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Abstract

The explosion of data generated during human interactions online presents an opportunity

for psychologists to evaluate cognitive models outside the confines of the laboratory.

Moreover, the size of these online datasets can allow researchers to construct far richer

models than would be feasible with smaller in-lab behavioral data. In the current paper we

illustrate this potential by evaluating three popular psychological models of generalization

on two web-scale online datasets typically used to build automated recommendation

systems. We show that each psychological model can be e�ciently implemented at scale

and in certain cases can capture trends in human judgments which standard

recommendation systems from machine learning miss. We use these results to illustrate the

opportunity internet-scale datasets o�er to psychologists, as well as to underscore the

importance of using insights from cognitive modeling to supplement the standard

predictive-analytic approach taken by many existing machine learning approaches.
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Recommendation as Generalization: Using Big Data to Evaluate Cognitive Models

Every day, petabytes of behavioral data are generated as people go about their daily lives

online. Although many of these computer-mediated interactions di�er from the

tightly-controlled in-laboratory experiments common in psychology research, they o�er

insight into many of the same cognitive phenomena, often at a scale rarely seen in the

behavioral sciences. This new source of high throughput behavioral data, already the

lifeblood of machine learning and AI researchers, o�ers psychologists a similar opportunity

to evaluate cognitive models in the wild, at scale, with minimal investment (Jones, 2016;

Paxton & Gri�ths, 2017). Moreover, the dearth of cognitive modeling techniques in

current approaches to analyzing these behavioral datasets is an opportunity for

psychologists to re-establish the value of modeling minds as mediating influences on

behavior in a domain that has become a part of computer science by default.

Product recommendation is a notable example of an applied task which can serve as

a test-bed for cognitive models. Not only has recommendation-guided search become near

ubiquitous in our daily interactions online, but it is also a prominent example of a

fundamentally psychological task which is now solved by machine learning systems.

Indeed, automated approaches to recommendation have become one of the most common

examples of the ways in which machine learning systems augment everyday human

decision-making. Despite this enormous influence, however, studies from the

recommendation system literature indicate that people are sensitive to the di�erences

between human and automated recommendations, often favoring recommendations from

other people. In two well-known papers, R. R. Sinha and Swearingen (2001) and S. Sinha,

Rashmi, and Sinha (2001) report that on average people tend to prefer recommendations

made by friends to those generated by automated recommendation systems. This general

preference for human recommendations is not limited to close associates, either: Krishnan,

Narayanashetty, Nathan, Davies, and Konstan (2008) report that even complete strangers

are capable of outperforming automated recommendation systems for atypical user profiles.
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Human users appear particularly sensitive to algorithmic intervention in subjective

domains: Logg (2017) reports that participants preferred recommendations of human

experts to those of algorithms for subjective decisions, regardless of the domain. This

finding is corroborated by Yeomans, Shah, Mullainathan, and Kleinberg (2017) who found

that although automated recommendation systems often show superior empirical

performance on a variety of information retrieval metrics, the majority of human users still

prefer jokes recommended by human experts. In light of such findings, a natural question is

whether we can identify systematic ways in which human and algorithmic

recommendations deviate from one another, and if so, whether models designed to

explicitly account for human cognition can help bridge this gap.

In the current paper, we underscore the potential the online recommendation

datasets have as cognitive test-beds highlighting the relationship between recommendation

and the psychological problem of generalization. We draw on this relationship to evaluate a

version of the well-known Bayesian model of generalization (Shepard, 1987; Tenenbaum &

Gri�ths, 2001) along with two other classic psychological models on hundreds of thousands

of human judgments from two di�erent recommendation domains. We illustrate the value

that cognitive modeling techniques play in this new world by comparing the performance of

these psychological models with that of widely-used machine learning approaches to

recommendation. The results provide a test of the cognitive models at an unprecedented

scale and level of realism, as well as a demonstration of how psychological theory can

inform the interpretation of large behavioral data sets.

The plan for the rest of the paper is as follows. We begin by introducing the

problem of recommendation, linking it to generalization, and providing a brief overview of

modern approaches to recommendation in computer science and generalization in

psychology. We outline a playlist completion task that will be the focus of the paper and

describe two experiments designed to collect fine-grained human recommendation

judgments. We then examine the performance of two representative collaborative filtering
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models and two cognitive models on this task, evaluated using metrics from both cognitive

and computer science, across two separate recommendation domains. We conclude by

discussing the implications of our findings.

Collaborative Filtering Methods 

Memory-Based  
Approaches 

Model-Based  
Approaches 

Item-Based 
CF  

User-Based 
CF  

Clustering 
Models 

Dimensionality  
Reduction 

Models 

Bayesian 
Approaches 

NMF 
CF Models 

SVD 
CF Models 

PCA 
CF Models 

Figure 1 . An overview of the relationships between popular approaches to collaborative

filtering, emphasizing those approaches evaluated in the current paper. Notably, hybrid

models like content-based CF approaches are not pictured.

Recommendation as a psychological problem

In the current paper we argue that the problem of recommendation in machine

learning bears a formal resemblance to the classic problem of generalization in psychology.

Below we o�er an overview of psychological models of generalization and contrast these

with models of recommendation from the machine learning literature.
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Recommendation

At their core, recommendation problems involve identifying items that a user is

likely to find valuable based on their selection history. Examples include proposing songs

to listen to given someone’s listening history, suggesting movies to watch given a user’s

movie ratings, and recommending items to buy based on browsing history. In each case, a

recommender is shown a trace, T , sampled from a hypothetical set of all items a user likes,

U . On the basis of the items in the trace, a recommender must try to select additional

items that are likely to also be in the set U ≠ T .

Collaborative filtering (CF) approaches constitute the state-of-the-art in machine

learning for generating automated recommendations. Algorithms in this class use data

from many users to collaboratively generate predictions (filter) for items that may be of

interest to a new user. Much of CF’s success stems comes from its generality - it requires

only a database of users and their item preferences to work - in contrast to content-based

approaches which rely on task-specific user or item features.

CF algorithms can be organized by the amount of latent structure they assume in

the user-item database (Figure 1). Memory-based CF algorithms operate directly on the

user-item database, making minimal assumptions about the structure of the data (Su &

Khoshgoftaar, 2009). Algorithms in this class predict preferences for new items based on

the preferences of similar users or items, resulting in recommendation behavior that relies

on only a subset of the dataset. In contrast, model-based CF algorithms use the user-item

database to train an intermediate, lower-dimensional data model. Using this model to

generate recommendations often results in more global recommendation decisions (Bell &

Koren, 2007). Popular data modeling approaches include sequential decision models,

dimensionality-reduction/latent factor models, and Bayesian networks (see Su &

Khoshgoftaar (2009) for an overview).
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Figure 2 . Web interface for the recommendation task using the Art of the Mix (AOTM)

data.

Recommendation as generalization

The recommendation problem above bears a direct relationship to the psychological

problem of generalization in word learning (Xu & Tenenbaum, 2007), categorization

(Nosofsky, 1986), and human similarity judgments (Tenenbaum & Gri�ths, 2001). In the

current paper, we explore this connection, arguing that human generalization constitutes a

unifying psychological framework for automated recommendation.

In a traditional generalization task, individuals are shown examples of an unknown

concept (e.g., a “fep”) and are asked to identify other items that are likely to be in this

conceptual category. Formally, a person observes a set of items x = {x1, . . . , xn}, associated

with a new category C and must compute P (y œ C | x), the probability that a new item y
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belongs to C given the items in x. Good generalizations correspond to selecting those items

y that maximize P (y œ C | x). Di�erent cognitive models propose di�erent approaches to

representing items and combining them to produce generalization probabilities.

The correspondence between recommendation and concept generalization is

straightforward: the recommendation trace, T , corresponds to the collection of category

exemplars x, while the user’s preference set U becomes the set of all items in the category,

C. The generalization probability for a new item y can be treated as a recommendation

score, where higher values suggest a greater probability that a user will respond positively

to that item.1 This correspondence is so great that in certain cases identical models have

been proposed under di�erent names across the generalization and recommendation

literatures.2

Despite these similarities, however, there have not been any direct comparisons

between CF and generalization models. In the next section we outline an experiment

designed to evaluate models from each approach on a common task.

Experiment 1: Recommendation task

In our first experiment we compare popular psychological and machine learning

models of recommendation with human recommendation profiles. This task bears a direct

resemblance to many common machine recommendation tasks, including the

recommendation of new items based on browsing history (e.g., Spotify’s “Discover

Weekly”), and the construction of new playlists using seeds (e.g., Apple Music’s Genius

recommendations). Rather than directly collect human recommendation profiles to train

our models, we use two existing web recommendation datasets: Art of the Mix (AOTM;

1
One notable di�erence is that rather than comparing a new item against items previously seen by the

same user (as in a generalization study), recommendation problems compare the item to all items in a

database, regardless of whether the user has encountered them.

2
Item-based collaborative filtering and the exemplar theory of categorization (Medin & Scha�er, 1978;

Nosofsky, 1986) are a notable example. See Appendix for further details.
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McFee & Lanckriet, 2012), a dataset of music playlists, and Goodbooks10k (Zajac, 2017), a

dataset of reading lists.

Method

Stimuli.

AOTM dataset. Playlists for the music version of the recommendation task were

sourced from the Art of the Mix (AOTM) dataset (McFee & Lanckriet, 2012). This dataset

consisted of approximately 100K user-generated playlists over 120K unique songs,

represented as a sparse, binary co-occurrence matrix X where rows corresponded to

playlists and columns correspond to songs. We also allowed for the augmentation of this

original set of playlist hypotheses, H, with 10 additional “genre playlists”, where a genre

playlist corresponded to the set of all songs in X associated with a given music genre, as

identified via the Discogs API.3 These additional playlists served as a “genre-bias” on the

model predictions, encouraging the model to generalize along genre-boundaries. In many

cases, inclusion of these playlists improved model fit to human data, reflecting the

recommendation task’s emphasis on literary / musical genre. In the experiments below, we

treated inclusion of these genre playlists in the hypothesis space as a hyperparameter.

Goodbooks dataset. Reading lists4 for the literature version of the

recommendation task were sourced from the goodbooks-10k dataset (Zajac, 2017). This

dataset consisted of approximately 50K user ratings for 10K of the most popular books on

the Goodbooks website.5 To make this consistent with the AOTM data, we converted the

dataset into a binary co-occurrence matrix. Just as with the AOTM data, we allowed for

the original user playlists, H, to be augmented with 28 additional “genre playlists”, where

a genre playlist corresponded to the set of all books in X associated with a given literary

3 https://www.discogs.com/developers

4
In the rest of the paper we refer to these as “playlists“ to maintain consistency with the music data.

5 https://www.goodbooks.com
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genre, identified via user tags on the Goodbooks website.

Participants. A total of 47 (AOTM) and 40 (Goodbooks) participants on

Amazon Mechanical Turk passed a pretest to assess their familiarity with the music or

book genres used in the experiment, resulting in an average of 117 unique responses per

cue condition. This provided enough statistical power to identify a product-moment

correlation of R = 0.35 between model and human item recommendation probabilities at

– = 0.05 at 1 ≠ — Ø 0.8. Participants were paid $1.25 for their participation. All data was

collected with the consent of the participants and approval from the UC Berkeley

Committee for Protection of Human Subjects.

Design and procedure. We formulated our experiment as a playlist completion

task: on each trial, a participant was shown a selection of one to five items from an

unobserved playlist, and asked to select additional items that they thought would be in the

playlist that generated these observations. Participants made their selections from a fixed

library, which was constructed so as to always include seven “in playlist” items (i.e., items

which were not in the selections shown to the participant but which were in the unseen

playlist that generated them), seven “in genre” items (i.e., items which were not in the

unseen playlist but which were in the same musical/literary genre), and seven

“out-of-genre” items (i.e., items which were neither in the unobserved playlist nor its

musical genre) (Figure 2). Participants were notified they would receive a bonus of $0.01

for every two correct selections they made on each trial to encourage them to select items

judiciously. To reduce demand characteristics, we only reported a participant’s accrued

bonus after they submitted their selections, making it di�cult for them to know which

selections led to their overall earnings. To ensure that participants were familiar with the

items in a playlist, we used performance on the genre pretest to determine which playlists

to display to which participants.
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Model specifications

We evaluate the performance of three computational models of recommendation

against human judgments on the above playlist completion task. Each model was selected

to provide representative coverage of the diversity of recommendation approaches across

cognitive and computer science. Parameterizations for each model were arrived at

independently via random search (Bayesian generalization model) or grid search (all other

models) using the online recommendation data, with behavior from the playlist completion

task serving as the test set. For the best performing parameter settings for each model, see

Appendix B.

Item-based CF model (Exemplar model). Item-based collaborative filtering,

a classic memory-based approach, is one of the first techniques developed for generating

recommendations at scale. Given a user’s listening/reading history, the item-based CF

model selects the k most similar items (“nearest neighbors”) in the catalogue for each item

in the user’s history, ignoring any item that the user has already engaged with. For each

item in this set, the recommendation score is defined as the average similarity between it

and each of the items in the user’s history.

Matrix factorization CF model. In addition to a memory-based CF algorithm,

we also evaluated a popular model-based method: a dimensionality reduction approach

based on nonnegative matrix-factorization (NMF) (Lee & Seung, 2001).6 This approach

represents the playlist-item database as a binary matrix, X œ Zn◊m
2 where entry xi,j

indicates whether item j appeared in playlist i, and identifies non-negative low rank

factors, W œ Rn◊k
+ and H œ Rk◊m

+ whose product approximates X. NMF identifies the

factor matrices W and H via coordinate descent on the least-squares objective
1
2 ||X ≠ WH||

2
Fro where || · ||Fro indicates the Frobenius norm. Once W and H have been

6
NMF was employed due to its success in previous recommendation settings (e.g., Zhang, Wang, Ford, &

Makedon, 2006), and its relationship to feature-based object representations in psychology (Lee & Seung,

1999).
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identified, completions for playlist i, ri œ Rj, are generated via

ri = xiH€H (1)

where xi œ Zm
2 is the binary row vector corresponding to the current preferences for playlist

i in the database. Matrix factorization approaches like NMF are one of the most commonly

used versions of model-based CF, in part due to their ease of implementation and

scalability (Su & Khoshgoftaar, 2009).

Bayesian model of generalization. One of the most prominent models of

generalization is Shepard’s (1987) Bayesian formulation, which was demonstrated by

Tenenbaum and Gri�ths (2001) to encompass other popular set-theoretic approaches to

similarity (e.g., Tversky, 1977). This approach defines a hypothesis space of potential

concepts, H, a prior probability distribution over hypotheses, P (h), and a likelihood

function, P (x|h), giving the probability of observation x under hypothesis h. The

probability of generalizing concept C to include item y, P (y œ C|x) is then given by

Bayesian model averaging:

P (y œ C|x) =
ÿ

hœH

P (y œ C|h, x)P (h|x) (2)

In the context of the playlist completion task, hypotheses, h, correspond to playlists,

observations, x, correspond to the items in the partially observed playlist, and a concept,

C, corresponds to the full playlist we wish to reproduce.

In the experiments below, we use a binarized NMF approximation of the the original

playlist-item matrix as the hypothesis space for the Bayesian model.7 We define a

hierarchical prior over the hypotheses in this space, drawing inspiration from Tenenbaum

(1999). A fraction 0 Æ 1 ≠ ⁄g Æ 1 of the total probability was allocated to the original

7
Using the non-negative factorization of the playlist-item matrix ensured that the Bayesian model

operated on a similar feature space to the NMF CF approach. As a result, it is reasonable to consider the

Bayesian model a hybrid approach which adds psychological bias to the representations derived via NMF.
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playlists in H as a group, leaving ⁄g to be distributed across the genre playlists. The ⁄g

probability was distributed uniformly across the genre hypotheses, while the 1 ≠ ⁄g

probability was distributed over the original playlists as a function of the playlist size

according to an Erlang distribution, p(h) Ã (|h|/‡2) exp{≠|h|/‡}.

The likelihood of a set of observed items x under a playlist h was defined as a

mixture distribution with weight ‘ balancing the influence of the size of the playlist under

consideration with a popularity term measuring how many times each item in the playlist

occurred across the entire hypothesis space. Specifically, the likelihood was computed as

P (x|h) = (1 ≠ ‘)Psize + ‘Ppopularity (3)

where

Psize =

Y
__]

__[

1/|h|
|x| : x ™ h

0 : otherwise
(4)

and

Ppopularity Ã
ÿ

iœh

|{hÕ
œ H : i œ hÕ

}|. (5)

In the above likelihood, the size term mirrored the form used in Tenenbaum (1999), while

the popularity score was added to reflect the observation that human media consumption

habits are particularly sensitive to social influences, most notably popularity (Salganik,

Dodds, & Watts, 2006).

Prototype model. Finally, we evaluated an implementation of the prototype

theory of categorization (Reed, 1972). We define a prototypical playlist, xproto, to be a set

containing those items that are present in the majority of playlists that contain at least one

item from the set of observations, x. Following Abbott, Austerweil, and Gri�ths (2012),

the generalization score for a new item y is defined to be

Pscore(y|x) = exp {≠⁄p dist(y, xproto)} (6)

where dist(·, ·) is the Hamming distance between the vector representations of its

arguments and ⁄p is a free parameter.



RECOMMENDATION AS GENERALIZATION 14

Item-Based
CF Model

NMF CF
Model

Prototype
Model

Generalization
Model

Humans
0.0

0.2

0.4

0.6

0.8

F
1

S
co

re
Dataset Ground Truth

Item-Based
CF Model

NMF CF
Model

Prototype
Model

Generalization
Model

0.0

0.1

0.2

0.3

0.4

0.5

F
1

S
co

re

Human Ground Truth

Art of the Mix data

Goodbooks data

Figure 3 . Model F1 scores on the playlist completion task. A. Playlist ground-truth F1

scores. This metric reflects the ability of a model to accurately identify all positive

examples of items in the unobserved full playlist, and none of the items outside of it. B.

Human ground-truth F1 scores. This metric reflects the model’s ability to select the same

items as humans do on each playlist problem without selecting anything else.

Results

We evaluated each model using three di�erent evaluation criteria: F1 score using the fully

observed playlist data as ground-truth, F1 score using human selections as ground truth,

and model correlations with human selection frequencies for in-playlist, in-genre, and

out-of-genre items as a function of the number of seed items displayed. The F1 score is a

common measure of performance, calculated as the harmonic mean of recall (the ratio of

hits to hits plus misses) and precision (the ratio of hits to hits plus false alarms)

(Rijsbergen, 1979). Each version we report captures a di�erent aspect of the

recommendation performance: the playlist ground-truth F1 score is one of the standard

evaluation criteria within machine learning and information retrieval, while human ground

truth F1 scores are closer to model evaluation metrics used in psychology. The correlation

in recommendation probabilities provides a finer-grained analysis of a model’s capacity to

reproduce human recommendation profiles, as it captures trends in generalization

performance as a function of item category, rather than simply in aggregate.

Parameters for each model were fit separately to each evaluation metric via grid
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search on the online datasets, using the Mechanical Turk data for evaluation. The best

parameter values for each model on each metric are listed in Appendix B.

When evaluated against the playlist ground truths from both the AOTM and

Goodbooks dataset, we found that the models varied widely in their capacity to accurately

predict items in the test set. Indeed, both the item-based CF model and Bayesian

generalization model showed strong generalization performance on the held-out playlists

(Figure 3, left panel). In contrast, the matrix factorization model struggled to accurately

predict the held-out data, likely due to its reliance on an intermediate data model (the

latent factor matrices, W and H) during prediction rather than on the dataset itself. This

too is likely to explain the poor human performance on this metric, as the psychological

representations of the items under consideration are unlikely to correspond directly with

any specific playlists in the current datasets.

Table 1

Model correlations with the per-problem human ground-truth F1 scores in Experiment 1.

Dataset Item-based CF Model NMF CF Model Prototype Model Generalization Model

AOTM R = 0.06, p = 0.473 R = 0.13, p = 0.119 R = ≠0.25, p = 0.002 R = 0.42, p < 0.001

Goodbooks R = 0.37, p < 0.001 R = 0.45, p < 0.001 R = 0.23, p = 0.008 R = 0.43, p < 0.001

In addition to calculating the average F1 across all problems as in Figure 3, we also

evaluated each model’s correlation with the Mechanical Turker’s average playlist

ground-truth F1 scores on a per-problem basis. This metric reflects a more nuanced

evaluation of each model’s fit to the Mechanical Turk data, ensuring that it can reproduce

similar recommendation tendencies on each recommendation problem rather than simply in

aggregate. On this metric, we found that the Bayesian generalization model achieved the

best fit on the AOTM data and was marginally outperformed by the NMF CF model on

the Goodbooks dataset (Table 1). Interestingly, the prototype model showed a significant

negative correlation on this metric for the AOTM data, but a positive correlation on the
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Goodbooks dataset. These results are consistent with the prototype model’s low aggregate

fit to human raters (as seen in Figure 3), and suggest that it tends to achieve better

predictions on AOTM problems that humans have more di�culty with (and vice versa).

This e�ect may be related to the di�erence in size between AOTM and Goodbooks

playlists. In the AOTM case, shorter average playlists produce sparser prototypes, which in

turn result in more items receiving the same or similar recommendation scores for a given

problem. This more di�use recommendation profile (see the Prototype model’s near-equal

generalization probabilities for in-playlist and in-genre items in Figure 4) will potentially

prove advantageous on ambiguous problems (e.g., when there are fewer seeds) that prove

di�cult for humans, but not be able to capitalize on the added information present when

the number of seeds increases, and human generalizations improve.

A similar picture emerged when we evaluated the models in terms of their ability to

reproduce human ratings. On both datasets, there existed significant di�erences between

models (F (4, 1182) = 160.2, p < 0.001). In each case the Bayesian and item-based CF

models were indistinguishable under Tukey’s HSD (AOTM: M = 0.53, SD = 0.24 and

M = 0.53, SD = 0.24, respectively; Goodbooks: M = 0.50, SD = 0.23 and M = 0.52,

SD = 0.23), while both the matrix factorization and prototype models showed significantly

lower performance (AOTM: M = 0.44, SD = 0.22 and M = 0.39, SD = 0.22; Goodbooks:

M = 0.48, SD = 0.23 and M = 0.28, SD = 0.21). On both datasets, the prototype model

was significantly worse than any of the other models considered.

Table 2

Overall model correlation with average human recommendation probabilities, stratified by

recommendation level and number of seeds.

Dataset Item-based CF Model NMF CF Model Prototype Model Generalization Model

AOTM R = 0.93, p < 0.001 R = 0.94, p < 0.001 R = 0.94, p < 0.001 R = 0.99, p < 0.001

Goodbooks R = 0.97, p < 0.001 R = 0.98, p < 0.001 R = 0.63, p = 0.012 R = 0.99, p < 0.001
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Figure 4 . Human and model recommendation probabilities as a function of item category

and number of seeds for (a) Art of the Mix and (b) Goodbooks datasets.

To further explore the capacity of each model to fit human judgments, we looked at

model correlations with the average human recommendation probability, stratified by

recommendation level and the number of seeds (Figure 4). Drawing inspiration from Xu

and Tenenbaum (2007), recommendations were broken down into in-playlist, in-genre, and

out-of-genre items, allowing us to calculate the model’s tendency to generalize at each

level. Whereas the human ground-truth F1 scores indicated that both the item-based CF

and Bayesian generalization models were approximately equally capable of reproducing

human selection profiles, this finer-grained analysis revealed that the relatively coarse

human-ground truth F1 metric masks significant di�erences in the two models’

generalization behavior. Qualitatively, the item-based CF model was heavily biased

towards selecting in-playlist items at the expense of generalizing beyond the specific

playlists in the playlist-item database. The prototype model was slightly less strict in its

generalizations, producing comparable amounts of in playlist and in-genre

recommendations, but refusing to generalize out of genre. This behavior put both models

at odds with humans, who exhibited the characteristic exponential decay in generalization

tendency from in-playlist to in-genre to out-of-genre. Importantly, the Bayesian

generalization model did the best at reproducing this tendency, while the matrix
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factorization model showed less distinction overall between the di�erent recommendation

levels. Quantitatively, the Bayesian generalization model’s recommendation gradients

showed the highest correlation with the human selection data (Table 2).

Finally, in order to account for the di�erent number of parameters across the

di�erent models under consideration, we computed the Bayesian information criterion

(BIC; Schwarz et al., 1978) for each model and performed a model comparison. The

probability of an item xi under the model with parameters ◊ was computed from the

model’s score, si, using the Luce choice rule (Luce, 1959):

p(xi|◊) := e—si

q
j ”=i e—sj

where — is a tuning parameter that was optimized independently for each model.

On the AOTM dataset, the di�erence in BIC between the Bayesian model (the best

performing) and the NMF model (the second best performing model) was 929.08.

According to the scale proposed in Kass and Raftery (1995), this di�erence constitutes

“very strong” evidence in favor of the Bayesian generalization model. In contrast, on the

Goodbooks dataset the di�erence in BIC between the NMF model and the Bayesian model

was 64.89, providing very strong evidence in favor of the NMF model.

The Bayesian model’s inability to outperform the NMF model on the Goodbooks

data when controlling for di�erences in the number of model parameters may reflect a

fundamental di�erence in user intent between the two datasets. Whereas the Art of the

Mix website encouraged users to submit themed playlists and curated mixtapes, each

playlist in the Goodbooks dataset reflected the entire set of books a user rated. In many

cases this included books the user did not enjoy alongside books they did, along with

mixtures of multiple genres/interests within the same reading list. One consequence of

more heterogenous playlists in the Goodbooks dataset is that a psychological model of

generalization will be less equipped to model the data e�ectively.



RECOMMENDATION AS GENERALIZATION 19

Figure 5 . Web interface for the aggregate version of the rating task, displaying a trial on

the Goodbooks data.

Experiment 2: Rating model recommendations

The results of Experiment 1 indicate that a model from psychology – the Bayesian model

of generalization – is capable of performing as well or better than several collaborative

filtering approaches on a playlist completion task. Further, both the Bayesian and matrix

factorization models showed strong fits to observed human recommendation behavior on

the AOTM and Goodbooks datasets. A natural next question is whether people – potential

users of these recommendation systems – are also sensitive to the di�erences between

models.
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Figure 6 . Web interface for the individual version of the rating task, displaying a trial on

the Goodbooks data.
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Methods

Participants. Participants were recruited via Amazon Mechanical Turk and paid

$2.50 in the individual rating condition and $1.00 in the aggregate rating condition. After

dropping participants that did not pass the genre pretest or otherwise failed to complete

the experiment there were a total of n = 124 subjects remaining in the AOTM aggregate

condition, n = 79 subjects in the Goodbooks aggregate condition, n = 64 subjects in the

AOTM individual rating condition, and n = 46 subjects in the Goodbooks individual

rating condition. As above, all data was collected with the consent of the participants and

approval from the UC Berkeley Committee for Protection of Human Subjects.

Stimuli. To generate new stimuli for our second experiment we created “hybrid

playlists” consisting of an equal mixture of items from two randomly selected playlists from

the AOTM or Goodbooks data in Experiment 1. We used these hybrid playlists within the

recommendation framework from Experiment 1 to generate the top recommendations from

each modeling approach.

Participants in the aggregate rating condition were shown the top 10

recommendations of each model (each grouped and labeled as the recommendations of a

di�erent “friend”) and a “user reading list“ consisting of two, four, or six items from the

hybrid playlist. The model recommendations were filtered to remove any items and artists

already appearing in the user reading list (Figure 5).

Participants in the individual rating condition were shown a “reading list“ consisting

of two, four, or six items from a hybrid playlist, along with the shu�ed union of the top 10

recommendations for each model on that playlist. The model recommendations were

filtered to remove any items and artists appearing in the reading list (Figure 6).

Design and procedure. On each trial we provided participants with two, four,

or six seed items from a hybrid playlist and asked them to rate the quality of the

recommendations produced by each model either in aggregate or individually. Participants

in the aggregate rating condition were told that an anonymous user had recently listened
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to / read the seed items and asked four of their friends to provide recommendations for

things to listen to / read next. Participants were then asked to select which friend they

thought provided the best recommendations. Participants completed a maximum of 12

rating trials contingent on their performance on a genre pretest.

Participants in the individual rating condition were asked to rate each one of the

items in the recommendation list in terms of how likely each was to be in the playlist

containing the observed seed items. Participants completed a maximum of 12 rating trials

contingent on their performance on a genre pretest.

Results

In the individual version of the rating task, we found that participants significantly

favored songs recommended by the Bayesian generalization model in comparison to any of

the other models evaluated for the AOTM data (F (3, 8396) = 113.397, p < 0.001; Figure 7,

right panel). There were no significant interactions between the recommendation rank and

the model. On the Goodbooks data, however, we found that participants rated the

individual recommendations of the item-based CF model significantly higher on average

than the prototype, Bayesian, or matrix CF models (F (3, 3534) = 216.08, p < 0.001).

Moreover, there was no significant di�erence in average individual ratings for the matrix

CF and the Bayesian model on the Goodbooks data.

In the aggregate version of the rating task, a more robust trend emerged (Figure 7,

left panel). Here, the collective recommendations of the Bayesian model of generalization

were selected as best more often than the recommendations of any of the other models

across both datasets (AOTM: ‰2(3, N = 684) = 126.28, p < 0.001; Goodbooks:

‰2(3, N = 387) = 111.45, p < 0.001). Indeed, in line with findings that users are both

sensitive to di�erences between human and model recommendations and favor those

recommendations made by humans, our results suggest that users may also favor

recommendations from models which reproduce larger proportions of human
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recommendation behavior.

Discussion

Online behavioral datasets o�er an opportunity to evaluate theories of cognition at a

scale rarely seen in traditional laboratory studies. To demonstrate this potential, we began

by evaluating representative models from both the cognitive modeling and machine learning

literatures on two massive online datasets. Using data from user interactions online we

were able to capture people’s spontaneous behavior spanning over a decade. Notably, both

datasets had more than 100,000 unique observations and could be leveraged without

incurring any experimentation cost–properties rarely seen in traditional laboratory studies.

To illustrate how web datasets can come to bear on psychological questions we

outlined the correspondence between many popular online activities and more fundamental

psychological processes. As a concrete example, we drew a connection between

recommendation and generalization, and showed that we could evaluate psychological

models of word-learning and concept acquisition alongside machine learning approaches on

web recommendation datasets. We found that a psychological model, the Bayesian model

of generalization, performed competitively in comparison to standard collaborative filtering

approaches across a collection of psychological and information-retrieval metrics, even

out-performing other models on a music recommendation dataset. Moreover, we found that

human experts significantly favored the recommendations from the Bayesian model over

other recommendation approaches, underscoring the value of taking the psychological

dimension of common machine learning tasks seriously.

The opportunity to reformulate standard machine learning applications in terms of

human cognition is an exciting avenue for researchers in both machine learning and

psychology. As we have argued above, many online tasks engage directly with fundamental

cognitive abilities. Traditionally the data generated during these online interactions have

been handled by engineers and computer scientists, but our results indicate the value that
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can come from modeling the psychological aspects of these tasks directly. Just as the

cognitive revolution in psychology demonstrated the necessity of incorporating mental

states as mediating factors in behavior, so too can computational models of cognition

influence current approaches to predicting behavior by explicitly engaging with the

psychological origins of the data (Gri�ths, 2015; Jones, 2016; Paxton & Gri�ths, 2017).

Our results o�er several takeaways for psychologists. Most generally, we draw

attention to the link between fundamental cognitive phenomena studied by behavioral

scientists and common online activities. This link opens the door for researchers to use

existing online behavioral datasets to advance theories of cognition. We demonstrate one

such example by fitting several well-known models from the generalization literature on

two online recommendation datasets, allowing us to evaluate their performance in a noisier,

more naturalistic setting. Additionally, by comparing the performance of the cognitive

models to popular approaches from machine learning, we demonstrate how the abundance

of online behavioral data can open the door for greater correspondence between

theory-based and data-driven modeling approaches. Finally, by showing that a cognitive

model can perform as well or better than two popular approaches from the machine

learning literature, we illustrate the potential for psychologists to make inroads on tasks

that have traditionally been studied under the umbrella of computer science.

Context of Research. The current work arose out of our discussions of the psychological

aspects of many standard tasks in machine learning and information retrieval. Each of the

authors has been involved in e�orts to expand and scale cognitive modeling techniques to

internet-scale data. In the future we hope to find new opportunities for researchers in

academia and industry to collaborate on curating behavioral datasets that can be used to

answer fundamental questions about the mind.
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Appendix A: Correspondence between exemplar model and item-based CF

For a user Uk, an item-based collaborative filtering model defines score for a new item y to

be

score(y | Uk) Ã
ÿ

jœSy

Rk(j) · sim(y, j) (7)

where Rk(j) is user k’s rating on item j, sim(y, j) is the similarity between item y and item

j, and Sy is the set of IDs for the m most similar items to item y that have also been rated

by user Uk.

The generalized context model (GCM; Nosofsky, 1986), a popular formulation of the

exemplar model, defines the probability that a participant will associate a new item y with

category Ck after observing X = {e1, . . . eN} positive exemplars as

P (y œ Ck|X) Ã bk

Q

a
Nÿ

j=1
Wk,j · sim(y, j)

R

b
“

(8)

where, Wj,k is the memory strength between category Ck and exemplar j, bk > 0 is a

response bias for category k, sim(y, j) is the similarity between y and exemplar j, and

“ > 0 is a response scaling parameter.

The correspondence between models is straightforward: concepts, C, and memory

strengths, W , in the GCM correspond to users, U , and ratings, R, in item-based CF, while

the additional parameters bk and “ in the GCM are set to 1 for item-based CF. If we

assume that a user has rated all N in the database and m = N , the item-based CF model

is equivalent to the GCM.
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Appendix B: Model parameters

All model parameters were arrived at independently via random search (Bayesian

generalization model) or grid search (all other models) against the stated objective. The

parameter grids / grid ranges for each model were:

Bayesian Generalization Model:

‡ ≥ Uniform(1, 1000)

‘ ≥ Uniform(0, 0.5)

⁄g ≥ Uniform(0, 0.7)

NMF number of latent factors: [2, 5, 10, 25, 50, 100, 150, 200, 250]

NMF Binarization threshold ≥ LogUniform(0, 0.1)

Item-based CF Model:

Number of nearest neighbors: [100, 200, 400, 600, 800, 1000, All]

Include genre playlists: [True, False]

Prototype Model:

⁄p: [1, 10, 15, 25, 50, 75, 100]

Include genre playlists: [True, False]

NMF CF Model:

Number of latent factors: [2, 5, 10, 25, 50, 100, 150, 200, 250]

Include genre playlists: [True, False]

AOTM Dataset. For human ground-truth F1 correlations (Table 1), the best

performance for the item-based CF model was found by averaging over all items in the
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hypothesis space without including genre playlists. The best matrix factorization CF

model used 5 latent factors and did not include genre playlists. The best Bayesian

generalization model used ‡ = 861, ‘ = 0.2899158150127287, and

⁄g = 0.3275493039121179, operating on the NMF-transformed feature space with 50 latent

factors and a binarization threshold of 9.680514395205266 ◊ 10≠5. The best prototype

model used ⁄p = 15 and did not include genre playlists.

For human recommendation probability correlations (Table 2), the best performance

for the item-based CF model was found by averaging over the top 100 most similar items,

including genre playlists in the overall hypothesis space. The best matrix factorization CF

model used 10 latent factors and included genre playlists. The best Bayesian generalization

model used ‡ = 309, ‘ = 0.2553692504953126, and ⁄g = 0.44184686010121443, operating

on the NMF-transformed feature space with 100 latent factors and a binarization threshold

of 1 ◊ 10≠12. The best prototype model used ⁄p = 15 and included genre playlists in the

hypothesis space.

Goodbooks Dataset. For human ground-truth F1 correlations (Table 1), the best

performance for the item-based CF model was found by averaging over the top 100 most

similar items and including genre playlists in the hypothesis space. The best matrix

factorization CF model used 200 latent factors and also included genre playlists. The best

Bayesian generalization model used ‡ = 576, ‘ = 0.3548974755071327, and

⁄g = 0.6492645958009968, operating on the NMF-transformed feature space with ten latent

factors and no binarization. The best prototype model used ⁄p = 1 and included genre

playlists in the hypothesis space.

For human recommendation probability correlations (Table 2), the best performance

for the item-based CF model was found by averaging over the top 100 most similar items,

including genre playlists in the overall hypothesis space. The best matrix factorization CF

model used 250 latent factors and did not include genre playlists. The best Bayesian

generalization model used ‡ = 983, ‘ = 0.323958956941186, and ⁄g = 0.1423489705102997,
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operating on the NMF-transformed feature space with 20 latent factors and a binarization

threshold of 0.04270991600377532. The best prototype model used ⁄p = 1 and included

genre playlists.
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