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Abstract

While convolutional neural networks (CNNs) have come to
match and exceed human performance in many settings, the
tasks these models optimize for are largely constrained to
the level of individual objects, such as classification and
captioning. Humans remain vastly superior to CNNs in visual
tasks involving relations, including the ability to identify
two objects as ‘same’ or ‘different’. A number of studies
have shown that while CNNs can be coaxed into learning
the same-different relation in some settings, they tend to
generalize poorly to other instances of this relation. In this
work we show that the same CNN architectures that fail
to generalize the same-different relation with conventional
training are able to succeed when trained via meta-learning,
which explicitly encourages abstraction and generalization
across tasks.
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Introduction
Debates about what aspects of human learning can be
captured by artificial neural networks have played a
prominent role in the history of cognitive science (Minsky
& Papert, 1969; Rumelhart & McClelland, 1986; Pinker
& Prince, 1988; Fodor & Pylyshyn, 1988). One recent
manifestation of this question has focused on the learning
capacities of convolutional neural networks (CNNs), which
are widely used in computer vision and have been used to
capture aspects of human behavioral and neural responses
in object recognition tasks (Kubilius et al., 2019; Peterson,
Abbott, & Griffiths, 2018). Despite their strong performance
in capturing the features of objects, these models seem to
fall short when tasked with learning about relations between
objects. A growing body of research highlights these
limitations, particularly in tasks requiring abstract relational
reasoning, such as same-different classification (Fleuret et al.,
2011; Kim, Ricci, & Serre, 2018; Puebla & Bowers, 2022).

The human capacity for abstraction is based on
understanding the laws that govern relations. The most basic
of these abilities, arguably a precursor to more complex
abstract reasoning, is the same-different relation: the ability
to tell if two objects are the same or not. Extensive work
in cognitive science dating back to the 1980’s (Premack,
1983) has shown that this ability develops early on in
human childhood (Blöte, Resing, Mazer, & Van Noort,
1999), is associated with the learning of language (Lupker,
Nakayama, & Perea, 2015), and extends far and wide in the

animal kingdom, from bees to ducklings and chimpanzees
(Gentner, Shao, Simms, & Hespos, 2021). However, learning
the same-different relation has proven surprisingly difficult
for artificial neural networks. Early convolutional neural
networks were shown to have difficulty on the same-different
task in Kim et al. (2018). Subsequent work has suggested that
CNNs can learn some forms of the same-different relation
given a well-structured training regime and near-distribution
testing regime (Puebla & Bowers, 2022; Geiger, Carstensen,
Frank, & Potts, 2020), though they still struggle with true
out-of-distribution generalization. These results have led to
the tentative conclusion that CNNs may lack the inductive
biases needed to learn abstract relational information.

These negative results do not mean that neural networks
are incapable of representing the same-different relation.
As models have become larger and more advanced, we
have very recently begun to see generalizable understanding
of same-different relations emerging in state of the art
vision-transformer models pre-trained on ImageNet with
methods such as contrastive learning (Dosovitskiy, 2020;
Tartaglini et al., 2023). The observation that some very
large neural networks are able to learn this relation motivates
re-investigating whether shallower CNNs have this capacity.

Previous attempts to train CNNs on the same-different
relation have used standard techniques for training neural
networks, in which a task (or set of tasks) is defined and

Figure 1: Example of a same-different task as it is posed to
a convolutional neural network (CNN) at test-time. Given an
image containing two objects, the CNN should return a label
of 1 if the two objects are the same or a label of 0 if they are
different (as in the example input to the left of the figure)
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the weights of the network are optimized to perform that
task (or set of tasks). Recently, researchers have begun to
explore a different technique for training neural networks,
known as meta-learning (e.g., Finn, Abbeel, & Levine, 2017).
Using this technique, a set of neural networks are each
trained to perform a different task, and the shared initial
weights of those neural networks are optimized to increase
the performance of all networks across all tasks. The learned
initial weights encode the shared structure of the different
tasks, making it easier for the individual networks to learn to
perform those tasks. Meta-learning has been shown to allow
simple neural networks to quickly learn to perform tasks that
previously were assumed to require symbolic representations,
such as learning formal languages (e.g., McCoy & Griffiths,
2023). In this paper, we explore whether this tendency to find
generalizable abstractions is sufficient to allow CNNs to learn
the same-different relation.

Background
Convolutional neural networks
Convolutional neural networks are a type of multi-layered
artificial neural network that takes pixel-level visual data as
input (LeCun, Bengio, & Hinton, 2015). Key components of
the CNN architecture take inspiration from biological visual
systems (Hubel, Wiesel, et al., 1959). The initial layers of
the network learn filters that are applied across an image,
and their outputs are spatially pooled to form representations
that are translation-invariant and expressed at different scales.
The learned filters detect features, such as edges, which are
useful for image classification and related tasks. CNNs first
came to prominence for their remarkable image classification
ability (Krizhevsky, Sutskever, & Hinton, 2012), and have
since matched or surpassed human performance on a variety
of visual tasks (Alzubaidi et al., 2021).

Learning the same-different relation
Various forms of CNNs have been trained and tested on
relational visual tasks. A common dataset used for training
and evaluation is the Synthetic Visual Reasoning Test (SVRT)
dataset, a battery of 23 different visual-relation tasks (Fleuret
et al., 2011). In early experiments, CNN architectures
that were very successful in image classification tasks were
largely unsuccessful on the visual-relation tasks in the SVRT
dataset (Stabinger, Rodrı́guez-Sánchez, & Piater, 2016). This
raised the question of whether CNNs lack the human-like
inductive biases necessary for relational reasoning.

As CNN architectures improved and showed heightened
performance on computer vision problems, further
studies investigated whether these more sophisticated
architectures were able to solve visual relation tasks such
as same-different. A study using a CNN architecture
with increased multi-layered attention mechanisms, for
example, showed that the more sophisticated architecture
significantly improved performance on a range of relational
classification tasks (Wang, Cao, De Melo, & Liu, 2016).

This suggested that, under certain circumstances, forms of
the CNN architecture might be capable of achieving strong
performance on relational tasks. However, further studies
on same-different tasks in particular yielded mixed results.
A recent study investigated various CNN architectures on
same-different tasks and found that while the networks could
perform well on same-different tasks that were similar to
the tasks in their training data, their performance dropped
significantly when tested on another family of same-different
tasks that were substantially different from those in the
training data (although the abstract visual relation tested was,
of course, the same) (Puebla & Bowers, 2022). This outcome
was also true for larger, deeper, more sophisticated CNN
architectures such as ResNets, leading to the conclusion that
abstract same-different relations were difficult or impossible
for CNNs to learn in a generalizable manner.

Meta-learning
While previous work has suggested that these results indicate
that CNNs may not have the architectural inductive biases
needed to robustly learn abstract visual relations such as
same-different, another source of relevant inductive biases is
the training paradigm that is used. All evaluations of CNNs
in previous work have learned a set of weights by training
models to perform a single task or set of tasks simultaneously.
In this paper we use a different approach: meta-learning. In
particular, we focus on the Model-Agnostic Meta-Learning
(MAML) algorithm (Finn et al., 2017), which is designed to
find the optimal starting point in weight space for a set of
related tasks, such that the model can rapidly generalize to
new, unseen tasks.

Given a set of tasks T such that each task t ∈ T has
an associated loss function Lt , conventional neural network
training seeks a set of weights for a neural network φ that
minimizes the loss function

Lconventional = ∑
t∈T

Lt(φ) (1)

which is simply the sum of the losses across different tasks.
By contrast, MAML seeks to find the initial weights θ that
minimize the loss function

LMAML = ∑
t∈T

Lt(φt) for φt = θ−α∇Lt(θ) (2)

where φt are a set of weights adapted for performing task t via
gradient descent applied to the loss Lt of task t starting at the
initial weights θ (with α being a learning rate). The resulting
θ should capture the regularities shared by the tasks in T ,
supporting abstraction and generalization (see Figure 2).

In this work, we explore whether meta-learning allows
convolutional neural networks to form generalizable
representations of the same-different relation, challenging
previous accounts suggesting certain neural architectures
lack the capacity to capture same-different reasoning (Kim
et al., 2018; Puebla & Bowers, 2022). We replicate previous
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Figure 2: Meta-learning initial weights for generalization.
A neural network with a standard initialization (θ) typically
requires a large amount of training to learn a specific task.
Meta-learning optimizes the network’s initialization to create
a meta-learned initialization θ∗ from which a range of
different tasks can be learned with a small amount of training.
In our setting, we use meta-learning not for its typical purpose
of enabling the rapid learning of many tasks but rather as a
way to encourage abstraction.

studies testing CNNs of varying depths and switch the
conventional training regime to one based on meta-learning,
looking for the emergence of a reliable generalization of
same-different understanding across novel stimuli and in
novel tasks. Importantly, the networks that we train are
exposed to exactly the same training data regardless of
whether the networks are optimized using conventional
training or meta-learning; the only difference is the type of
optimization algorithm that is applied to the data. Matching
the data allows us to isolate the effect of this algorithm.

Replicating Previous Work
Throughout all experiments, we replicate the same CNN
architectures evaluated by Kim et al. (2018), who tested
performance on the SVRT dataset for CNNs of varying
depths and convolutional filter sizes. In addition to the
original Problem 1 from the SVRT challenge (pictured
in Figure 1) we also train on 9 same-different tasks
created by Puebla and Bowers (2022), which augment the
standard SVRT dataset with new shapes such as arrows,
irregular polygons, and shapes with random colors (the
full set is shown in Figure 3). In the standard learning
setting, same-different tasks are processed as individual
input/label pairs: an image and a corresponding 0/1 label for
different/same (Figure 1 illustrates this at test-time, where
the label is withheld). Note that, in these datasets, what
constitutes a distinct “task” is a particular type of shape over
which same-different judgments must be made. For instance,
one task is based on irregular polygons while another is based
on regular polygons. Thus, all tasks target the same abstract

relation (same-different), but they instantiate this relation
with different types of shapes.

To establish a baseline, we first evaluate the performance of
three CNN architectures in this setting, training each model
end-to-end on all 10 distinct tasks, with equal frequency for
each task and for the categories of same and different. We
test the CNN architectures used by Kim et al. with 2, 4, and 6
convolutional layers using max pooling, batch normalization,
and ReLU activation, followed by 3 fully connected layers of
1024 units each and a 2-dimensional classification layer. All
models are trained with Adam optimization (Kingma & Ba,
2015) and a base learning rate of 1e-3.

We then test each model on unseen same-different
examples from the 10 tasks the model has been trained on, as
a basic in-distribution test of learning these tasks. Averaging
over 10 seeds run to convergence, we find performance
stabilizing almost exactly at the level of random guessing
for all three model depths (Figure 4, left); since there are
two possible labels (same and different), random guessing
would yield an accuracy of 50%. As an exception to
this general trend, some conditions do manage to reliably
converge to high-accuracy solutions (in particular, a 2-layer
CNN achieves 99 percent test-time accuracy on the scrambled
task and 80 percent accuracy on the lines task). A potential
explanation is that the scrambled and lines tasks are the only
two tasks in the dataset that feature only straight, right-angled
lines, a low-level feature that develops earlier in shallower
networks, but may be overlooked in deeper networks.

Meta-learning Same-Different In-Distribution
Having established the performance of a class of CNNs on the
augmented same-different dataset, we move to formalizing
the meta-learning setup of the task. Without changing
the model architecture or the content or quantity of data,
we change the learning algorithm from standard stochastic
gradient descent to MAML in order to explore the impact of
using meta-learning.

In the meta-learning setting, we generate ‘episodes’ from
each task consisting of labeled support sets for task-specific
adaptation and query sets with held-out labels for evaluation.
A set of examples is sampled and then randomly partitioned
into a support set and a query set. The meta-learner
then has a chance to ‘practice’ on the episode’s support
set before outputting predictions for each query image.
Crucially, each episode contains examples from exactly one
task. Within-episode learning constitutes the ‘inner loop’ of
standard learning from the support set – the gradient step
taken from the initial weights θ – for which we provide a
‘fast’ inner learning rate of 1e-2. To aid the model in learning
from different episode structures, we use variable support set
sizes of evenly distributed same/different examples (4, 6, 8,
and 10 examples) and fixed query sizes (3 examples, always).

The outer loop consists of the transfer of learning across
task-specific episodes and is associated with the more gradual
transfer of knowledge between tasks, for which we assign a
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Figure 3: The Same-Different dataset from Puebla and Bowers (2022). Each column shows one of the nine tasks in this dataset,
where all tasks are based around the same-different relation but use different types of shapes to instantiate that relation. Each
task has a stochastic function generator that ensures each example is unique within any given dataset.

‘slower’ learning rate of 1e-4 and use Adam optimization.
By using this outer-loop update which optimizes for

generalization across examples, we intend to create pressure
for the learner to go beyond example-specific properties
toward a more generalizable notion of sameness/difference
(see Discussion). This generality is further encouraged by
sampling episodes alternating across task types and support
sizes. We ensure that our meta-learning models (described in
this section) and our vanilla models (described in the previous
section) receive exactly the same training data as follows:
We first generate the dataset for the meta-learning setting as
described in the previous paragraphs, sampling a support set
and a query set for each of the 1000 episodes that we produce
for each of the 10 tasks. The training data used for the vanilla
models in the previous section are then created by ‘flattening’
this meta-learning dataset – that is, the vanilla training set is
the concatenation of all support sets and all query sets from
all episodes in the meta-learning training set.

As a first step, we test the three previously described CNN
architectures in our meta-learning setup by meta-training on
1000 episodes from each of the 10 tasks and testing on unseen
episodes from the same tasks. A 2-layer CNN performs
at chance on the majority of tasks seen in-distribution, but
we see a striking increase in performance as we increase
convolutional depth (Figure 4, right). A CNN with 6
convolutional layers performs at almost perfect accuracy
across all tasks it has been meta-trained on, and its accuracy
is consistent across seeds.1

This suggests that these deeper networks are better able
to respond to the pressure for abstraction that we intend
to create via meta-learning. The bias-variance tradeoff
formalizes this observation: deeper networks have more
tunable parameters, resulting in less bias and an increased
ability to represent variance in the dataset. However,
if a neural network can perform well on data sampled
in-distribution (as shown here), one possible explanation is
that the network has simply learned to memorize shallow
properties of its data distribution, and not to generalize the

1For full results, see Appendix A here:
https://arxiv.org/abs/2503.23212

abstract notion of sameness and difference—a concern that
motivates the analyses in the next section.

Meta-learning Same-Different
Out-of-Distribution: Leave-One-Out

In this section, we aim to further investigate the ability
of meta-trained CNNs to capture a generalizable notion of
sameness/difference by testing on unseen, out-of-distribution
tasks. To set this up, we perform a leave-one-out test,
training the previously highest performing model (the 6-layer
CNN) on the same battery of same-different classification
problems, but crucially holding out one task from training
for testing. In this way, we systematically test the model
on out-of-distribution tasks it has never seen during training.
We do this for all tasks and meta-train to convergence with
MAML, using the same parameters described above.

The results are shown in Figure 5. We intentionally
replicate the structure of this experiment from Puebla and
Bowers (2022), who found that even much larger, pre-trained
ResNet architectures were unable to reliably generalize
out-of-distribution on this set of tasks using standard learning
techniques. By using this setup in a meta-learning context, we
see that even much shallower CNNs without pre-training can
reliably generalize to even the most challenging OOD tasks.

Classification accuracies were at or about 95 percent in all
tasks except for three (arrows, lines, and scrambled). These
three tasks were also found to be hardest for ResNets in
the analysis performed by Puebla and Bowers (2022). In
our case, however, meta-learning allows even these shallower
CNNs to outperform ResNets in each of these ‘failure’ cases
by significant margins, and with much less data. For example
in the worst performing task (‘lines’), previous results showed
ResNet50 and ResNet152 performing at chance accuracy,
whereas we show a meta-trained CNN consistently performs
above chance (where chance level is 50%). 2

2Although Puebla and Bowers (2022) did not release exact
details on data quantity during training, ImageNet pretraining allows
the models to see over 1 million images prior to fine-tuning on the
same-different task.
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Figure 4: In-distribution same-different classification accuracy for a vanilla-learner (left) versus a meta-learner (right) by task
and architecture. The vanilla learner is trained using standard gradient descent, while the meta-learner is trained with the
algorithm MAML in a way that is intended to encourage abstraction. Each bar is one version of the same-different task, where
the task versions differ in terms of what types of shapes are used to illustrate same-different relations. These evaluations are
in-distribution because the models’ training data always contained examples of the same type being evaluated on. “Original”
represents task #1 from the SVRT dataset. Error bars represent standard deviations from mean accuracy across 10 randomly
initialized seeds.

Discussion

By using a training algorithm based on meta-learning,
we have shown that CNNs can successfully learn the
same-different relation even though they struggle to do
so when they are trained with more standard optimization
approaches. CNNs trained via meta-learning can perform
same-different classification with high accuracy (exceeding
95% in most conditions) even when the input is based on
types of images that never appeared in the meta-training data,
indicating that these networks have internalized a version of
same-different relations that is abstract enough to generalize
to new types of shapes. While much work has recently

focused on novel architectures dedicated to improving
relational reasoning in vision models (Webb, Sinha, & Cohen,
2021; Kerg et al., 2022; Altabaa, Webb, Cohen, & Lafferty,
2024; Webb et al., 2024), our results demonstrate that an
alternative pathway toward enhanced relational reasoning
is via the nature of the training algorithm: optimizing a
standard CNN (without architectural modifications) using
meta-learning rather than standard learning.

What is it about meta-learning that leads to the enhanced
same-different reasoning we have observed? One possible
explanation is that it may provide an incentive for abstraction.
To understand this point, it is useful to compare meta-learning
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Figure 5: Out-of-distribution same-different classification accuracy for a CNN trained using meta-learning. Each bar shows
one version of the same-different task, where the versions differ in terms of the types of shapes used to illustrate same-different
relations. A separate CNN was meta-trained for each bar, where the meta-training process included all tasks except the one to
be evaluated on, and then evaluated on that withheld task. Thus, the task being evaluated on was always out-of-distribution.

to standard learning. In standard learning, a network is
shown a batch of examples, and its weights are then adjusted
such that, if it were to process those same examples again,
it would achieve a smaller error on them. In contrast, in
meta-learning, each batch of examples (i.e., each episode)
has two parts: the support set and the query set. A copy of
the network is trained on the support set and evaluated on
the query set, and the original network’s weights are then
adjusted such that, if it were trained again on the support
set, its performance on the query set would improve. Thus,
meta-learning incentivizes the model to be able to learn from
one set of examples (the support set) in a way that is useful
for processing a different set of examples (the query set). This
pressure for generalizing from one set of examples to another
might facilitate abstraction because low-level features (e.g.,
the angles of particular shapes) are unlikely to be broadly
useful, whereas more abstract features (e.g., same-different
information) will have more general utility.

These results add to a growing body of evidence that
meta-learning can enable neural networks to overcome some
of their most notorious limitations (Irie & Lake, 2024). For
instance, meta-learning can increase neural network abilities
in few-shot learning (Hochreiter, Younger, & Conwell,
2001; McCoy & Griffiths, 2023), compositionality (Lake &
Baroni, 2023), and out-of-distribution generalization (Finn
et al., 2017). However, the nature of the advantage that
meta-learning provides is different in our work than in
previous work. Traditionally, meta-learning serves as a
targeted weight-initialization method: it is used to identify
a starting point from which a network can efficiently learn

many different tasks. This starting point encodes inductive
biases that have been acquired through the meta-learning
process and that enable the network to subsequently learn
and generalize more effectively. In contrast, our use of
meta-learning functions more as a training algorithm than as a
weight initialization algorithm. Rather than having a network
meta-learn from episodes that each instantiate a different
task, we have networks meta-learn from episodes that all
instantiate the same task (same-different classification) but
with variation in the types of inputs that are used. Therefore,
rather than instilling the ability to learn many different tasks
(as is more typical in meta-learning), our usage modifies the
way in which the network learns a single task. Specifically,
as argued in the previous paragraph, the goal in our usage of
meta-learning is to optimize for cross-example generalization
in a way that facilitates abstraction. Our results suggest that
the approach has indeed had this effect.

Modern computer vision has advanced largely through
optimizing classification objectives for individual objects,
but what can be left out in the process is the rich
‘invisible’ space between objects that humans seem to
make sense of effortlessly: how individual objects relate
to one another. By using meta-learning to train a neural
network on same-different tasks, this work provides a path
to imbue stronger pressures for neural networks to reason
relationally across novel stimuli, using the higher-order
nature of the gradient updates in meta-learning to encourage
the development of more abstract relational information
inside neural networks.
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