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OBJECT REPRESENTATIONS AS FIXED POINTS:
TRAINING ITERATIVE INFERENCE ALGORITHMS WITH
IMPLICIT DIFFERENTIATION

Michael Chang, Sergey Levine & Thomas L. Griffiths ∗

ABSTRACT

Deep generative models, particularly those that aim to factorize the observations
into discrete entities (such as objects), must often use iterative inference procedures
that break symmetries among equally plausible explanations for the data. Such in-
ference procedures include variants of the expectation-maximization algorithm and
structurally resemble clustering algorithms in a latent space. However, combining
such methods with deep neural networks necessitates differentiating through the
inference process, which can make optimization exceptionally challenging. We
observe that such iterative amortized inference methods can be made differentiable
by means of the implicit function theorem, and develop an implicit differentiation
approach that improves the stability and tractability of training such models by
decoupling the forward and backward passes. This connection enables us to apply
recent advances in optimizing implicit layers to not only improve the stability and
optimization of the slot attention module in SLATE, a state-of-the-art method for
learning entity representations, but do so with constant space and time complexity
in backpropagation and only one additional line of code.

1 INTRODUCTION

…
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(a) Implicit differentiation of slot attention
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Figure 1: Overview. We propose to train the slot atten-
tion model (1a), whose figure is adapted from Locatello
et al. (2020), with implicit differentiation. Our approach
leads to more stable training (1b) and substantially lower
validation loss (1c) compared to vanilla slot attention.

A major goal of building human-level artificial
intelligence is that of replicating how humans
abstract experience into coherent entities that
are used for high-level reasoning. A concrete
setting for studying this question has been in
so-called object-centric learning, which seeks
to decompose observations x into a set of inde-
pendent representations of entities without su-
pervision on how to decompose. Each datapoint
xn (e.g. image) is modeled as a set of indepen-
dent sensor measurements xn,m (e.g. pixels)
which are generally posited as having been gen-
erated from a mixture model whose components
represent the entities. Under a clustering lens,
the problem reduces to finding the K groups of
cluster parameters θn := {θn,k}Kk=1 and cluster
assignments ϕn,m := {ϕn,m,k}Kk=1 that were
responsible for the measurements xn,m of the
datapoint xn. Modeling entities as cluster com-
ponents encodes the assumption that entities are
independent and symmetric, thereby requiring a
mechanism for breaking symmetry equally valid
explanations of the same observation.

Thus inference is typically done by breaking
symmetry via a set of random initial guesses
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θn,k and then iteratively updating θn and ϕn,m

during the course of execution. Methods that learn the update rule as a deep network fw are
instances of iterative amortized inference (Marino et al., 2018). The state-of-the-art slot attention
module (Locatello et al., 2020), e.g., computes θn

t+1 ← f (θn
t , x

n), where ϕn,m is updated as an
intermediate step inside fw. The θn, called slots, serve as input to a downstream objective, e.g.
image reconstruction. Other instances of this approach include (Greff et al., 2017; Van Steenkiste
et al., 2018; Greff et al., 2019; Veerapaneni et al., 2020; Locatello et al., 2020; Kipf et al., 2021;
Zoran et al., 2021; Singh et al., 2021). All differentiate through the unrolling of fw.

Despite their conceptual elegance, it has been difficult to scale such iterative amortized inference
methods beyond modeling simple static scenes or short video sequences because differentiating
through the unrolled forward iteration makes training unstable. Fig. 5 shows that the spectral norm
of the Jacobian of fw gradually increases over the course of training, which has empirically been
observed to cause training instabilities (Bai et al., 2021). Such instabilities result in sensitivity to
hyperparameter choices (e.g., number of inference iterations) and have motivated adding optimization
tricks such as gradient clipping, learning rate warm-up, and learning rate decay, all of which make
such models more complex and harder to use, restrict the model from optimizing its learning objective
fully, and only temporarily delay instabilities that still emerge in later stages of training.

To solve this problem, we observe that previous methods have not taken advantage of the fact that
fw can be viewed as a fixed point operation. Thus, fw can be trained with implicit differentiation
applied at the fixed point, without backpropagating gradients through the unrolled iterations. Our
primary contribution is to propose implicit differentiation for training the iterative amortized inference
procedures of symmetric generative models, such as those used for learning object representations.
Specifically, we show across three datasets that, compared to the latest state-of-the-art of these
methods, SLATE (Singh et al., 2021), our method for training SLATE achieves much lower validation
loss in training, as well as lower Fréchet inception distance (FID) (Heusel et al., 2017) and mean
squared error (MSE) in image reconstruction. Our method also removes the need for gradient clipping,
learning rate decay, learning rate warmup, or tuning the number of iterations, while achieving lower
space and time complexity in the backward pass, all with just one additional line of code.

2 BACKGROUND

Implicit differentiation is a technique for computing the gradients of a function defined in terms
of satisfying a joint condition of the input and output. For example, a fixed point operation f is
defined to satisfy “find λ such that λ = f(x, λ),” rather than through an explicit parameterization of
f . This fixed point λ∗ can be computed by simply repeatedly applying f or by using a black-box
root-finding solver. Letting fw be parameterized by weights w, with input x and fixed point λ∗, the
implicit function theorem (Cauchy, 1831) enables us to directly compute the gradient of the loss ℓ
with respect to w, using only the output λ∗:

∂ℓ

∂w
=

∂ℓ

∂λ∗
(I − Jfw (λ∗))

−1 ∂fw (λ∗, x)

∂w
, (1)

where Jfw (λ∗) is the Jacobian matrix of fw evaluated at λ∗. Compared to backpropagating through
the unrolled iteration of f , which is just one of many choices of the solver, implicit differentiation via
Eq. 1 removes the memory cost of storing any intermediate results from the unrolled iteration.

Much effort has been put into approximating the inverse-Jacobian term (I − Jfw (λ∗))
−1 which has

O(n3) complexity to compute. Geng et al. (2021); Fung et al. (2021); Huang et al. (2021); Shaban
et al. (2019) propose instead to approximate (I − Jfw (λ∗))

−1 with its Neumann series expansion:

(I − Jfw (λ∗))
−1

= lim
T→∞

T∑
i=0

Jfw (λ∗)
i
. (2)

The first-order approximation (T = 1) amounts to applying f once to the fixed point λ∗ and
differentiating through the resulting computation graph. This is not only cheap to compute and easy
to implement, but has also been shown empirically (Geng et al., 2021) to have a regularizing effect
on the spectral norm of Jfw without sacrificing performance.
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3 IMPLICIT OBJECT-CENTRIC LEARNING

def step(slots, k, v):
# compute assignments given slots
q = project_q(norm_slots(slots))
k = k * (slot_size ** (-0.5))
attn = F.softmax(torch.einsum('bkd,bqd->bkq’, k, q), dim=-1)
attn = attn / torch.sum(attn + epsilon, dim=-2, keepdim=True)
# update slots given assignments
updates = torch.einsum('bvq,bvd->bqd’, attn, v)
slots = gru(updates, slots)
slots = slots + mlp(norm_mlp(slots))
return slots

def iterate(f, x, num_iters):
for _ in range(num_iters):

x = f(x)
return x

def forward(inputs, slots):
inputs = norm_inputs(inputs)
k, v  = project_k(inputs), project_v(inputs)   
slots = iterate(lambda z: step(z, k, v), slots, num_iterations)
slots = step(slots.detach(), k, v)
return slots

Figure 2: Code. The first order Neumann approxima-
tion to the implicit gradient adds only one additional
line of Pytorch code (Paszke et al., 2019) to the original
forward function of slot attention, but yields substantial
improvement of optimization. attn and slots corre-
spond to ϕ and θ in the text respectively.

By recognizing that slot attention implements a
fixed point operation, we propose implicit slot
attention: a method for training the state-of-the-
art slot attention module (Locatello et al., 2020),
with the simplest and most effective method that
we have empirically found for approximating
the implicit gradient, which is its first-order Neu-
mann approximation, although in principle any
black box solver for computing the fixed point
and black box gradient estimator for comput-
ing the implicit gradient can be used. It can
be implemented by simply differentiating the
computation graph of applying the slot attention
update once to the fixed point θn

∗ , where θn
∗ is

computed by simply iterating the slot attention
module forward as usual, but without the gra-
dient tape. The time and space complexity of
backpropagation for our method compared to
vanilla slot attention as a function of the number
of slot attention iterations n, is shown below:

vanilla slot attention ours
time (forward) O(n) O(n)
space (forward) O(n) O(n)
time (backward) O(n) O(1)
space (backward) O(n) O(1).

Our method is not only more efficient but also requires only one additional line of code (Fig. 2).

4 EXPERIMENTS

The main hypothesis behind this paper is that implicit differentiation can improve the training of
iterative amortized inference methods for object-centric learning. We test this hypothesis by replacing
the backward pass of the slot attention module in SLATE (Singh et al., 2021) with the first-order
Neumann approximation of the implicit gradient, and measuring optimization performance.

For the task of image reconstruction, SLATE uses a discrete VAE (Ramesh et al., 2021) to compress an
input image into a grid of discrete tokens. These tokens index into a codebook of latent code-vectors,
which, after applying a learned position encoding, serve as the input to the slot attention module.
An Image GPT decoder (Chen et al., 2020) is trained with a cross-entropy loss to autoregressively
reconstruct the latent code-vectors, using the outputted slots from slot attention as queries and the
latent code-vectors as keys/values. Gradients are blocked from flowing in and out of the discrete VAE
to the rest of the network (i.e. the slot attention module and the Image GPT decoder), but the entire
system is trained simultaneously.

We consider three datasets: CLEVR-Mirror (Singh et al., 2021), Shapestacks (Groth et al., 2018),
and COCO-2017 (Lin et al., 2014). We obtained CLEVR-Mirror directly from the SLATE authors
and used a 70-15-15 split for training, validation, and testing. We pooled all the data variants of
Shapestacks together as Singh et al. (2021) did and used the original train-validation-test splits. The
COCO-2017 dataset was downloaded from FiftyOne and used the original train-validation-test splits.

4.1 DOES IMPLICIT DIFFERENTIATION STABILIZE THE TRAINING OF SLOT ATTENTION?

Using the two primary metrics used in Singh et al. (2021), images generated by SLATE trained with
implicit differentiation achieve both lower pixel-wise mean-squared error and FID score (Heusel et al.,
2017). The FID score was computed with the PyTorch-Ignite (Fomin et al., 2020) library using the
inception network from the PyTorch port of the FID official implementation. All methods were trained
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CLEVR-Mirrors ShapeStacks

COCO-2017

Figure 3: Qualitative results. Across three datasets, optimizing SLATE with implicit differentiation leads to
improved image reconstructions through the slot bottleneck. Black borders indicate the ground truth image. Blue
border indicate our method. Red borders indicate vanilla SLATE. The rest of the panels show attention masks.

for 250k gradient steps. Table 1 compares the FID and MSE scores of the images that result from
compressing the SLATE encoder’s set of discrete tokens through the slot attention bottleneck, using
Image-GPT to autoregressively re-generate these image tokens one by one, and using the discrete
VAE decoder to render the generated image tokens. Implicit differentiation significantly improves
the quantitative image reconstruction metrics of SLATE across the test sets of CLEVR-Mirrors,
Shapestacks, and COCO. In the case of MSE for CLEVR, this is almost a 7x improvement.

Table 1: Quantitative metrics for image re-
construction through the slot bottleneck.

Data Ours Vanilla
CLEVR (FID) 22.19 25.89
CLEVR (MSE) 10.66 67.04
COCO (FID) 127.79 147.48
COCO (MSE) 1659.15 1821.75

ShapeStacks (FID) 34.2 34.76
ShapeStacks (MSE) 108.67 312.14

The higher quantitiatve metrics also translate
into better quality reconstructions on the test
set, as shown in Figure 3. For CLEVR-Mirrors,
vanilla SLATE sometimes drops or changes the
appearance of objects, even simple scenes with
three objects. In contrast, the reconstructions
produced from training with implicit differenti-
ation match the ground truth very closely. For
Shapestacks, our method consistently segements
the scene into constituent objects. This is some-
times the case with vanilla SLATE on the train-
ing and validation set as well, but we observed
for both of the seeds we ran that vanilla SLATE produced degenerated attention maps where one
slot captures the entire foreground, and the background is divided among the other slots. The visual
complexity of the COCO dataset is much higher than either CLEVR-Mirrors and Shapestacks, and the
reconstructions on the COCO dataset are quite poor, for both SLATE’s discrete VAE and consequently
for the reconstruction through the slot bottleneck. This may be expected because we did not attempt
to tune SLATE’s hyperparameters to COCO, but it does highlight the gap that still exists between
using the state-of-the-art in object-centric learning out-of-the-box and what the community may want
these methods to do. The attention masks for both the vanilla SLATE and our method furthermore do
not appear to correspond consistently to coherent objects in COCO but rather patches on the image
that do not immediately seem to match with our human intuition of what constitutes a visual entity.

4.2 CAN WE SIMPLIFY THE NEED FOR OPTIMIZATION TRICKS?

To further understand the benefits of implicit differentiation, we then ask whether it stabilizes the
training of slot attention without the need for optimization tricks like learning rate decay, gradient
clipping, and learning warmup. Fig. 4 shows that these tricks generally help regularize spectral norm
of the Jacobian of vanilla slot attention but are not required by our method. Decaying the learning rate
regularizes the Jacobian norm from exploding, but it also hurts optimization performance for both
our method and vanilla SLATE, as expected. When we remove gradient clipping, the Jacobian norm
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Figure 4: Implicit differentiation removes the need for many optimization tricks. We ablate three heuristic
optimization tricks from both vanilla SLATE and our method. Whereas removing gradient clipping and learning
rate warmup causes vanilla SLATE’s training to become unstable, as indicated by the growth of the Jacobian
norm, our method trains more stably and can take advantage of larger gradient steps.

of vanilla SLATE explodes, as do its gradients (Fig. 5a), whereas both stay stable for our method.
Lastly, removing learning rate warmup also consistently makes vanilla SLATE’s training unstable,
whereas it only affects the stability of our method for one out of three seeds. Finally, Fig. 5b shows
that our method is not sensitive to the number of iterations with which to iterate the slot attention cell,
whereas vanilla slot attention is, with more iterations being harder to train.
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(a) No need for gradient clipping.
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Figure 5: Stability. (5a) Without gradient clipping, our implicit differentiation technique keeps gradients small
while backpropagating through the unrolled iterations causes gradients to explode. (5b) Training with implicit
differentiation also is not sensitive to the number of iterations with which to iterate the slot attention module.

5 DISCUSSION AND LIMITATIONS

We have proposed implicit differentiation for training the iterative amortized inference procedures of
symmetric generative models and demonstrated this technique on a state-of-the-art object-centric
learning method. Our results show clear signal that implicit differentiation can offer a significant
optimization improvement over backpropagating through the unrolled iteration of slot attention,
and potentially any iterative inference algorithm, with lower space and time complexity and only
one additional line of code. Despite our work pushing the optimization performance for a state-of-
the-art model in object-centric learning, the discrepancy between the quantitative improvement in
optimization and evaluation metrics on the one hand and the less intuitive qualitative attention masks
on real world observations like COCO (Fig. 3) on the other hand still suggests a gap between what
we optimize these methods to do and what we actually want them to do. This paper proposes a novel
conceptualization of object representations as fast weights that converge towards a set of fixed points
during execution. Because it is so simple to apply implicit differentiation to any fixed point algorithm,
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we hope this work inspires future work to leverage tools developed for implicit differentiation for
improving object-centric learning and methods for learning latent structure more broadly.
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