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A central component of human intelligence is the ability to make abstractions, to gloss over some
details in favor of drawing out higher-order structure. Clustering stimuli together is a classic example
of this. However, the crucial question remains of how one should make these abstractions—what details
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how well a clustering fits the data but also by how ‘complex’ it is, i.e. how cognitively expensive
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range of psychological models that are based on principles from non-parametric Bayesian statistics.
In particular, we show that the Chinese Restaurant Process prior, ubiquitous in rational models of
human and animal clustering behavior, can be interpreted as minimizing an intuitive formulation of
representational complexity.
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1. Introduction

The only enduring aspect of our environment is that nothing
stays the same. We never have exactly the same experience twice.
As a consequence, the human mind has to form abstractions,
clustering these experiences together in a way that supports
generalization. Psychological models have applied this lens to
phenomena as diverse as categorization (Anderson, 1991; San-
born et al., 2010), feature learning (Griffiths & Austerweil, 2008),
theory formation (Kemp et al., 2010), classical conditioning (Ger-
shman et al,, 2010), and word segmentation (Goldwater et al.,
2009). A key problem that arises in each of these models is know-
ing when to generate a new cluster—when an object, stimulus, or
word is genuinely of a kind that has never been seen before.

Deciding when to form a new cluster involves making a trade-
off between the complexity of the underlying representation and
how well it describes the environment. Grouping all experiences
into a single cluster where they are represented by some abstract
summary statistics is maximally simple, but at the cost of losing
a significant amount of detail. Having a separate cluster for each
experience accurately captures the nuances of those experiences,
but is maximally complex. So how should we form clusters?

In this paper, we address this question in the spirit of rational
analysis (Anderson, 1991), asking how it might be solved by an
ideal agent. More precisely, we engage in resource rational analy-
sis (Gershman et al., 2015; Griffiths et al., 2015; Lieder & Griffiths,
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2019), since our analysis focuses on the question of how that
agent might make the best use of limited cognitive resources. For-
malizing the complexity of a clustering in information-theoretic
terms, we derive an optimal distribution over clusterings.

This analysis yields a surprising result: our optimal solution
has the same properties as the distribution over clusterings as-
sumed in all of the psychological models mentioned above. These
models use a distribution over clusterings originally introduced in
psychology by Anderson (1991) in his rational model of catego-
rization. This distribution was independently discovered in non-
parametric Bayesian statistics (Aldous, 1985; Hjort et al., 2010),
where it is known as the Chinese restaurant process (CRP).!

The CRP has a number of attractive mathematical properties
that can be used to justify its use in psychological models, related
to its convenience or the assumptions it makes about the envi-
ronment. Our analysis provides a new reason why the CRP might
make sense as a component of psychological models: we show
that CRP-like distributions can arise from an effort to minimize
representational costs, i.e. that this distribution is normative un-
der an assumption of resource-rationality. In particular, we show
that best using a fixed number of bits to store an object-category
mapping (viz. controlling the complexity of that mapping) can

1 The name of this process comes from its creators imagining a large
restaurant that seats multiple parties at communal tables, with people joining
tables based on their current popularity - a phenomenon that could apparently
be observed in San Francisco’s Chinatown. The tables are clusters and the people
the experiences being clustered.
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Fig. 1. Schematic illustration of the categorization task simulated in Anderson (1991). In this figure, we represent each object with its binary features and each
cluster as a bucket. Each time an object is added, we can either assign it to an existing cluster, or create a new one. Solid arrows indicate the higher probability
assignment, Anderson (1991) assumes that this is the assignment chosen at each step. Iterating this over the 6 stimuli in their (fixed) order of presentation gives

the final clustering. See main text for further details.

give CRP-like behavior. These results provide the first process-
level explanation of why this kind of clustering behavior might
be a reasonable assumption in psychological models.

The plan of the paper is as follows. In the next section we
provide a more detailed introduction to the Chinese restaurant
process. We then turn to our analysis of optimal clustering under
resource constraints. We derive our key results mathematically
and present simulations that verify our analysis. We conclude
with a discussion of the implications of these results for devel-
oping models of human cognition.

2. Background: The Chinese restaurant process

As mentioned above, one of the challenges involved in clus-
tering a set of experiences is deciding how many clusters there
should be. Researchers in nonparametric Bayesian statistics de-
veloped an innovative strategy for solving this problem: rather
than specifying a particular number of clusters, we instead as-
sume that there could exist an infinite number of clusters of
which only a finite number have been observed so far. The prob-
lem of determining the number of clusters then becomes a matter
of inferring how many clusters may have been observed, which
can be solved by applying Bayes’ rule.

Pursuing this approach requires identifying a prior distribu-
tion over clusterings that remains well-defined regardless of
how many experiences need to be clustered. A common way to
achieve this goal is to assume that the prior probability an item
belongs to a cluster follows a distribution known as the Chinese
Restaurant process (CRP; Aldous, 1985). Under this distribution,
the probability of belonging to an existing cluster is proportional
to the number of objects already in that cluster, while the proba-
bility of a new cluster is proportional to the value of a parameter
o.

To make this kind of Bayesian clustering more concrete, we
consider how it might apply to an empirical context: the first ex-
periment from Medin and Schaffer (1978). Here, participants saw
and were asked to categorize stimuli that varied along four binary
dimensions (color, form, shape and position) and given a binary
category label. These data were used to demonstrate the rational
model of categorization presented in Anderson (1991) (illustrated
in Fig. 1), which assumes a prior on clusters that is equivalent
to the CRP. Anderson assumed that the binary category label is
treated as an additional feature, so there are five binary fea-
tures. The stimuli are then assumed to be presented in the order
{11111, 10101, 01011, 00000, 01000, 10110}. Anderson’s model
assigns the first stimulus to its own cluster. On seeing the second
stimulus, it decides whether to assign it a new cluster or to the
same cluster as the first one. It makes this decision on the basis
of two factors: the new stimulus’ overlap with the features of
the stimuli already in a cluster (the likelihood function), and a

parameter that determines how likely in general it is that two
stimuli belong to the same cluster vs. different ones (the prior).
The assumption that Anderson (1991) made about the latter
parameter defines a prior that is equivalent to the CRP (Neal,
1998).2

Iterating this process for each stimulus, Anderson’s model pre-
dicted that the most likely clustering of these stimuli is
(11111, 10101, 10110), (00000, 01000), (01011). This clustering
does not split the stimuli by the category label (here, the last
binary feature). However, the model can generate predictions for
the category membership of novel stimuli based on this clustering
by calculating the probability they get assigned to a cluster and
the probability of the category label under that cluster. Ander-
son showed that these predictions are in close accordance with
the judgments of participants in Medin and Schaffer’s (1978)
experiment, with a rank-order correlation of .87.

Anderson’s model used a particularly simple inference algo-
rithm for the CRP, allocating each stimulus to the cluster with
highest posterior probability based on previous allocations (as
also depicted in Fig. 1). Subsequent work has extended this model
to accommodate different inference algorithms (Sanborn et al.,
2010) and sharing of clusters across categories (Griffiths et al.,
2007), applying the resulting models to a variety of results in
human category learning (for a review, see Griffiths et al., 2008).

The CRP has various desirable properties that make it a sen-
sible choice as a prior over clusters. In the infinite space of
possible clusterings, it favors assigning data to a small number
of clusters. The expected number of clusters grows slowly as the
number of experiences being clustered increases. In particular,
the CRP displays “preferential attachment” or a “rich-get-richer”
dynamic, where a cluster with a large number of members is
more likely to grow further. The resulting distributions of cluster
sizes (‘scale-free’ distributions, where the size of clusters decays
as a power law) have been shown to be prevalent across several
other domains (Adamic & Huberman, 2002; Barabasi & Albert,
1999; Mandelbrot, 1960; Rosen & Resnick, 1980).

Another practical reason for the success of the CRP is that it
is agnostic to the order of data presentation (i.e. exchangeable;
Aldous, 1985)—changing the order of presentation of experiences
does not change the probability of their cluster memberships.
This makes Bayesian inference more tractable, as it is easy to
compute conditional distributions that are required for standard
inference algorithms (see, e.g., Gershman & Blei, 2012).

2 Intuitively, with a fixed probability that two objects belong to the same
cluster (c, the coupling constant in Anderson (1991)), it is more likely that the
new object should be in the same cluster as an object that already has several
objects in it. This results in the CRP assignment rules outlined above, with the
coupling constant scaling inversely with o: o« = (1 —c)/c.
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Fig. 2. Schematic illustration of the clustering problem. In this schematic, we represent each object as a blue ball and each cluster as a bucket. Each object has no
features except its unique index. (A) We want to cluster object 4, conditioned on how objects 1, 2, and 3 were clustered. There are three possibilities (indicated
by the orange arrows): assign to bucket 1 which contains two objects already, assign to bucket 2 with one object, or start a new cluster by assigning to one of
the empty buckets. In this work, the prior over clusterings specifies these conditional probabilities. (B) By iterating these conditional probabilities, we can derive a
probability distribution over the range of possible final clusterings of all objects (in this case 5 objects in total). These final clusterings are represented here, as well
as how they differ in the entropy of the marginal distribution over clusters. A prior over clusterings specifies a distribution over these different solutions.

In addition to these practical properties of the CRP, there
are other reasons why human minds might use this particu-
lar prior distribution for clustering. In its first use in psychol-
ogy, Anderson (1991) derived the CRP from the assumption that
any two objects must have the same fixed prior probability of
being in the same cluster. This is related to exchangeability,
and might be an assumption justified by the environment in
which humans operate. In the remainder of the paper we pur-
sue another hypothesis about the appropriateness of the CRP
for cognitive modeling: that CRP-like clustering (as well as its
various properties, like exchangeability) might be emergent prop-
erties of a resource-rational tendency to best utilize a limited
representational budget.

3. Resource-rational clustering

As noted above, the CRP has been used to model clustering
problems that arise in a variety of domains. Following Anderson’s
(1991) original application we will focus on the case where the
agent seeks to organize a set of objects into clusters to support
their categorization (see Fig. 2). We formalize this problem as
follows. We have a total of N objects. Since we are concerned with
examining the prior over clusterings (i.e., how each object should
be assigned to a cluster in the absence of any specific features),
we assume that these objects do not have any distinguishing
features except for their index i € [0, N]. The goal is to organize
these objects into clusters. We do not know a priori how many
clusters the objects will be sorted into, but they will certainly be
no more by the number of objects N. We therefore need to learn a
mapping r from object o; for j € [0, N) to cluster ¢; for i € [0, N).

For an agent with finite cognitive resources, it will be impor-
tant to represent these objects in as simple a way as possible
while allowing for the potential differences between them. We
will derive a prior based on this idea of learning ‘simpler’ map-
pings 7, and show that this simplicity prior corresponds closely
to the CRP. But first, how do we measure simplicity?

3.1. Measuring simplicity or complexity

A human preference toward simplicity, or Occam’s razor, has
been used to explain several cognitive phenomena in perception,
learning and high-level cognition (Chater & Vitanyi, 2003), with
the use of information theory to define this ‘simplicity’ (e.g., Bhui
& Gershman, 2018; Gottwald & Braun, 2019; Olshausen & Field,
1996; Ortega et al., 2015; Todorov, 2009; Zenon et al., 2019). We
follow in this tradition and use the length of the code required
to represent a mapping 7 as a measure of its complexity (as
also seen in Chater, 1996; Feldman, 2016). A longer (i.e. more

complex) code has higher representational cost. We make this
more precise below.

We first compute an intermediate quantity, the marginal dis-
tribution over categories given a mapping r:

N N == C;
Pn(Cl')= W (‘1)

Each mapping 7 gives a probability distribution over categories.
We then define simplicity or complexity of this probability dis-
tribution. What makes one distribution over clusters more or less
complex than another?

The entropy of the distribution can act as a measure of its
representational cost and thereby of its complexity. It is given by:

N
H(m) = — ) Pr(ci)logPx(c:) 2)

The information-theoretic interpretation of the entropy of a dis-
tribution is that it measures the average number of bits (binary
coin flips) required to convey an object sampled from that distri-
bution, under the most efficient code possible. The number of bits
required for c;, or the length of its ‘codeword’, is logP, (c;) (under
the most efficient code; Shannon, 1948). Weighting this code-
word length by the probability of each token gives the entropy
of the distribution. Intuitively, this measures how difficult it is
(i.e. how many bits of information are required) to convey which
object is sampled, when randomly sampling objects from the
given distribution, to an observer that knows the distribution but
does not know which specific object was sampled. A representa-
tionally ‘expensive’ or ‘complex’ distribution is one that requires
more such bits.

In using entropy as a measure of representational complexity,
we are following previous work in both psychology and neuro-
science. Work on planning and sequential decision-making has
used entropy as a measure of representational cost (Todorov,
2009), and other work has suggested that a tendency to minimize
this information-theoretic cost is what characterizes bounded-
rational behavior in agents with limited resources (Olshausen &
Field, 1996; Ortega et al., 2015). This tendency has been empiri-
cally validated, and used to model neural representations (Laugh-
lin, 1981) as well as human behavior in high-level cognitive
tasks (Bhui & Gershman, 2018).

How does this measure map onto our intuitions in this do-
main? The lowest entropy distribution is the distribution that
allocates all of its probability to a single outcome. Here, the en-
tropy is zero, since samples from the distribution are always the
same—there is no information to be transmitted about a specific
sample. On the flip side, the highest entropy distribution is one
that is uniform over all outcomes. Here, since all outcomes are
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equally likely, even the most efficient code has to convey which
of several possibilities was actually chosen at a given sample.
Other distributions fall in between, as measured by Eq. (2). In the
context of our clustering problem, this maps onto the intuition
that it is easy to remember to always put every object in the same
cluster (a low entropy distribution, lower representational cost),
but harder to remember different clusters for each object—with
the extreme being to have a separate cluster for each object (a
high entropy distribution, higher representational cost).

We want to use this measure of complexity to inform a prob-
ability distribution P(;r) over mappings w. We do have some
representational capacity and would like to best utilize it—we
do not want to simply minimize the entropy and default to the
zero entropy m. Instead we assume some fixed average repre-
sentational capacity—this means that the mean entropy averaged
over all clusterings (weighted by P(sr)) is fixed. Since the number
of possible clusters is infinite, the entropy can grow arbitrarily
large. The probability of these high entropy distributions must
be correspondingly low to accommodate finite representational
capacity in expectation. We therefore will prefer low complexity
(low entropy) mappings over higher complexity ones. Exactly
how should this preference decay as a function of complex-
ity/entropy? The negative exponential is the maximum entropy
distribution for a fixed mean (note that ‘entropy’ in ‘maximum
entropy’ here refers to the entropy of the prior probability distri-
bution P(;r)—not H(x) which is the entropy of the mapping ).
This gives:

P(r) = exp(—kH(m))
T S exp(—kH())
o exp(—kH()) (3)

where k is a positive constant and the normalizing factor sums
over all possible mappings n’. It is (by the principle of maxi-
mum entropy; Shore & Johnson, 1980) the most general, least
informative distribution given a fixed mean, i.e. a fixed average
representational capacity. This is the same logic used to de-
rive other assumption-free distributions with fixed mean e.g. the
negative exponential free energy functional (Ortega et al., 2015).
We have therefore specified a prior probability distribution
P(rr) over different clusterings 7 for when we have a fixed
mean representational capacity, where representational cost of a
mapping is given by # (7 ). In the following sections, we show that
the CRP corresponds to exactly such a probability distribution.

3.2. The relationship between the CRP and entropy

We first discuss the key properties of the CRP. The key prop-
erty of the CRP is the way a new object is added to an existing
clustering of states:

1. Assign it to an existing cluster with probability propor-
tional to the number of items already in the cluster.
2. Assign it to a new cluster with fixed probability c.

This “rich-get-richer” or “preferential attachment” also arises
when trying to reduce entropy. Adding an object to a cluster
that already has high probability reduces the entropy of the
distribution by making it peakier. On the other hand, adding it
to a less populated one moves the distribution closer to uniform,
increasing its entropy. Therefore, adding a new object to a cluster
that already has many objects in it results in less cost for rep-
resenting that distribution than adding it to one that has fewer
objects.

We can formalize this intuition. By Eq. (3), the entropy of
a mapping specifies its prior probability. We can compute the
entropies of all the mappings that arise from different possible
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assignment of a new object to an existing mapping. Inserting
these entropies into Eq. (3) specifies a probability distribution
over the possible assignments of the new object. This way of
assigning new objects to clusters is not arbitrary. Rather, it is nor-
mative, under the resource-rational assumption that we want to
best utilize limited representational resources. We thereby prefer
mappings with low complexity (and hence low representation
cost), see Section 3.1 for details.

In the following section, we provide the mathematical details
of the above procedure.

4. A mathematical derivation

In this section, we show that assigning new objects based
on probability under Eq. (3) recovers the CRP’s new object as-
signment rules when the number of objects being classified is
reasonably large.

4.1. Conditional distributions of the CRP and entropy-based priors

Given a cluster assignment 7, an object is added to give n’.
This can be split into two cases, where the object is either added
to cluster j to give 7 or it is added to a new cluster (i.e. one with
n; = 0) to give 7°. Formalizing the CRP in these terms:

PC,-p(T[j|7T) X nj
Pop(7%|7) o @ (4)
The entropy-based prior over possible cluster assignments
(as given in Eq. (3)) is proportional to the negative exponent
of the entropy of the mapping w. The equivalent conditional
distributions for this prior are given by (details in Appendix A):
Pentropy(ﬂj|77) X exp (_k(Hj - H))
Pentropy(”0|77) X exp (_k(HO - H)) (5)

where the entropy of a mapping (specifying a cluster assignment
of N objects, with each cluster containing n; objects) is given by:

N
n; n;
H=— — log— 6
Z N oz (6)
In the next section, we compute the differences #;—# and #°—#
in terms of n; to more directly compare the conditionals derived

from the CRP and the entropy-based prior.
4.2. The effect of adding an object on entropy

When adding a new object, we can add it to an existing cluster
Jj to give H;.

K
n; n; nj+1 nj+1
Hi = — lo — lo
i %:NH ENF1 N+1 BN+1

We take the difference with # in Eq. (6) and separate out the
terms independent of n; (denoted E) from those dependent on
n;. This simplifies to the following (see Appendix B for detailed
steps):

1
njlog (1 + nj> log(n; + 1)
N+ 1 N+ 1

We then take the large N limit and consider only the leading
order terms. To decide which of these terms are leading, we need
to make an assumption about the relation between the number of
objects in a cluster (n;) and the total number of objects (N). We
make the weak assumption that the average number of objects

Hj—H=E—
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in a cluster grows sub-linearly with the total number of objects—
this holds as long as (a) not all objects are assigned to the same
clusters or (b) not all objects are assigned to a new cluster. In
other words, both nj and N grow when N is large, but n; grows
slower. We can therefore Taylor expand the first term and keep
only leading order terms. This simplifies to the following, detailed
steps in Appendix B:

E_ log(n;) 1

N N @)

We have so far derived the change in entropy when we add an
object to an existing cluster with n; objects. The change to entropy
when we instead add an object to an empty cluster is given by
n; = 0 (before applying any approximations in the large N limit):

Hj —H ~

HO—H=E
4.3. From entropy to probability distribution

Substituting H; — H and #° — % into the expressions for
the conditional distributions of the entropy-based prior (Eq. (5))
gives:

P(mjl) o exp (—k(H]- - H))

= exp |:—k (E - log(n;) - 1>i|
N N

We fix k = N; this constant k (from Eq. (3)) is therefore not a
parameter.

P(mj|m) oc exp(—NE) x nj x e
X nj
Similarly, for when we are adding to a new cluster:
P(°m) o< exp (—N(#° — 1))
= exp (—NE)

We can then normalize the probability of the new clusterings as
follows:

' B P(]tj|7T) _ nj
PO = Beadlry + 3, Pll) N+ 1/e
0

Pr®l) P(7O|m) 1/e

T P(n0m) + 3 P(milm) N+ 1/e

This is equivalent to a CRP (as specified in Eq. (4)) witha = 1/e =
0.36. Note that we can get a corresponding CRP with a different «
by taking the logarithm in Eq. (2) and the exponent in Eq. (3) with
respect to a different base. The base of the logarithm is restricted
to be greater than 1, to ensure that the logarithm is an increasing
function, but is arbitrary beyond this constraint. We can thus
derive the full family of CRP distributions for 0 < o < 1.

4.4. Summary

Our goal was to examine the consequences of limited cognitive
resources on the clustering process. We find that a prior over
clusters proportional to the negative exponent of the entropy of
the cluster mapping gives CRP-like clustering. This prior strongly
prefers lower entropy mappings to higher entropy ones. This
indicates that CRP-like clustering might come from a tendency to
reduce representational burden. In other words, CRP-like cluster-
ing can come from a bias toward learning ‘simple’ object-category
mappings, where simplicity is defined as the entropy of the
marginal over categories. This provides a process-level theory for
why CRP-like priors might be appropriate for modeling human
cognition.

Journal of Mathematical Psychology 109 (2022) 102675

5. Simulations

Our mathematical results establish a direct correspondence
between limited representational capacity and the CRP, in the
limits of a large number of objects. To determine whether the
clustering produced by this resource-rational clustering scheme
produces results similar to those expected from a CRP with re-
alistic samples, we conducted a series of simulations where we
generated cluster assignments for both distributions and then
analyze the correspondence.

The correspondence between the CRP and the entropy-based
distribution is closer as the number of objects (N) increases. At
very low N therefore, these distributions deviate slightly (see
Appendix C for details). Since subsequent clustering behavior is
conditioned strongly on the object assignments thus far, these
differences can amplify. That is, even though the conditional
distributions get closer with higher N, the marginal distributions
deviate further. The resultant distribution is still qualitatively
very similar to the CRP (as discussed below), and it is an interest-
ing direction of future work to examine whether this distribution
might better describe human clustering behavior than traditional
CRPs. Here, however, to validate the similarities with the CRP,
we control for this deviation by clustering the first M objects
according to an exact CRP.

We evaluated the correspondence between the CRP and our
resource-rational distribution based on two criteria. First, a prop-
erty characteristic of scale-free distributions like the CRP is that
the sizes of the different clusters decay as a power law. There-
fore, if we sort the clusters by size, the logarithm of the cluster
size (i.e. the fraction of the total number of objects that are in
that cluster) should be a linear function of the logarithm of the
cluster index. Second, another key property of the CRP is that
the number of clusters increases logarithmically with the total
number of objects. We can also measure that for our entropy-
based distribution and examine whether the number of clusters
is a linear function of the logarithm of the number of objects.

5.1. Method

We generated samples from our distribution as follows. We
first cluster M objects according to a CRP with « = 0.368,
varying M between 0 and 80. We then cluster an additional 10°
objects from this starting point, either with the CRP’s conditional
cluster assignment rules, or based on the entropy as specified
by Eq. (3). We cluster such a large number of objects to get a
reasonable number of total clusters so that we can better analyse
the distributions of objects across them—even with these many
objects, the average number of total clusters is around 6. This
procedure is repeated to get 20 unique set of clusters for each
cluster assignment rule and each M.

5.2. Results

We find that the entropy-based distribution produces cluster-
ings that have statistical properties that closely resemble those
from the CRP. To provide an initial illustration of the correspon-
dence, we focus on the case where M = 20. Fig. 3A shows
how the size of the clusters decays as a power law over the
cluster index ranked by size. Fig. 3B plots these in log-space and
highlights the linear relationship characteristic of a power law
like the CRP.

It is especially instructive to compare this linear pattern with
what might be expected from other sensible priors over clusters.
For example, ones where the cluster size decays exponentially
with rank (intuitively, each cluster is some fixed factor A smaller
than the next largest one). This prior notably does not show this
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Fig. 3. Simulation results: (A) Cluster size scales as a power law with cluster rank. (B) This relationship is highlighted in log space. The average behavior of the
two clustering assignments resembles the linear fit (dotted lines). (C) The number of clusters grows logarithmically with the number of objects. (D) The correlation
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Fig. 4. Alternative priors: Log cluster size as a function of log rank for an
exponential prior over ranked clusters. The dotted line shows a linear fit to
the data: this fit does not explain this data well. In comparison, Fig. 3B shows
that the entropy-based prior follows the same linear trend as the CRP.

linear structure (as plotted in Fig. 4). It is therefore particularly
remarkable that our entropy-derived prior also shows this linear
trend.

Fig. 3C shows the change in the average number of clusters
(over the 20 runs) as a function of the logarithm of the number
of objects. We see that this grows close to linearly, with the linear
fit (dotted line) closely matching the data. The deviation is most
apparent at smaller numbers of objects, as expected since the
linear relationship is expected in the limit. The number of clusters
from the CRP is slightly but not statistically significantly higher
than that from the entropy-based clustering.

To provide a more detailed picture of this correspondence, we
examined the correlation between the cluster sizes (i.e. the data
plotted in Fig. 3A, matched by cluster index) for the first 500

objects. Cluster assignment is stochastic and we cannot expect
exact correspondence. To get a sense of the upper limit of the
correlation we can expect from this measure, we first correlate
the cluster sizes derived from independent runs of the same clus-
tering algorithm, repeated 4 times. This gives a correlation of 0.72
(95% CI [0.69, 0.74]) for the CRP, and 0.74 (95% CI [0.71, 0.76])
for entropy-based clustering with M = 80. This shows that even
with the cluster sizes produced by the same algorithm, we cannot
expect a correlation of 1.

We then look at the correlation between the CRP and the
entropy-based clustering after initializing with variable M. We
expect this correlation to improve as M increases. We see that
this is indeed the case (Fig. 3D), with the correlation at M =
80 being comparable to the correlation between two runs of
the same clustering algorithm (CRP or entropy-based). We also
see that the difference in correlation from small to large M is
not very dramatic (varies from ~0.58 to ~0.73) and appears to
level off. This indicates that the correspondence between the CRP
and the entropy-based prior is fairly robust to the value of the
initialization M.

6. Discussion

Needing to cluster experiences together is a ubiquitous aspect
of human cognition. In this paper, we have approached this
problem from the perspective of rational analysis, asking how an
ideal agent should seek to use their limited cognitive resources.
Our results show that the solution to this problem, when those
resources are expressed in information-theoretic terms, has a
direct correspondence with an approach to clustering that has
been widely used in probabilistic models of cognition (the Chi-
nese restaurant process, or CRP). These results provide a new
cognitively-motivated justification for that assumption.
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Our findings suggest interesting directions for future empirical
work. If CRP-like clustering comes from representational costs,
manipulating these costs should result in different clustering
behaviors. Our model predicts that having more limited cogni-
tive resources should affect clustering behavior, driving toward
a lower entropy representation and a stronger preference for
few, large, clusters. Gershman and Cikara (2021) model the ef-
fects of cognitive load on structure learning as a reduction in
the concentration parameter giving fewer clusters. Our approach
provides theoretic justification for why fewer cognitive resources
(e.g. under cognitive load) should give rise to fewer clusters. This
would not be predicted by a traditional CRP model, since it is a
consequence of the cognitive resources available and not a change
in the beliefs of the agent about the relative prior probability of
different clusterings.

In our paper, we do not assume that the data are generated
from a ground-truth set of clusters, rather that clustering arises
solely at the representational level from limitations in capacity.
Correspondingly, we make no assumptions about the likelihood
function that informs within-cluster structure - we focus entirely
on the a priori number of clusters, assuming the data have no dis-
tinguishing features to cluster on the basis of. However, these are
crucial aspects of real-world clustering behavior and future work
should look toward how they interact with a priori clustering
driven by representational limits as posited here. A common crit-
icism of Bayesian models of cognition is their lack of grounding in
process-level considerations, and the risk that the priors specified
in these models can be arbitrarily chosen by practitioners to fit
data (Bowers & Davis, 2012; Jones & Love, 2011). Our work exem-
plifies one way to specify ‘effective priors’ that are informed and
constrained by algorithmic considerations—and in fact directly
arise from resource limitations at this algorithmic level. Further,
posterior inference with arbitrary priors is often computationally
intractable; this approach also suggests a tractable process-level
model. This raises the broader question of the epistemic role of
the prior in Bayesian models of cognition—whether it represents
pre-existing knowledge, or emergent properties of the algorithm.
Our work highlights that this difference can be nuanced.

An open question is whether other ubiquitous priors assumed
in probabilistic models of human cognition might instead arise
from the algorithmic processes involved in learning and repre-
sentation. Various priors over neural network models have been
shown to be effectively implemented by established algorithmic
approaches like weight decay (Krogh & Hertz, 1991), early stop-
ping (Duvenaud et al., 2016), and dropout (Gal & Ghahramani,
2016). The field of probabilistic numerics (Hennig et al., 2015)
has also shown that several classic approximate algorithms in
quadrature, linear optimization, and solving differential equa-
tions can be reinterpreted as exact solutions under specific pri-
ors. These approaches (e.g. neural networks, linear optimization)
are commonly used in probabilistic models of cognition. Explor-
ing this duality (between algorithmic process and computational
prior) within these approaches - and therefore the role these
approaches play in modeling cognition - is a promising direction
of future work.
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Appendix A. Conditional distributions for the entropy-based
prior

We give further detail on how to derive the conditional distri-
butions from the negative exponential probability over mappings
. We start with:

exp(—kH(m))

> exp(—kH(x'))
o exp(—kH(r))

P(r) =

Adding an object o; to cluster j gives m;. The probability of this
new mapping is given by P(mj) o< exp(—k#(m;)). We can then
consider the probability of P(r;) conditioned on already having
the mapping .
P(7mj, )

P(r)
Note that n; specifies a super set of m, i.e. = specifies the cluster
mapping of objects o . ..0;_1, while 7r; additionally specifies the
mapping of o;. So P(w, m;) = P(m;).This reduces the conditional
distribution to

P(mj|m) =

P(r;)

P(mjlm) = (—k(H(mj) — H(m)))
P(m)
In terms of CRP notation that directly represents the probabil-
ities of the cluster assignments z; = m(0;), we have P(z; =
jlz1, ..., zim) = P(mj|m).

Appendix B. Simplifying the difference in entropy

The difference in the entropy between the new and the old

distributions is:
—H= — — — | logn;
Z (N N+ 1) e

log(nj +1)

l ogn; —
+ log(N +1)— logN

We want to separate out the terms dependent on n;, so we
separate out the first term as:

- 1 1

Z (N NT1 ) logn;
i\j +

K

i logn;
Z N(N +1)
n; logn;
N(N +1)

The difference therefore reduces to the following terms, with E
representing the terms independent of nj:

k] 1) — Llon-
N N(N +1) &1

Here, the term independent of n;, denoted E, is given by:

Hj—H=E+ jlognj

log(nj

n; logn;
= log(N + 1) — logN
Z NV 1) 0B + 1)~ log
We further simplify the terms dependent on n;:
B nj+1 n;
— logn; — 1 i+ 1 1
N ogn; N+l og(nj + 1) — NN+ 1) ogn;

Nnjlogn; + njlogn; — Nnjlog(n; + 1)

N(N + 1)

— Nlog(n; + 1) — n; logn;
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Fig. C.5. Evaluating the approximation: We plot the terms in the exponents
of Eq. (C.1) as a function of increasing number of objects in a cluster (n;). We see
that the difference between the approximation and exact value reduces quickly.

1 1
=— ——— |Nnjlog| 1+ — | — Nlog(n; + 1
v s (1+5) ~Most + 1)
nlog (14 1 ]
n) log(nj+1)

N+1 N+1
Taylor expanding the first term to leading order gives:

1 1
njlog (l—l—nl]_) 1 (,Tj _ﬁ>
N +1 N+

In the large N limit, and correspondingly large n; limit, we assume
N ~ N + 1 and ignore non-leading terms, to get:

N
n;<nj 2nj2> -1 N 1 1

N+1  N+1 2n(N+1) N

Appendix C. Evaluating the large N approximation

Here we revisit the approximation made to arrive at Eq. (7) or
Eq. (B.1). If we had not made the approximation required to elim-
inate the extra term, we would have an additional dependence on
n; as follows:

P(mj)lm o exp (—N(#H; — H))
= exp(—NE) x n; x exp(n;log(1+ 1/n;))

In our simplification, we are making the following approxima-
tion:

exp(njlog(1 + 1/n;)) ~ exp(1) (C.1)

We plot these exponents in Fig. C.5 to give a sense for when
this is a good approximation. We see that even at small n;, the
values are relatively close, with the approximation converging
quickly.

We restrict our analyses to the correspondence of the condi-
tional distributions P(mry|7my_1) between the entropy-based dis-
tribution and the CRP, rather than directly examining the joint
distribution P(swry). This is because computing the normalization
factor for the conditional distribution for the entropy-based dis-
tribution (before making the approximation above) depends on
the distribution of objects in the previous step—unlike after we
make the approximation when the normalization factor goes
to Ne 4+ 1. This makes the pre-approximation joint distribution
difficult to compute.
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