption that learners randomly copy a single
teacher, and accurately copy state 0with probability 1−a and state
1 with probability 1 − b, the differential equation can be reduced
to

d
dt

x1,1 = m(ax − x1,1) +
1 − a − b

k
E[f 2], (9)

where E[f 2] is the squared expectation of the frequency of
neighbors that have state 1. As with E[f ], this quantity depends on
the actual structure of the graph.

We can estimate x1,1 by using a pair approximation. This
approximation places a lower bound on the probability that
two nodes share the same state, by assuming that the states of
neighbors are uncorrelated. In this approximation we assume that
if a central node speaks L1, then the probability that a given
neighbor speaks L1 can be expressed by x1,1

x , and the probability
that the neighbor speaks L0 can be expressed by x1,0

x . We track the
pair probabilities using x1,1, x1,0, x0,1, and x0,0.3 Using this estimate
we can solve Eq. (8) to get the equilibrium value of x1,1 on degree
regular graphs. The details of the solution are provided in the
Supplementary Materials (see Appendix A). Let d = 1 − a − b.
If d is close to 1, we find that we can approximate the equilibrium
value of the correlation between nodes by

x1,1 ≈ x2 +
m

m − 1
x(1 − x)

2d
−

1
2
x(1 − x). (10)

From this equation, we have that the average degree of a node
affects the correlation between nodes; on graphs where nodes
have an average low degree, nodes will be more likely to share
the same state. This effect disappears as the number of neighbors
grows. For certain graphical structures, particularly those with a
high clustering coefficient, a measure of how likely two neighbors
of a central node are to themselves be neighbors, the correlation
between nodes may be higher.

To test the predictionsmade by the votermodel, we ran a series
of simulations on small-world, scale-free and complete graphs.
Across all simulations the prior distribution was set to p(L1) =

.6. Otherwise the simulations were identical to those presented
earlier. In Fig. 2(a) we show the rate at which learners converge
to the prior distribution. In Fig. 2(b), we show the equilibrium
value of x1,1 + x0,0 for small-world, scale-free, and complete
graphs. We found that neighbors in small-world networks and
two-dimensional lattices, two networks with high clustering
coefficients, a feature of real world networks (Newman & Park,
2003), were more likely to share languages than predicted by
the model. This suggests that even though the graphical structure
does not influence the stationary distribution of languages in a
population as a whole, it may influence the local distribution of
languages, leading to clusters of homogeneous language speakers.
Depending on the relative error rates in learning and the prior
distribution of languages these clustersmay not be stable, andmay
change over time as learners in them adopt new languages. At any
time point however, we should expect that learners aremore likely
to be able to speak with their neighbors than by chance alone.

4. Conclusion

In this paper we examined how population structure can
interact with a learner’s inductive biases to influence which
languages are produced by iterated learning. We proved that,
under our model, the structure of the population plays little role
in determining whether a given learner speaks a certain language.
By introducing the voter model we were also able to examine how
the number of neighbors who shared the same language changed
over time, a factor that is important in assessing the value of
language (Smith & Kirby, 2008). We found that the structure of
the population greatly impacted how likely pairs of learners were
able to communicate with each other. These results extend the
results of Griffiths and Kalish (2007) to heterogeneous graphs.
More generally, they support the generalizability of theoretical
and empirical results produced by iterated learning beyond
transmission chains. Based onour findings, a reasonable conjecture
is that these results should hold in most, if not all, cases where
learners learn from a single teacher.

3 For the full technical details of pair approximation see (e.g. Schweitzer &Behera,
2009).
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Furtherwork needs to be done to explore howpopulation struc-
ture may impact learners who learn frommultiple teachers. Smith
(2009) showed that in freely mixing populations, the distribution
of learners in the population would not converge to the prior dis-
tribution. That result was replicated for a small number of popula-
tion structures by Stadler (2009). In contrast, Burkett and Griffiths
(2010) found that learners who learned multiple languages from
multiple teachers also converged to the prior distribution on lan-
guages. Past work has shown that for even fairly simple learning
rules, the dynamics of learners learning from multiple teachers in
structured populations may be far more complex (e.g. Castellano,
Muñoz, & Pastor-Satorras, 2009).

The results in this paper shine some light on how simple
iterated learning models can be extended to real populations.
In particular they provide a way to reconcile the predictions of
iterated learning models with the geographic distribution of real
languages (e.g. Smith & Kirby, 2008). In our simulations we found
that there exist local clusters of speakers who share a language.
This provides a way to interpret the stationary distribution of
iterated learning models: we expect some proportion of speakers
to learn each language, but we do not expect those speakers
to be scattered randomly throughout the population. Rather,
speakers are preferentially assorted with other speakers of the
same language, potentially creating local clusters of homogeneous
language learners.Wehope that further analyses of this kind canbe
used to bridge the gap betweenmodelswe can analyze andmodels
that actually capture the dynamics of language evolution in real
populations.

Appendix A. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jmp.2016.10.008.
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