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Recent work in machine learning has demonstrated the

benefits of providing artificial agents with a sense of

curiosity — a form of intrinsic reward that supports exploration.

Two strategies have emerged for defining these rewards:

favoring novelty and pursuing prediction errors. Psychological

theories of curiosity have also emphasized these two factors.

We show how these two literatures can be connected by

understanding the function of curiosity, which requires thinking

about the abstract computational problem that both humans

and machines face as they explore their world.
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Introduction
The last few years have seen significant progress in

developing machine learning systems that approach or

exceed human performance in specific tasks [1–4]. One of

the areas in which substantial progress has been made is

that of reinforcement learning [5,6]. In reinforcement

learning, agents learn what actions to take based on

rewards provided by their environment, with the goal

of maximizing long-term reward [7]. Recent progress in

reinforcement learning has included developing systems

that are capable of learning to play computer games far

better than humans (where the reward is the score in the

game) and developing algorithms for robotic systems that

are capable of learning how to move and perform basic

tasks (where the reward reflects progress in these tasks).
$ This work was partially supported by grant number 61454 from the

John Templeton Foundation.
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While the classic formulation of reinforcement learning

focuses on problems that are defined in terms of extrinsic
rewards (i.e. rewards provided by the designer or the

environment to the agent), researchers quickly realized

that effective algorithms for reinforcement learning often

need to make use of intrinsic rewards (i.e. rewards gener-

ated by the agent itself [8�,9,10]; refer to Figure 1a). In

particular, one of the key aspects of solving a reinforce-

ment learning problem is effectively exploring the space

of possible actions. This may require taking actions that

currently seem less promising than actions that have

already been found to be effective — the classic

‘explore/exploit’ problem. Early research in reinforce-

ment learning discovered that appropriate exploration

could be supported by providing agents with a reward

for taking actions that led to parts of the space that had not

previously been visited [11].

Recently, the insight that agents need appropriately

structured intrinsic rewards for effective exploration

has been incorporated into state-of-the-art reinforcement

learning systems, resulting in significant improvements in

performance [12,13,14��,15,16]. In some cases, it is even

possible to define reinforcement learning systems that

operate entirely in the absence of extrinsic rewards, with

intrinsic rewards being sufficient to drive the agents to

discover effective strategies [17,18]. The two forms of

intrinsic rewards that have been found to be effective are

one that focuses on rewarding novelty [19�,13], consistent

with the earlier work mentioned above, and one that

focuses on finding settings where the agent’s model of

the world is wrong [20,12,14��]. These strategies both

motivate uncertainty reduction, but do so with two dif-

ferent intrinsic rewards: either for actions that explore

states with the greatest absolute uncertainty (novelty), or

for actions that cause the greatest expected reduction in

uncertainty (prediction error).

The two quantities that have been found to provide

effective intrinsic rewards for machines — novelty and

prediction error — have also been postulated as playing a

key role in curiosity for humans (Figure 1b). In this paper,

we argue that this should not come as a surprise: the

convergent evolution of these two literatures reflect the

fact that both humans and machines face the same

underlying computational problem. By considering the

function of curiosity, we can see why both of these factors

are important and make predictions about when one is

more important than the other. We begin by reviewing

recent work on curiosity in machine learning before
www.sciencedirect.com
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(a) Intrinsically motivated reinforcement learning, adapted from [9]. While the standard RL view is that all rewards are extrinsic (top), intrinsically

motivated RL considers the settings in which all rewards are intrinsically generated by the agent (bottom). Under this view, curiosity is an example

of an intrinsic reward that helps the agent explore despite the absence of extrinsic rewards. (b) Curiosity in machine learning and psychology. In

both psychology and machine learning, there are two broad classes of models of curiosity. Novelty-based models (top) posit that curiosity is a

function of novelty (i.e. curiosity diminishes as knowledge increases). Prediction-error-based models (bottom) posit that curiosity is highest when

predictions are always improving (i.e. curiosity is highest for moderately complex stimuli).
turning to psychological theories of curiosity and then

considering the function of curiosity and its implications

for both of these literatures.

Curiosity in modern machine learning
At the highest level, reinforcement learning (RL) solves

control problems by identifying a policy that indicates how

an agent should act in the world to maximize expected

future rewards [7]. Recently, deep learning — represent-

ing policies in the weights of large artificial neural net-

works that are then learned through experience — has

made it possible to scale up RL to problems that were

previously intractable. One of the earliest success stories

of deep RL was the Deep Q-Learning algorithm that

solved a range of Atari games, some at a superhuman level

[5]. This achievement was especially remarkable because

this work was the first to demonstrate that deep learning
www.sciencedirect.com 
could be used to train RL agents to solve complex control

tasks directly from raw image pixels. Following this, a

large body of research has applied deep RL to achieve

human-level performance on various other tasks [21,22].

However, these successes in RL require the reward

function to be dense (i.e. with no long gaps between

rewards) and to be well-aligned with the task. However,

in many real-world settings, rewards extrinsic to the agent

are either extremely sparse or absent altogether, thereby

restricting the applications of RL to problems closer to

the real-world.

An alternative to providing dense extrinsic rewards is to

use ‘intrinsic’ rewards, that is, endow agents with the

ability to generate rewards by themselves [10,9]. One

popular form of such an intrinsic reward is endowing an

agent with ‘curiosity’ — a self-generated reward that
Current Opinion in Behavioral Sciences 2020, 35:118–124
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enables the agent to continue exploring despite the

absence of extrinsic rewards [20]. A number of algorithms

have been proposed to endow curiosity to agents and they

generally fall into two broad groups, being based on either

novelty or prediction error.

Novelty-based algorithms pursue the idea that the brain

is intrinsically motivated to seek out novel tasks. Gen-

erally, these algorithms estimate the distribution of the

environmental state (by maintaining a ‘visitation

count’ — a count of the number of times different states

have been visited) and encourage the agent to explore by

providing intrinsic rewards as an inverse function of the

visitation count (i.e. by encouraging the agent to visit

new states and discouraging the agent from revisiting the

same states). Novelty-based algorithms have been suc-

cessfully applied to solve various Atari games, navigation

tasks, [23,19�,13,16,15] and have also gained popularity

in the evolutionary computing literature where they

have been shown to find solutions which algorithms

relying on solely optimizing the fitness function could

not find [24].

Algorithms based on prediction errors rely on the hypoth-

esis that the brain is intrinsically motivated to pursue

tasks in which one’s predictions are always improving

[20,25,26,27�]. Algorithms that generate intrinsic rewards

as a function of prediction errors predict the next state

(given the current state and the executed action) and then

minimize the error compared to the predicted state (after

they execute the action to move to that state). As the

agent explores more and the state predictions become

more accurate, the error decreases leading to the agent

becoming curious about other states. Since the rewards

are generated based on how hard it is for the agent to

predict the next state, prediction-error-based agents end

up exploring the environment by pursuing tasks that are

neither too easy or too difficult and instead by focusing on

tasks on which their prediction errors are constantly

reducing. This is because when the environmental com-

plexity is too high for the agent, the agent would not

improve its prediction error and such tasks would not

generate rewards. When the environmental complexity is

too low, then those tasks would be learned by the agent

very quickly, leading to no further generation of intrinsic

rewards (as the prediction error will quickly go down to

zero). Curiosity thus seems to be a matter of finding the

right balance so that the agent is constantly maximizing

the rate of reducing prediction errors. Prediction-error-

based algorithms have been also shown to be succesful on

a variety of RL tasks such as solving atari games and

performing navigation [14��,18,28].

Psychological theories of curiosity
Some of the most influential studies in psychology on

curiosity were conducted by the British and Canadian

psychologist Daniel Berlyne. In one paper, Berlyne
Current Opinion in Behavioral Sciences 2020, 35:118–124 
conducted a series of experiments that demonstrated that

rats spend more time exploring a novel stimulus com-

pared to a familiar stimulus and as they become more

familiar with the novel stimulus, they spend less time

exploring it [29]. From these experiments, Berlyne pro-

posed that novelty affects an organism’s receptor by

making the organism more ‘curious’ and described nov-

elty as a driving force that motivates an organism to seek

out novel stimuli which diminishes as an organism gains

more familiarity with a stimulus. Berlyne’s novelty-based

theory of curiosity has since been supported by various

empirical studies as well as neuroscientific studies that

show that novel stimuli activate reward-responsive areas

in the brain [30–33].

In another set of studies, Berlyne studied how stimulus

complexity and incongruity affects curiosity. Through

various experiments on human participants, Berlyne

found that people spend more time exploring stimuli

that are more complex or incongrous to them and that

people are drawn towards optimally incongruent or sur-

prising events [34,35]. These findings led to the devel-

opment of an alternative perspective on curiosity which

posits that curiosity is a function of stimulus complexity

and is driven by stimuli that are neither too simple nor too

complex [36,37]. A number of empirical studies have

further supported this by showing that curiosity is an

inverted U-shaped function of knowledge, with people

showing the highest curiosity for topics for which they

have moderate knowledge about [38,39]. This perspec-

tive is in line with prediction-error-based approaches as

reducing prediction errors are similar to reducing incon-

gruity. Researchers have also studied the influence of task

difficulty on curiosity and shown that, similar to the effect

of complexity, people spend most time exploring tasks

that are moderately difficult [40,41]. More recently, stud-

ies have shown that stimuli that trigger prediction errors

not only evoke greater curiosity, but are also remembered

and recalled more better, suggesting possible pathways

through which prediction errors and curiosity enhance

memory encoding [42–45].

The function of curiosity
Both novelty-error-based and prediction-error-based

approaches have found support in the machine learning

as well as the psychology literature. However, in both

these literatures, it is not yet clear under which situations

which of the two distinct approaches are more advanta-

geous. We recently [46��] showed that different psycho-

logical theories of curiosity can be reconciled by focusing

on the abstract computational problem underlying curi-

osity and the form that the optimal solution to that

problem should take. We believe that the same frame-

work helps to understand why (and when) novelty and

prediction-error are also effective intrinsic rewards for

RL.
www.sciencedirect.com
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Our work posits that the function of curiosity is to help the

agent take actions to maximally increase the usefulness of

its knowledge. Depending on the environment, this

problem can be solved by focusing on either novelty or

prediction errors.

As an illustration, consider an agent in an environment

where rewards are far into the future and are dependent

on how the agent explores the environment in the present

(also refer to Figure 2a). More specifically, with some

probability, stimuli occur again in the future and the agent

receives a reward upon producing the correct response (or

equivalently the right action/s) to those stimuli in that

future encounter (a stimulus here can be considered

anything that has to be learnt or solved such as a puzzle,
Figure 2
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game, task, etc.). Given this, the goal of the agent is to

learn the correct response to as many stimuli as possible,

as knowing more about the environment in the present

maximizes its chances of obtaining rewards in the future.

Because the agent has limited computational resources, it

then faces the problem of deciding what to explore in the

environment in the present to maximize future rewards.

The optimal solution to this problem posits that a rational

agent should take actions that maximally increase it is the

value of its knowledge, where this value is a function of

how much the agent knows about the environment in the

present and how probable it is to encounter various

stimuli again in the future. For instance, if the agent

comes across a stimulus that is completely novel, then the
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agent should explore that stimulus. However, if the agent

believes that this stimulus will never occur again in the

future, then it is perfectly rational for the agent to not be

curious about this stimulus because knowing more about

this stimulus does not help the agent to maximize it

rewards in the future. From this perspective, the function

of curiosity is to simply help the agent take actions to

maximally increase its value of knowledge (or in other

words prioritize exploration in the present to maximize

rewards in the future).

One interesting implication of this analysis is that it shows

that the causal structure of the environment determines

the form that this optimal solution takes — whether

curiosity is driven by novelty or prediction errors (refer

to Figure 2b). More specifically, when the agent is in an

environment where the past and future occurrences of

stimuli are independent of each other, then it is rational

for the agent to explore novel stimuli (akin to novelty

based approaches). This is because, in this environment,

all stimuli are equally likely to occur again in the future

and the expected value is increased most rapidly by

learning more about the stimuli for which the agent

has least knowledge. On the other hand, when the agent

is in an environment where past and future occurrences

are related to each other, that is, the stimuli for which the

agent has had more experience with are more likely to

occur again in the future, then it is rational for the agent to

explore moderately complex stimuli (akin to prediction-

error approaches). This is because completely novel

stimuli have little chance of occurring again in the future

and therefore the expected value is increased the most by

learning more about moderately complex stimuli (as they

have a moderate chance of occurring again in the future).

From this perspective, novelty-error-based and predic-

tion-error-based algorithms are not competing

approaches, but rather different solutions to the same

computational problem albeit in different environmental

structures.

This perspective provides insights relevant to both

machine learning and psychology. First, it demonstrates

that both novelty-error-based and prediction-error-based

approaches have at their heart the same computational

problem. This could be especially relevant to artificial

intelligence, as it suggests under which environmental

settings novelty-based techniques should be preferred

over prediction-error techniques. Second, this analysis

shows that in addition to current knowledge, curiosity

is also sensitive to future probability of occurrence,

implying that people are not only sensitive to the match

or mismatch between a given stimulus and their current

or former beliefs, but also how they expect the resolution

of uncertainty to affect the future. This is relevant to both

human and artificial curiosity. For researchers in artificial

intelligence, it suggests incorporating a form of

‘usefulness’ estimation to the agents, wherein the agents
Current Opinion in Behavioral Sciences 2020, 35:118–124 
prioritize their exploration based on which states are more

likely to be encountered again. This would be especially

valuable in domains where the state space is too large. For

researchers in psychology, this offers new insights towards

understanding maladaptive curiosity — because it is opti-

mal to have a drive to explore stimuli that increase our

value of knowledge, simple miscalculations of this value

can lead people (and even animals) to become subopti-

mally curious about things that may not have any real-

world advantage [47–50] and develop a preference for

advance information-seeking even if it is costly to do so

[51–55]. Subsequently, this also offers new ways to think

about how curiosity in various learning settings can be

directed towards relevant stimuli with strategic value-

based interventions [56–58].

Conclusion
In situations where humans and machines face the same

computational problems, we can expect that they will

converge on similar solutions. We have argued that this is

the case for curiosity: both humans and machines are

seeking to maximize the value of the knowledge they

acquire about the world. Recognizing this shared problem

helps to explain why novelty and prediction-error are

important determinants of intrinsic rewards for both

systems, and when it is most appropriate to focus on

each. We anticipate that analyzing other cases where

humans and machines face the same computational pro-

blems — and recognizing when they do not — will be a

valuable tool for both artificial intelligence and cognitive

science as these fields move forward.
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124 Curiosity (exolore vs exploit)
This paper presents a rational analysis of curiosity by considering the
computational problem underlying curiosity. In doing so, this analysis
serves as a useful tool to understand the relationship between previous
distinct theories of curiosity and suggests a way to unify them into a single
framework.
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