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One of the most striking features of human cognition is the ability to plan. Two aspects
of human planning stand out—its efficiency and flexibility. Efficiency is especially
impressive because plans must often be made in complex environments, and yet
people successfully plan solutions to many everyday problems despite having limited
cognitive resources' . Standard accounts in psychology, economics and artificial
intelligence have suggested that human planning succeeds because people havea
complete representation of atask and then use heuristics to plan future actions in that
representation*™. However, this approach generally assumes that task
representations are fixed. Here we propose that task representations can be
controlled and that such control provides opportunities to quickly simplify problems
and more easily reason about them. We propose a computational account of this
simplification process and, in aseries of preregistered behavioural experiments, show
thatitis subject to online cognitive control>** and that people optimally balance the
complexity of a task representation and its utility for planning and acting. These
results demonstrate how strategically perceiving and conceiving problems facilitates

the effective use of limited cognitive resources.

Inthe shortstory On Exactitudein Science, Jorge Luis Borges describes
cartographers who seek to create the perfect map—one thatincludes
every possible detail of the country it represents. However, this inno-
cent premise leads to an absurd conclusion: the fully detailed map
of the country must be the size of the country itself, which makes it
impractical for anyone to use. Borges’allegory illustrates animportant
computational principle. Namely, useful representations do not simply
mirror every aspect of the world, but rather pick out a manageable
subset of details that are relevant to some purpose (Fig. 1a). Here we
examine the consequences of this principle for how humans flexibly
construct simplified task representations to plan.

Classictheories of problem solving distinguishbetween representing
ataskand computingaplan*"', For example, Newell and Simon” intro-
duced heuristic search, in which a decision-maker has afull representa-
tionof atask (suchasachessboard, chess pieces and the rules of chess),
and then computes a plan by simulating and evaluating possible action
sequences (thatis, sequences of chess moves) to find one that s likely
to achieve a goal (for example, checkmate). In artificial intelligence,
the main approach to making heuristic search tractable involves limit-
ing the computation of action sequences (such as thinking only a few
moves into the future, or examining only moves that seem promising)®.
Similarly, psychological research on planning largely focuses on how
limiting, prioritizing, pruning or chunkingaction sequences canreduce
computation® 11820,

However, people are not necessarily restricted to a single, full or
fixed representation for a task. This matters as simpler representa-
tions can make better use of limited cognitive resources when they are

tailored to specific parts or versions of a task. For example, in chess,
considering the interaction of a few pieces, or focusing on part of the
board, is easier thanreasoning about every piece and part of the board.
Furthermore, it affords the opportunity to adapt the representation,
tailoring it to the specific needs of the circumstance—a process that
we refer to as controlling atask construal. Although studies show that
people canflexibly form representations to guide action (such as form-
ing the ad hoc category of ‘things to buy for a party’ when organizing
asocial gathering®), a long-standing challenge for cognitive science
and artificial intelligence is explaining, predicting and deriving such
representations from general computational principles®?,

Our approachto studying how people control task construals starts
with the premise that effective decision-making depends on making
rational use of limited cognitive resources'. Specifically, we derive how
anideal, cognitively limited decision-maker should form value-guided
construalsthat balance the complexity of arepresentationandits use
for planning and acting. We then show that preregistered predictions
of this account explain how people attend to task elements in several
planning experiments (see Data availability). Our analysis and findings
suggest that controlled, moment-to-moment task construals have a
key role in efficient and flexible planning.

Task construals from first principles

We build on models of sequential decision-making expressed as
Markov decision processes*. Formally,atask 7 consists of astate space
S; an initial state sy € S; an action space 4; a transition function
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Fig.1| Construal and planning. a, Asatellite photo of Princeton, New Jersey,
USA (top) and maps of Princeton for bicycling versus automotive use cases
(bottom). Like maps and unlike photographs, a decision-maker’s construal picks
outamanageable subset of details from the world relevant to their current goals.
Imagery ©2022 Google, Map data2022.b, Standard modelsassume thata
decision-maker computesa plan, 7, with respect to a fixed task representation,
T,and thenusesittoguide theiractions, a. ¢, According to our model of
value-guided construal, the decision-maker forms asimplified task construal,
T.,thatisused tocomputeaplan, .. This process can be understood as two
nested optimizations: an ‘outer loop’ of construaland an‘innerloop’ of planning.

P:Sx Ax S~ [0,1];and autility functionU: S > R. Instandard formu-
lations of planning, the value of a planm: Sx A~ [0, 1] from a state
sis determined by the expected, cumulative utility of using that
plan®:V,(s) = U(s) + X, m(als) X, P(s’ls, a) V,(s"). Standard planning
algorithms’ (such as heuristic search methods) attempt to efficiently
compute plans that optimize value by directly planning over a fixed
taskrepresentation, 7, thatis not subject to the decision-maker’s con-
trol (Fig.1b). Our aimis to relax this constraint and consider the process
of adaptively selecting simplified task representations for planning,
which we call the construal process (Fig. 1c).

Intuitively, a construal ‘picks out’ details in a task to consider. Here
we examine construals that pick out cause-effect relationshipsin a
task. This focus is motivated by the intuition that a key source of task
complexity is the interaction of different causes and their effects with
oneanother.For example, consider interacting with various objectsin
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someone’s living room. Walking towards the couch and hitting itis a
cause-effect relationship, while pulling on the coffee table and mov-
ingit might be another suchrelationship. These individual effects can
interactand may or may notbe integrated into asingle representation
of moving around the living room. For example, imagine pulling on
the coffee table and causing it to move, but in doing so, backing into
the couch and hitting it. Whether or not a decision-maker anticipates
and represents the interaction of multiple effects depends on what
causes and effects are incorporated into their construal; this, in turn,
can affect the outcome of behaviour.

Related work has studied how attention guides learning about how
different state features predict rewards?. By contrast, to model con-
struals, we require a way to express how attention flexibly combines
different causes and their effects into an integrated model to use for
planning. For this, we use a product of experts?, a technique from the
machinelearning literature for combining distributions that is similar
to factored approximations used inmodels of perception®. Specifically,
we assume that the agent has N primitive cause-effect relationships
that each assign probabilities to state, action and next-state transitions,
¢:SxAxS~>[0,1], i=1,...,N.Each @(s’ls,a)isa potential function
representing, for example, the local effect of colliding with the couch
or pulling on the coffee table. Then a construal is a subset of these
primitive cause-effect relationships, c € {@,,..., ¢}, that produces a
task construal, 7, with the following construed transition function:

P(sls, @)= [] ¢fs'ls, ). @
pisc

Here, we assume that task construals (7.) and the original task (7)
share the same state space, action space and utility function. But, cru-
cially, the construed transition function can be simpler than that of
the actual task.

Ideally, adecision-maker would select atask construal that includes
only those elements (cause-effect relationships) thatlead to success-
ful planning, excluding any others so as to make the planning prob-
lem as simple as possible. To make this intuition precise, it is essential
to first distinguish between computing a plan with a construal and
using the planinduced by a construal. In our example, suppose the
decision-maker forms a construal of their living room thatincludes the
effect of pulling on the coffee table but ignores the effect of colliding
with the couch. They might then compute a planin which they pull on
the coffee table without any complications, but when they use that
planin the actual living room, they inadvertently stumble over their
couch. This particular construal is less than optimal.

Thus, we formalize the distinction between the computed plan asso-
ciated with a construal and its resulting behavioural utility: if the
decision-maker has a task construal 7., denote the plan that optimizes
itasm. Then, the utility of the computed plan when starting at state s,
isgiven by its performance wheninteracting with the actual transition
dynamics, P:

U(me) = U(so) + 2. me(also) Y. P(s'lso @) Vi (5)- 2

Put simply, the behavioural utility of a construal is determined by the
consequences of usingit tocompute a plan and thenact according to
that planinthe actual task.

Havingestablished the relationship between a construal andits util-
ity, we can define the value of representation (VOR) associated with a
construal. Our formulation resembles previous models of resource
rationality?and the expected value of control® by discounting utilities
with acognitive cost, C. This cost could be further enriched by specify-
ing algorithm-specific costs® or hard constraints®®. However, our aim
istounderstand value-guided construal with respect to the complexity
of the construal itself and with minimal algorithmic assumptions. To
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Fig.2|Value-guided construal predicts how people will formrepresentations
thatare simple but useful for planning and acting. These predictions were
testedinanew paradigminwhich participants controlled ablue circleand
navigated mazes composed of centre black wallsin the shape ofacross, blue
tetromimo-shaped obstacles, and ayellow goal state withashrinking green
square. We assume thatattentionto obstaclesasaresult of construalis reflected
inmemory of obstacles and used two types of probes to assess memory. a, Inour
initial experiment, the participants were shown the maze and navigated to
thegoal. The dashed lineindicates an example path. After navigating,

this end, we use a cost that penalizes the number of effects considered:
C(c) = [cl, where|c|is the cardinality of c. Intuitively, this cost reflects
the descriptionlength of aprogramthat expresses the construed tran-
sition function in terms of primitive effects®. It also generalizes recent
economic models of sparsity-based behavioural inattention®. The VOR
for construal cis then its behavioural utility minus its cognitive cost:

VOR(c) = U(m,) - C(c). 3)

Inbrief, weintroduce the notion of atask construal (equation (1)) that
relaxes the assumption of planning over a fixed task representation. We
thendefine an optimality criterion for a construal based onits complex-
ity and its utility for planning and acting (equations (2) and (3)). This
optimality criterion provides anormative standard that we can use to ask
whether people form optimal value-guided construals®?*. Note that the
question of precisely how people identify or learn optimal construals is
beyond the scope of our current aims. Rather, here our goalis to simply
determine whether their planning is consistent with optimal construal.
If so, then understanding how people achieve (or approximate) this
ability will be akey direction for future research (see the Supplemen-
tary Discussion for details about construal optimization algorithms).

A paradigm for examining construals

To examine whether people form construals that optimally balance
complexity and utility, we designed a paradigm analogous to the exam-
pleinFig.1a,in which participants were shown atwo-dimensional map

the participants were given awareness probes in which they were asked to report
theirawareness of each obstacle onaneight-pointscale (for analyses, responses
werescaledtorange from0to1).b,Inasubsequent experiment, obstacles were
visible only before moving to encourage planning up front, and participants were
givenrecall probesinwhichthey were shown apair of obstaclesingreenand
yellow, only one of whichhad been presentinthe maze that they had just
completed. The participants were thenasked whichone had beenin the maze as
wellastheir confidence.

of amaze and had tomove ablue dot toreach agoal location. Oneach
trial, the participants were shown a new maze composed of a start-
ing location, a goal location, centre black walls in the shape of a plus
symbol (+) and an arrangement of blue obstacles. The goal, starting
state and the blue obstacles (but not the centre black walls) changed
onevery trial, which required participants to examine the layout of the
maze and plan an efficient route to the goal (Fig. 2a). In our framework,
each obstacle corresponds to a cause-effect relationship, ¢,—that is,
attempting to move into the space occupied by the obstacle and then
being blocked. This is analogous to the effect of being blocked by a
piece of furniture in our earlier example.

Two key features make our maze-navigation paradigm useful for
isolating and studying the construal process. First, the mazes are fully
observable: completeinformationabout the taskisimmediately acces-
sible from the visual stimulus. Second, each instance of amaze emerges
fromaparticular composition of individual elements (for example, the
obstacles). This means that, although all of the components of a par-
ticular maze areimmediately accessible, participants need to choose
which ones to integrate into an effective representation for planning
(thatis, selectaconstrual). Fully observable but compositionally struc-
tured problems occur routinely in everyday life—for example, using a
map to navigate through exhibits in a museum—as well as in popular
games, such asin chess, figuring out how to move one’s knight across
aboard occupied by an opponent’s pieces. By providing people with
immediate access to all of the components of a task while planning,
we can examine which ones they attend to versus ignore and whether
these patterns of awareness reflect a process of value-guided construal
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Fig.3|Initial experimentresults. In our initial planning experiment (out of
four), each person (n=161independent participants) navigated 12 2D mazes,
each of whichhad 7 blue tetronimo-shaped obstacles. To assess whether
attentionto obstaclesreflects a process of value-guided construal, the
participants were given an awareness probe (Fig. 2a) for each obstacleineach
maze. a, Forour firstanalysis, we split the set of 84 obstacles across mazes on
the basis of whether value-guided construal assigned a probability of less than
orequalto 0.5orgreater than 0.5. The participants’ mean awareness responses
corresponding tothe two sets of obstaclesis shown (<0.5ingrey, >0.5in blue;
individual by-obstacle mean awareness underlying the histograms are
represented underneath). We then similarly split the obstacles on the basis of

(seethe ‘Value-guided construal’ sectioninthe Methods and the Code
availability). Furthermore, this general paradigm can be used in con-
cert with several different experimental measures to assess atten-
tion (Extended Data Figs. 1-3, Data availability and Supplementary
Methods).

Traces of construals in people’s memory

We assume that the obstaclesincluded in a construal will be associated
with greater awareness and therefore memory; accordingly, we began
by probing memory for obstacles after participants completed each
maze to test whether they formed value-guided construals of the
mazes. Inourinitial experiment, the participants received awareness
probes in which, after navigation, they were shown a picture of the
maze that they had just completed with one of the obstacles high-
lighted. They were then asked, “How aware of the highlighted obstacle
were you at any point?” and responded on an eight-point scale that
was later scaled to range from O to 1 for analyses (Fig. 2a). If the par-
ticipants formed representations of the mazes that balance utility and
complexity, their responses should be positively predicted by value-
guided construal. This is precisely what we found: value-guided con-
strual predicted awareness judgements (likelihood ratio test
comparing hierarchical linear models with and without z-score normal-
ized value-guided construal probabilities: X;?= 2,297.21, P < 1.0 x107%;
£ =0.133, s.e. = 0.003; see the ‘Experiment analyses’ section of
the Methods; Fig. 3). Furthermore, we also observed the same results
when the participants could not see the obstacles while moving and
soneededtoplantheir routeentirely up front (X*=726.95,P<1.0 x10%;
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whether mean awareness responses were less than or equal to 0.5 or greater
than0.5and, usingay*test forindependence, found that this splitwas
predicted by value-guided construal X?=23.03, P=1.6 x 107, effect size
w=0.52,n=_84.b, Value-guided construal predictions for 3 out of the 12 mazes
usedinthe experiment. Theblue circlesindicate the starting location; the
greenand yellow squaresindicate the goal; the obstacle colours represent
model probabilities according to the colour scale. ¢, Participants’ mean
awareness judgements for the same three mazes. Obstacle colours represent
meanjudgementsaccording to the colour scale. Responses in this initial
experimentgenerally reflect value-guided construal of mazes. The participants
wererecruited through the Prolific online experiment platform.

[ =0.115,s.e.= 0.004). This was also the case when we probed aware-
ness judgements immediately after planning but before execution
(X2=679.20, P<1.0 x107'; $=0.106, s.e. = 0.004; see the ‘Up-front
planning experiment’ section of the Methods; Supplementary Analy-
ses (memory experiment)).

Although the awareness probes provide useful insights into people’s
task construals, itis a step removed from their memory (whichis already
astep removed from the construal process itself) as it requires par-
ticipants to reflect on their earlier awareness during planning. To
address this limitation, we developed a second set of critical mazes
with two properties. First, the mazes were designed to test the distinc-
tive predictions of value-guided construal (Fig. 4a). Second, these new
mazes enabled us to use amore stringent measure of memory for task
elements. Specifically, we used obstacle recall probes, in which, after
navigation, the participants were shown a grid with the black centre
walls, agreen obstacle, ayellow obstacle and no other obstacles. Either
the green or yellow obstacle had actually been present in the maze,
whereas the other obstacle did not overlap with any of those that had
been present. The participants were then asked, “An obstacle was either
intheyellow or greenlocation (notboth), which one wasit?” and could
select either option, followed by a confidence judgement on an
eight-point scale that was scaled to range from O to 1 for analyses
(Fig. 2b and Extended Data Fig. 4a). The recall probes therefore pro-
vided two measures, accuracy and confidence, and using hierarchical
generalized linear models (HGLMs) we found that value-guided con-
strual predicted both types of responses (likelihood ratio tests compar-
ing models on accuracy: X? =249.34, P<1.0 x107%; f=0.648,
s.e.=0.042; and confidence: X?=432.76, P<1.0 x107%; = 0.104,
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Fig. 4 |Critical mazesrecall experiment, model comparisons and control
studies. a, The critical mazesrecall experiment (n =78 independent
participants; one version of one of the four planning experiments) used critical
mazes thatincluded critical obstacles, defined as obstacles that are highly
relevant to planning but far from an optimal path (dashed line). Value-guided
construal predictscritical obstacles will beincludedina construal whereas
irrelevant obstacles will not, independent of the distance to the optimal path.
b, Wefitaglobal model torecall responses thatincluded the fixed parameter
value-guided construal modification model (VGC) along with ten alternative
predictors: trajectory-based heuristic search score (Traj. HS), graph-based
heuristic searchscore (Graph HS), bottleneck state distance (Bottleneck),
successor representation overlap (SR overlap), minimum navigation distance
(Nav. dist.), timestep of minimum navigation distance (Nav. dist. step), distance
to goal (Goal dist.), distance to start (Start dist.), distance to centre walls (Wall
dist.) and distance to the centre of the maze (Centre dist.) (see the ‘Experiment
analyses’section of the Methods). Each predictor was then removed from this
globalmodel, and we calculated the resulting change in fit (in AIC). Removing

s.e.=0.005; see the ‘Experiment analyses’ section of the Methods).
Moreover, whenwe gave aseparate group of participants the awareness
probes on these mazes, value-guided construal was again predictive
(awareness: X = 837.47, P<1.0 x107%; 8= 0.175,s.e. = 0.006). Thus,
using three different measures of memory (recall accuracy, recall con-
fidence and awareness judgements), we found further evidence that,
when planning, people form task representations that optimally bal-
ance complexity and utility.

Controlling for perception and execution

The memory studies provide preliminary confirmation of our
hypothesis, but they have several limitations. One is that, although

value-guided construal led to the largest degradation of fit (greatestincrease
in AIC), underscoringits unique explanatory value. ¢, In a pair of non-planning
control experiments, new participants either viewed patterns that looked
exactly like the mazes (perception control; n=88 independent participants) or
followed ‘breadcrumbs’ through the maze along a path taken by a participant
fromthe original experiment (execution control; n =80 independent
participants). The participants thenanswered the exact same recall questions.
Value-guided construal remains asignificant factor when explaining recallin
theoriginal critical mazes experiment (planning) while including mean recall
fromthe perception and execution controls as covariates (likelihood ratio test
foraccuracy: X2=106.36, P=6.2 x107%; confidence: X?=18.56,P=1.6 x1075; P
values are unmodified). This confirms that responses consistent with
value-guided construal are not asimple function of perception and execution.
The participants wererecruited through the Prolific online experiment
platform. For ¢, dataare mean +s.e.m. values for each obstacle, with relevant/
near, relevant/far (critical) and irrelevant obstacle types distinguished.

the participants were engaged in planning, they were also necessarily
engaged in other forms of cognitive processing, and these unrelated
processes may have influenced memory of the obstacles. In particular,
participants’ perception of amaze or their execution of a particular plan
through a maze may have influenced their responses to the memory
probes. This potentially confounds the interpretation of our results, as
akey partof our hypothesis is that task construals arise from planning,
rather than simply perceiving or executing.

Thus, totest that responses to the memory probes cannot be fully
explained by perception and/or execution, we administered two sets
of yoked controls that did not require planning (see the ‘Control
experiments’ section of the Methods). In the perception controls,
new participants were shown patterns that looked exactly like the
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Fig.5|Fitted value-guided construal modification. Ourinitial model of value-
guided construal focuses on whether an obstacle should or should not be
includedinaconstrual. We developed ageneralization that additionally accounts
forhowmuchanobstacleinfluences aplanifadecision-makeris optimally
modifying their construal during planning (see the ‘Value-guided construal’
section inthe Methods). We used an e-softmax noise model® for computed

mazes, but they performed an unrelated, non-planning task. Each
pattern was presented to a new participant for the same amount of
time that a participantin the original experiments had examined the
corresponding maze before moving—that s, the amount of time that
the original participant spent examining the maze to plan. The new
participant then responded to the same probes, in the same order
asthe original participant. For the execution controls, we recruited
another group of participants and gave them instructions similar
to those in the planning experiments. However, in contrast to the
original experiments, the task did not require planning. Rather,
these mazes included ‘breadcrumbs’ that needed to be collected
and that appeared every two steps. Breadcrumbs appeared along
the exact path taken by one of the original participants, meaning
that the new participant executed the same actions but without
having planned. After completing each maze, the participant
then received the same probes in the same order as the original
participant.

We assessed whether responses in the planning experiments can
be explained by a simple combination of perception and/or execu-
tion by testing whether value-guided construal remained a signifi-
cant factor after accounting for control responses. Specifically, we
used the mean by-obstacle responses from the perception and
execution controls as predictorsin HGLMs fit to the corresponding
planning responses. We then tested whether adding value-guided
construal as a predictorimproved fits. For the awareness, accuracy
and confidence responses in the recall experiment, we found that
including value-guided construal significantly improved fits (likeli-
hood ratio tests comparing models on accuracy: X2 =106.36,
P=6.2x107%; confidence: X =18.56, P=1.6 x 10~; and awareness:
X2 =55.34, P=1.0 x107") and that value-guided construal predic-
tions were positively associated with responses (coefficients for
accuracy: =0.58,s.e.=0.058; confidence: f=0.039,s.e. = 0.009;
and awareness: = 0.054, s.e. = 0.007). Thus, responses after plan-
ning are not reducible to a simple combination of perception and
execution, and they can be further explained by the formation of
value-guided construals (Fig. 4c and Supplementary Analyses
(control experiment)).
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action plansand construal modification policies and, for each planning
experimentand measure, searched for parameters that maximize the R*between
model predictions and mean by-obstacle responses. Plots comparing the scores
thatthefitted construalmodification model assigns to each obstacle with the
participants’ mean by-obstacle responses for the nine measures are shown (data
arebased onn =84,215observations taken from 825independent participants).

Externalizing the planning process

Another limitation of the previous planning experiments is that they
assess construal after planning is complete (that is, by probing mem-
ory). To obtain a measure of the planning process as it unfolds, we
developed a process-tracing paradigm. In this version of the task,
the participants never saw all of the obstacles at once. Instead, at the
beginning of the trial, after being shown the start and goal locations,
they could use their mouse to reveal individual obstacles by hovering
over them (see the ‘Process-tracing experiments’section of the Meth-
ods; Extended Data Fig. 4b). This led participants to externalize the
planning process, and their behaviour on this task therefore provides
insights into how planning computations unfolded internally. We
tested whether value-guided construal accounted for behaviour by
analysing two measures: whether an obstacle was hovered over and,
ifit was hovered over, the duration of hovering. Value-guided con-
strual was a significant predictor for both these measures on both
theinitial mazes (likelihood ratio tests comparing HGLMs for hover-
ing: X2=1,221.76, P<1.0 x 107%; = 0.704, s.e. = 0.021; and hover
duration (log-transformed time in ms): X2 =169.90, P<1.0 x 107%;
B =0.161, s.e.=0.012) and on the critical mazes (hovering:
X2=1,361.92, P<1.0 x107; = 0.802, s.e. = 0.023; hover duration
(log-transformed time in ms): X2 = 540.63, P< 1.0 x107'%; = 0.369,
s.e.=0.016). Thus, these results complement our original
memory-based measurements of people’s task representations and
strengthen the interpretation of them in terms of value-guided
construal during planning.

Characterizing value-guided construal modification

Thus far, our account of value-guided construal has assumed that
an obstacle is either always or never included in a construal. This
simplificationis useful as it enables us to derive clear qualitative pre-
dictions based on whether a planis influenced by an obstacle, but it
overlooks graded factors such as how much of a planis influenced
by an obstacle. For example, an obstacle may be relevant only for
planning afew movements around a participant’sinitial locationina



maze and, asaresult, could receive less total attention than one that
isrelevant for deciding how to actacross alarger area of the maze. To
characterize these more fine-grained attentional processes, we first
generalized the original construal selection problemto aoneinwhich
the decision-maker revisits and potentially modifies their construal
during planning. We then derived obstacle awareness predictions
based on a theoretically optimal construal modification policy that
balances complexity and utility (see the ‘Value-guided construal’
section in the Methods).

To assess value-guided construal modification, we reanalysed our
datausing three versions of the model withincreasing ability to capture
variability in responses. First, we used an idealized fixed-parameter
modelto derive asingle set of obstacle attention predictions and con-
firmed that they also predict participant responses on the planning
tasks (Supplementary Analyses (construal modification)). Second, for
each planning measure and experiment, we calculated fitted-parameter
models in which noise parameters for the computed plan and con-
strual modification policy were fit (see the ‘Value-guided construal’
section in the Methods). Scatter plots comparing mean by-obstacle
responses and model outputs for parameters with the highest R* are
shown in Fig. 5. Finally, we fit a set of models that allowed for biases
in computed plans (for example, a bias to stay along the edge of a
maze or an explicit penalty for bumping into walls) and found that
this additional expressiveness led to obstacle attention predictions
with animproved correspondence to participant responses (Supple-
mentary Analyses (construal modification)). Together, these analyses
provide additional insights into the fine-grained dynamic structure of
value-guided construal modification.

Accounting for alternative mechanisms

Although the analyses so far confirm the predictive power of
value-guided construal, it is also important to consider alternative
planning processes. For example, differential awareness could have
been a passive side-effect of planning computations, rather than an
active facilitator of planning computations as posited by value-guided
construal. In particular, participants could have been planning by
performing heuristic search over action sequences without actively
construing the task, which would have led to differential awareness
of obstacles as abyproduct of planning. Differential awareness could
also have arisen from alternative representational processes, such as
those based on the successor representation® or related subgoaling
mechanisms®®. Similarly, perceptual factors, such as the distance to
the start, goal, walls, centre, optimal path or path taken, could have
influenced responses.

On the basis of these considerations, we identified ten alternative
predictors (see the ‘Model Implementations’ section in the Methods
and the Code availability; Extended Data Figs. 5-7). All ten predictors
plus the fixed value-guided construal modification predictions were
included in global models that were fit to each of the nine planning
experiment measures and, in all cases, value-guided construal was
asignificant predictor (Extended Data Table 1; see Supplementary
Analyses (alternative mechanisms) for the same analyses with the
single-construal model).

Furthermore, to assess the relative importance of each predic-
tor, we calculated the change in fit (in terms of Akaike information
criterion (AIC)) that resulted from removing each predictor from a
globalmodel (see the ‘Experiment analyses’ section of the Methods).
Across all planning experiment measures, removing value-guided
construal led to the first or second largest reduction in fit (Fig. 4b;
Extended Data Table 1). These ‘knock-out’ analyses demonstrate the
explanatory necessity of value-guided construal. To assess explana-
tory sufficiency, we fit anew set of single-predictor and two-predictor
models using all predictors and then calculated their AAICs (see
the ‘Experiment analyses’ section of the Methods; Extended Data

Fig. 8). For all nine experimental measures, value-guided construal
was one of the top two single-predictor models and was one of the
two factors included in the best two-predictor model. Together,
these analyses confirm the explanatory necessity and sufficiency
of value-guided construal.

Discussion

Wetested the idea that, when people plan, they do so by constructing a
simplified mental representation of a problem thatis sufficient to solve
it—a process that we refer to as value-guided construal. We began by
formally articulating how an ideal, cognitively limited decision-maker
should construe a task so as to balance complexity and utility. We then
showed that preregistered predictions of this model explain people’s
awareness, ability to recall problem elements (obstacles in a maze),
confidence in recall ability and behaviour in a process-tracing para-
digm, even after controlling for the baseline influence of perception
and execution as well as ten alternative mechanisms. These findings
support the hypothesis that people make use of a controlled process
of value-guided construal, and that it can help to explain the efficiency
of human planning. More generally, our account provides aframework
for further investigating the cognitive mechanisms that areinvolvedin
construal. For example, future work can examine how construal strate-
gies are acquired or how construal selection is shaped by computation
costs, time or constraints. From a broader perspective, our analysis
suggests a deep connection between the control of construals and the
acquisition of structured representations like objects and their parts
that can be cognitively manipulated®?3, which can inform the develop-
mentof intelligent machines. Future investigation into these and other
mechanisms that interface with the control of representations will be
crucial for developing a comprehensive theory of flexible and efficient
intelligence.
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Methods

Modelimplementations

Value-guided construal. Our model assumes that the decision-maker
hasaset of cause-effectrelationships that can be combinedinto a task
construal thatis then used for planning. To derive empirical predictions
for the maze tasks, we assume aset of primitive cause-effect relation-
ships, each of which is analogous to the example of interacting with
furnitureinaliving room (see ‘A paradigm for examining construals’).
For eachmaze, we modelled the following: the default effect of move-
ment (that is, pressing an arrow key causes the circle to move in that
direction with probability 1 — £ and stay in place with probability &,
£=107%), Puove; the effect of being blocked by the centre, plus-shaped
(+)walls (thatis, the wall causes the circle to not move when the arrow
key is pressed), . and effects of being blocked by each of the N
obstacles, ¢Obstac]e,~’ i=1,..,. N.Aseverymazeincludes the same move-
ments and walls, the model selected only which obstacle effects to
include. The utility function for all mazes was given by astep cost of -1
until the goal state was reached.

Value-guided construal posits a bilevel optimization procedure
involving an ‘outer loop’ of construal and an ‘inner loop’ of planning.
Here we exhaustively calculate potential solutions to this nested opti-
mization problem by enumerating and planning with all possible con-
struals (thatis, subsets of obstacle effects). We exactly solved the inner
loop of planning for each construal using dynamic programming?*°
and then evaluated the optimal stochastic computed plan under the
actual task dynamics (thatis, equation (2)). For planning and evaluation,
transition probabilities were multiplied by a discount rate of 0.99 to
ensure that values were finite. The general procedure for calculating
the value of construals is outlined in the algorithm in Extended Data
Table2.Tobeclear, our current research strategy is to derive theoreti-
cally optimal predictions for theinnerloop of planning and outer loop
of construal in the spirit of resource-rational analysis®. Thus, this spe-
cificprocedure should not beinterpreted as a process model of human
construal. Inthe Supplementary Discussion (algorithms for construal
optimization), we discuss the feasibility of optimizing construals and
how animportantdirection for futureresearch willinvolve investigat-
ing tractable algorithms for finding good construals.

GivenaVOR function that assigns a value to each construal, we model
participantsas selecting a construal according to asoftmax decisionrule:

P(c) < exp{a 'VOR(c)}, (4)

where a > Qisatemperature parameter (for our preregistered predic-
tions a = 0.1). We then calculated a marginalized probability for each
obstacle beingincludedinthe construal, from theinitial state, s, cor-
responding to the expected awareness of that obstacle:

P(Obstacle) =) 1 [qDObstadei € C}P(c), S

where, for astatement X, 1I[X]evaluates tolif Xis trueand O if Xis false.
We implemented this model in Python v.3.7.4 using the msdm library
(see Code availability).

The basic value-guided construal model makes the simplifying
assumption that the decision-maker plans with a single static con-
strual. We can extend thisideato consider a decision-maker who revisits
and potentially modifies their construal at each stage of planning. In
particular, we can conceptualize this process in terms of a sequential
decision-making probleminduced by the interaction between task
dynamics (such asthose of amaze) and theinternal state of an agent (for
example,aconstrual)*. The solution to this problem is thenasequence
of modified construals associated with planning over different parts
of the task (for example, planning movements for different areas of
the maze).

Formally, we denote the setof possible construalsasC=P({, ,..., ¢, }),
the powerset of cause-effect relationships, and define a construal
modification Markov decision process, which has a state space cor-
responding to the Cartesian product of task states and construals,
(s,c) € §xC,and anaction space corresponding to possible next con-
struals, ¢’ € C. Having chosen a new construal ¢’, the probability of
transitioning from task state s to s’comes from first calculating ajoint
distribution using the actual transition function P(s’|s, a) and plan
. (als) and then marginalizing over task actions a:

P(s’ls, ¢’) =Y m.(als)P(s’ls, a). 6)

Inthis construal modification setting, the analogue to the VOR (equa-
tion (3)) is the optimal construal modification value function, defined
overalls, c:

V(s,c)=U(s)+max| Y P(s’ls,c)V(s’,¢’) = C(c’,0) |, @

where C(c’, ¢) =|c’ - c| is the number of additional cause-effect rela-
tionshipsinthe new construal ¢’comparedto c (for sets A and B, the set
difference A-B=1{a:a €A and a € B}).Importantly, this cost onmod-
ifying the construal encourages consistency—that is, without C(c’, ¢),
a decision-maker would have no disincentive to completely change
their construal for each state. Note that, in the special case where
c={, werecover the original static construal cost for a single step.
Finally, using the construal modification value function, we define a
softmax policy over the task/construal state space, m(c’ls, ¢)=
expla; [y, P(s’ls, c’)V(s’, c’) - C(c’, ¢)]}.Forthefixed parametermodel,
we set a, = 0.1 (as with the single-construal model).

The construal modification formulation enables us to consider not
only whether an obstacle appears in a construal, but also how long it
appearsinaconstrual. In particular, we would like to compute a quan-
tity thatis analogousto equation (5) that assigns model scores for each
obstacle. To do this, we use the normalized task/construal state occu-
pancy induced by a construal policy m from the initial task/construal
state, p, (s, Clsq, Co) = M (so, Co, S, €), wherecy= DB and M, is the succes-
sor representation under i (for a self-contained review of M,, see the
‘Successor representation-based predictors’ section below). Given a
policy m and starting task state s,, for each obstacle, we calculate the
probability of having a construal that includes that obstacle:

P(Obstacle) = 1 |:¢Obstacle,- € c} Py (S, clsg, €o)- 8)

To calculate the optimal construal modification value function, V(s,c),
foreachmaze, we constructed construal modification Markov decision
processes in Python (v.3.7.4) using scipy (v.1.5.2) sparse matrices*.
We then exactly solved for (s, ¢) using a custom implementation of
policy iteration** designed to take advantage of the sparse matrix
datastructure (see Code availability). For the fitted parameter models,
we used separate g-softmax noise models® for the computed plans,
m.(als), and construal modification policy, m(c’ls,c), and performed
agrid search over the four parameters for each of the nine plan-
ning measures (a;'€{1,3,5,7};£,€{0.0,0.1,0.2}; ;' €{1,3,5,7,9};
£.€10,0.05,0.1,0.2,0.3}).Moreover, for parameter fitting, we limited
the construals ¢’ € C to be of size three. This improves the speed of
parameter evaluation and yields results comparable to the fixed param-
eter model, which uses the full construal set. Finally, to obtain obstacle
value-guided construal probabilities, we simulate 1,000 rollouts of the
construal modification policy to estimate p, (-Iso, Co)- As with theinitial
model, we emphasize that these procedures are not intended as an
algorithmic account of construal modification but, rather, enable us
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toderive theoretically optimal predictions of the fine-grained dynam-
ics of value-guided construals during planning.

Heuristic search over action sequences. Value-guided construal pos-
its that people control their task representations to actively facilitate
planning, which, inthe maze navigation paradigm, leads to differential
attention to obstacles. However, differential attention could also occur
as a passive side-effect of planning, even in the absence of active con-
strual. In particular, heuristic search over action sequencesis another
mechanism for reducing the cost of planning, butitaccomplishes this
inadifferent way—by examining possible action sequencesin order of
how promising they seem, not by simplifying the task representation.
If people are simulating candidate action sequences through heuristic
search (and not engaged in an active construal process), differential
attention to task elements could have simply been a side effect of how
those simulations unfolded.

Thus, we wanted to derive predictions of differential awareness as
abyproduct of search overaction sequences. To do so, we considered
two general classes of heuristic search algorithms. The first, a variant
of real-time dynamic programming (RTDP)***, is a trajectory-based
searchalgorithm that simulates physically realizable trajectories (that
is, sequences of states and actions that could be generated by repeat-
edly calling a fixed transition function). The algorithm works by first
initializing a heuristic value function (for example, based on domain
knowledge). It then simulates trajectories that greedily maximize the
heuristic value function while also performing Bellman updates at simu-
lated states**. This scheme then leads RTDP to simulate statesin order
of how promising they are (according to the continuously updated heu-
ristic value function) until the value function converges. Importantly,
RTDP canend up visiting afraction of the total state space, depending
onthe heuristic. Ourimplementation was based on the labelled RTDP
algorithm of Bonet & Geffner*, which additionally includes alabelling
scheme that marks states where the estimate of the value function has
converged, leading to faster overall convergence.

Toderive obstacle awareness predictions, we ran RTDP (implemented
inmsdm; see Code availability) on each maze and initialized it with a heu-
ristic corresponding to the optimal value function assuming that there
are plus-shaped walls but no obstacles. This models the background
knowledge that participants have about distances, while also providing
afaircomparisonto theinitial information provided to the value-guided
construalimplementation. Moreover, if at any point the algorithm had
tochoose actions on the basis of an estimated value, ties were resolved
randomly, making the algorithm stochastic. For each maze, weran200
simulations of the algorithm to convergence and examined which states
were visited by the algorithm over all simulations. We calculated the
mean number of times that each obstacle was ‘hit’ by the algorithm,
where a hit was defined as a visit to a state adjacent to an obstacle such
thatthe obstacle wasin between the state and the goal. As the distribu-
tion of hit counts has along tail, we used the natural log of hit counts
+1 as the obstacle hit scores. The reason why the raw hit counts have a
longtailis duetothe particular way in which RTDP calculates the value
ofregions where the heuristic value is much higher than the actual value
(for example, dead ends in a maze). Specifically, RTDP explores such
regions until it has confirmed that itis nobetter thanan alternative path,
which cantake many steps. More generally, trajectory-based algorithms
arelimited inthat they can only update states by simulating physically
realizable trajectories starting from the initial state.

The limitations of trajectory-based planning algorithms motivated
our use of asecond class of graph-based planning algorithms. We used
LAO™¢, aversion of the classic A"algorithm* generalized tobe used on
Markov decision processes (implemented in msdm; see Code availabil-
ity).In contrast to trajectory-based algorithms, graph-based algorithms
such as LAO" maintain a graph of previously simulated states. LAO" in
particularbuildsagraph of the task rooted at the initial state and then
continuously plans over the graph. If it computes a plan that leads it

toastate at the edge of the graph, the graphis expanded according to
the transition model to include that state and then the planning cycle
isrestarted. Otherwise, if it computes an optimal plan that only visits
states in the simulated graph, the algorithm terminates. By continu-
ously expanding the task graph and performing planning updates, the
algorithm canintelligently explore the most promising (according to
the heuristic) regions of the state space being constrained to physically
realizable sequences. In particular, graph-based algorithms can quickly
‘backtrack’ when they encounter dead ends.

Obstacle awareness predictions based on LAO were derived by using
the sameinitial heuristic as was used for RTDP and asimilar scheme for
handlingties. We then calculated the total number of times an obstacle
was hit during graph expansion phases only, using the same definition
ofahitasabove.Foreachmaze, we generated 200 planning simulations
and used the raw hit counts as the hit score.

Algorithms like RTDP and LAO plan by simulating realizable action
sequences that begin at the start state. As a result, these models tend
to predict greater awareness to obstacles that are near the start state
and are consistent with theinitial heuristic, regardless of whether those
obstacles strongly affect or lie along the final optimal path. For example,
obstacles downinitially promising dead ends have a high hit score. This
contrasts with value-guided construal, which predicts greater attention
to relevant obstacles, even if they are distant, and lower attention to
irrelevantones, evenifthey are nearby. For anexample of these distinct
model predictions, see maze 14 in Extended Data Fig. 6.

Tobeclear, our goal was to obtain predictions for search over action
sequencesintheabsence of anactive construal process for comparison
with value-guided construal. However, in general, heuristic search
and value-guided construal are complementary mechanisms, as the
former is a way to plan given a representation and the latter is a way
to choose arepresentation for planning. For example, one could per-
formheuristic search over aconstrued planning model, or a construal
could helpwithselecting a heuristic to guide search over actions. These
types of interaction between action-sequence search and construal
are important directions for future research that can be built on the
ideas developed here.

Successor representation-based predictors. We also considered
two measures based on the successor representation, which hasbeen
proposed as acomponentinseveral computational theories of efficient
sequential decision-making®*8. Importantly, the successor represen-
tation is not a specific model; rather, it is a predictive coding of a task
in which states are represented in terms of the future states likely to
be visited from that state, given the decision-maker follows a certain
policy. Formally, the value function of a policy m(als) can be expressed
inthe following two equivalent ways:

Vi(s) = U(s) + Y m(als)) P(s’ls, a)Vy(s") 9)

=Z My(s, S+)U(S+), (10)

where M,(s,s") is expected occupancy of s* starting froms, when acting
accordingto . The successor representation of astate sunder mis then
the vector M,(s, ). Algorithmically, M, can be calculated by solving a
set of recursive equations (implemented in Python with numpy*’; see
Code availability):

My(s, s =1[s=s"1+ Y m(als)P(s’ls, Q)My(s’, s").

a,s’

(11)

Again, the successor representation is not itself an algorithm, but
rather a policy-conditioned recoding of states that can be a compo-
nent of a larger computational process (for example, different kinds



of learning or planning). Here, we focus on its use in the context of
transfer learning***° and bottleneck states®*.

Research on transfer learning posits that the successor repre-
sentation supports transfer that is more flexible than pure model-
free mechanisms but less flexible than model-based planning.
For example, previous work®® modelled agents that learned a suc-
cessor representation for the optimal policy in an initial maze and
then examined transfer when the maze was changed (for example,
adding in a new barrier). While their research focuses on learning,
rather than planning, we can borrow the basic insight that the suc-
cessor representation induced by the optimal policy for a source
task can influence the encoding of a target task, which constitutes
aform of construal. In our experiments, the participants were not
trained on any particular source task, but we can use the maze with
all of the obstacles removed as a proxy (that is, representing what
all mazes had in common). Thus, we calculated the optimal policy
m for the maze without any obstacles (but with the start and goal),
computed the successor representation M,and then calculated, for
each obstacle i in the actual maze with the obstacles, a successor
representation overlap (SR-Overlap) score:

SR-Overlap(i)= Y M,(so,s),

s€0bs; 12

wheres, is thestarting state and Obs;is the set of states occupied by the
obstacle i. This quantity can be interpreted as the amount of overlap
between an obstacle and the successor representation of the starting
state. If the successor representation shapes how people represent
tasks, this quantity would be associated with greater awareness of
certain obstacles.

The second predictor is related to the idea of bottleneck states.
These emerge from how the successor representation encodes mul-
tiscale task structure®, and they have been proposed as a basis for
subgoal selection®. If bottlenecks guide subgoal selection, then dis-
tance to bottleneck states could give rise to differential awareness of
obstacles through subgoaling processes. Thus, we wanted to test that
responses consistent with value-guided construal were not entirely
attributable to the effect of bottleneck states calculated in the absence
ofanactive construal process. Importantly, we note that as with alter-
native planning mechanisms like heuristic search, the identification
of bottleneck states for subgoaling is compatible with value-guided
construal (for example, one could identify subgoals for a construed
version of a task).

When viewing the transition function of a task (such as amaze) asa
graphover states, bottleneck states lie on either side of a partitioning
of the state space into two regions such that there is high intra-
region connectivity and low inter-region connectivity. This can be
computed for any transition function using the normalized min-cuts
algorithm® or derived from the second eigenvector of the successor
representation under a random policy>®. Here we use a variant of
the second approach as described in the appendix of ref. *. Formally,
given a transition function, P(s’|s, a), we define an adjacency matrix,
A(s,s’)=1[Fa.P(s’ls,a)>0] , and a diagonal degree matrix,
D(s,s) =%, A(s,s’). Then, thegraph Laplacian, arepresentation often
used to derive low-dimensionalembeddings of graphsin spectral graph
theory, is L = D — A. We take the eigenvector with the second largest
eigenvalue, which assigns a positive or negative value to each statein
the task. This vector can be interpreted as projecting the state space
ontoasingle dimension inaway that best preserves connectivity infor-
mation, withazero pointthat represents the mid-point of the projected
graph. Bottleneck states correspond to those states nearest to 0. For
eachmaze, we used this method to identify bottleneck states and fur-
ther reduced these to the optimal bottleneck states, defined as bot-
tleneck states with a non-zero probability of being visited under the
optimal stochastic policy for the maze. Finally, for each obstacle, we

calculated a bottleneck distance score, the minimum Manhattan dis-
tance from an obstacle to any of these bottleneck states.

Notably, value-guided construal also predicts greater attention to
obstacles that formbottlenecks because one often needs to carefully
navigate through them to reach the goal. However, the predictions of
our model differ for obstacles that are distant from the bottleneck.
Specifically, value-guided construal predicts greater attention to
relevant obstacles that affect the optimal plan, even if they are far
fromthe bottleneck (see the model predictions for maze 2 in Extended
Data Fig.5).

Perceptual landmarks. Finally, we considered several predictors based
onlow-level perceptual landmarks and participants’ behaviour. These
included the minimum Manhattan distance froman obstacle to the start
location, the goallocation, the centre black walls, the centre of the grid
and any of the locations visited by the participantin atrial (navigation
distance). We also considered the timestep at which participants were
closest to an object as a measure of how recently they were near an
object. In cases in which navigation distance was not an appropriate
measure (for example, if the participants never navigated to the goal),
we used the minimum Manhattan distance to trajectories sampled from
the optimal policy averaged over 100 samples.

Experimental design

Allof the experiments were preregistered (see Data availability) and
approved by the Princeton Institutional Review Board (IRB). All of the
participants were recruited from the Prolific online platform and pro-
vided informed consent. Sample sizes were determined on the basis
of pilot experiments (see Reporting Summary). At the end of each
experiment, the participants provided free-response demographic
information (age and gender, coded as male/female/neither). Experi-
ments were implemented with psiTurk® and jsPsych® frameworks
(see Code availability). Instructions and example trials are shown in
the Supplementary Methods.

Initial experiment. Our initial experiment used a maze-navigation
task in which the participants moved a circle from a starting location
onagridtoagoallocation using the arrow keys. The set of initial mazes
consisted of twelve 11 x 11 mazes with seven blue tetronimo-shaped
obstacles and centre walls arranged in a cross that blocked movement.
Oneachtrial, the participants were first shown a screen displaying only
the centre walls. When they pressed the spacebar, the circle they con-
trolled, the goal and the obstacles appeared, and they could begin mov-
ingimmediately. Moreover, to ensure that the participants remained
focused on moving, we placed a green square on the goal that shrank
and would disappear after 1,000 ms but reset whenever an arrow key
was pressed, except at the beginning of the trialwhen the green square
took longer to shrink (5,000 ms). The participants received US$0.10 for
reaching the goal without the green square disappearing (in addition
to the base pay of US$0.98). The mazes were pseudorandomly rotated
orflipped, so the start and end state was constantly changing, and the
order of mazes was pseudorandomized. After completing each trial,
the participants received awareness probes, which showed a static
image of the maze they had just navigated, with one of the obstacles
shown in light blue. The participants were asked “How aware of the
highlighted obstacle were you at any point?” and could respond using
an eight-point scale (which was rescaled to 0-1for analyses). Probes
were presented for the seven obstacles in a maze. None of the probes
were associated witha bonus.

We requested 200 participants on Prolific and received 194 com-
plete submissions. Following preregistered exclusion criteria, a trial
was excluded if, during navigation, >5,000 ms was spent at the initial
state, >2,000 ms was spent at any non-initial state, >20,000 ms was
spent on the entire trial or >1,500 ms was spent in the last three steps
intotal. Participants with <80% of trials after exclusions or who failed 2
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of 3comprehension questions were excluded, which resultedinn =161
participants’ databeing analysed (median age of 28; 81 male, 75 female,
Sneither).

Up-front planning experiment. The up-front planning version of the
memory experiment was designed to dissociate planning and execu-
tion. The main change was that, after participants took their first step,
all of the blue obstacles (but not the walls or goal) were removed from
the display (although they still blocked movement). This strongly en-
couraged planning before execution. To provide sufficient time to plan,
the green square took 60,000 ms to shrink on the first step. Further-
more, onarandom half of the trials, after taking two steps, the partici-
pants were immediately presented with the awareness probes (early
termination trials). The other half were full trials. We reasoned that
responses after early termination trials would better reflect awareness
after planning but before execution (see the Supplementary Analyses
(memory experiment) for analyses comparing early versus full trials).

We requested 200 participants on Prolific and received 188 com-
plete submissions. The exclusion criteriawere the same asin theinitial
experiment, except that theinitial state and total trial time criteria were
raised to 30,000 ms and 60,000 ms, respectively. After exclusions,
we analysed datafrom n =162 participants (median age of 28; 85 male,
72 female, 5 neither).

Critical mazes experiment. In the critical mazes experiment, partici-
pants again could not see the obstacles while executing and therefore
needed to plan up front, but no trials ended early. There were two
main differences compared with the previous experiments. First,
we used a set of four critical mazes that included critical obstacles
chosentotest predictions specific to value-guided construal. These
were obstacles relevant to decision-making, but distant from the
optimal path (see Supplementary Analyses (memory experiment)
for analyses focusing on these critical obstacles). Second, half of the
participants received recall probes in which they were shown a static
image of the grid with only the walls, a green obstacle and a yellow
obstacle. They were then asked “An obstacle was either in the yellow or
greenlocation (not both), which onewasit?” and could select either
option, followed by a confidence judgement on an eight-point scale
(rescaled to 0-1for analyses). Pairs of obstacles and their contrasts
inthe critical mazes are shown in Extended Data Fig. 4a. Participants
eachreceived twoblocks of the four critical mazes, pseudorandomly
oriented and/or flipped.

We requested 200 participants on Prolific and received 199 com-
plete submissions. The trial and participant exclusion criteria were
the same as in the up-front planning experiment. After exclusions, we
analysed data from n =156 participants (median age of 26; 78 male,
75 female, 3 neither).

Control experiments. The aim of the control experiments was to obtain
yoked baselines for perception and execution for comparison with
proberesponsesinthe memory studies. The perception control used
avariant of the taskinwhich the participants were shown patterns that
were perceptually identical to the mazes. Instead of solving a maze,
they were told to “catch thered dot”. On each trial, asmall red dot could
appear anywhere on the grid, and the participants were rewarded on
thebasis of whether they pressed the spacebar after it appeared. Each
participant was yoked to the responses of a participant from either
the up-front planning or critical mazes experiments. On yoked trials,
the participants were shown the exact same maze/pattern as their
counterpart. They were also shown the pattern for the amount of time
that their counterpart took before making their first move—as the
obstacles were not visible during execution for the counterpart, this
isapproximately the time the counterpart spentlooking at the maze to
plan. Ared dot never appeared on these trials, and they were followed
by the exact same probes that the counterpart received. References

to ‘obstacles’ were changed to ‘tiles’ (for example, “highlighted tiles”
as opposed to “highlighted obstacle” for the awareness probes). We
also included dummy trials, which showed mazes in orientations not
appearing in the yoked trials, for durations sampled from the yoked
durations. Half of the dummy trials had red dots. We recruited enough
participants such that at least one participant was matched to each
participant from the original experiments and excluded people who
said that they had participated in a similar experiment. This resulted
in data from n =164 participants being analysed for the initial mazes
perception control (median age of 30.5; 84 male, 79 female, 1 neither)
and n =172 for the critical mazes perception control (median age of
36.5; 86 male, 85 female, 1 neither).

The execution control used a variant of the task in which participants
followed a series of ‘breadcrumbs’ through the maze to the goal and
so did not need to plan a path to the goal. Each participant was yoked
to a counterpart in either the initial experiment or the critical mazes
experimentso that the breadcrumbs were generated based onthe exact
pathtaken by the counterpart. The ordering of the mazes and obstacle
probes (that is, awareness or location recall) were also the same. We
recruited participants until atleast one participant was matched to each
participant from the original experiments. Furthermore, we used the
same exclusion criteria as in the initial experiment with the additional
requirement that all black dots be collected on a trial. This resulted
in data from n =163 participants being analysed for the initial mazes
execution control (median age of 29; 86 male, 77 female) and n =161
for the critical mazes execution control (median age of 30; 94 male, 63
female; 4 neither).

Process-tracing experiments. We ran process-tracing experiments
using the initial mazes and the critical mazes. These experiments were
similar to the memory experiments, except they used a process-tracing
paradigm designed to externalize the planning process. Specifically,
the participants never saw all of the obstacles in the maze at once.
Rather, at the beginning of atrial, after clickingonared Xinthe centre
ofthe maze, the goal and agent appeared, and the participants could
use their mouse to hover over the maze and reveal individual obstacles.
An obstacle would become completely visible if the mouse hovered
over any tile that was part of it for at least 25 ms, until the mouse was
moved to atile that was not part of that obstacle. Once the participant
started to move using the arrow keys, the cursor became temporarily
invisible (to prevent using the cursor as acue to guide execution), and
the obstacles could nolonger be revealed. We examined two depend-
ent measures for each obstacle: whether participants hovered over
an obstacle and, if so, the log-transformed duration of hovering in
milliseconds.

For each experiment with each set of mazes, we requested 200
participants on Prolific. The participants who completed the task
had their data excluded if they did not hover over any obstacles on
more than half of the trials. For the experiment with the initial mazes
set, we received completed submissions from 174 people and, after
exclusions, analysed datafrom n = 167 participants (median age of 30;
82 male, 82 female, 3 neither). For the experiment with the critical
mazes set, we received completed submissions from188 people and,
after exclusions, analysed data from n =179 participants (median age
of 32; 89 male, 86 female, 4 neither).

Experiment analyses

HGLMs were implemented in Python and R using the Ime4* and
rpy2% packages (see Code availability). For all models, we included
by-participant and by-maze random intercepts, unless the result-
ing model was singular, in which case we removed by-maze random
intercepts. For the memory experiment analyses testing whether
value-guided construal predicted responses, we fit models with and
without z-score normalized value-guided construal probabilities as a
fixed effect and performed likelihood ratio tests to assess significance.



For the control experiment analyses reported in the main text, we
calculated mean by-obstacle responses fromthe perceptionand execu-
tion controls, and thenincluded these values as fixed effects in models
fitto theresponsesinthe planning experiments. We then contrasted
models with and without value-guided construal and performed likeli-
hood ratio tests (additional analyses are reported in the Supplemen-
tary Analyses (memory experiment and control experiment)).

For our comparison with alternative models, we considered 11
different predictors that assign scores to obstacles in each maze:
fixed-parameter value-guided construal modification probability
(VGC), trajectory-based heuristic search score (Traj. HS), graph-based
heuristic search score (Graph HS), bottleneck state distance (Bottle-
neck), successor representation overlap (SR overlap), minimum navi-
gationdistance (Nav. dist.), timestep of minimum navigation distance
(Nav. dist. step), minimum optimal policy distance (Opt. dist.), distance
to goal (Goal dist.), distance to start (Start dist.), distance to centre
walls (Wall dist.) and distance to the centre of the maze (Centre dist.).
Weincluded predictorsinthe analysis of each experiment’s datawhere
appropriate. For example, in the up-front planning experiment, the
participants did not navigate on early termination trials, and we there-
fore used the optimal policy distance rather than navigation distance.
Allpredictors were z-score normalized before beingincluded as fixed
effects in HGLMs to facilitate comparison of estimated coefficients.

We performed three types of analyses using the 11 predictors.
First, we wanted determine whether value-guided construal cap-
tured variability in responses from the planning experiments even
when accounting for the other predictors. For these analyses, we
compared HGLMs thatincluded all predictors to HGLMs with all pre-
dictors except value-guided construal and tested whether there was
asignificant difference in fit using likelihood ratio tests. Second,
we wanted to evaluate the relative necessity of each mechanism for
explaining attention to obstacles when planning. For these analyses,
we compared global HGLMs to HGLMs with each of the predictors
removed and calculated the resulting change in AIC (see Extended
Data Table 1 for estimated coefficients and resulting AIC values).
Finally, we wanted to assess the relative sufficiency of predictors in
accounting for responses on the planning tasks. For these analyses,
we fit HGLMs to each set of responses that included only individual
predictors or pairs of predictors and, for each model, we calculated
the AAIC relative to the best-fitting model (Extended Data Fig. 8). Note
that, for all of these models, AIC values are summed over participants.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Datafor the current study are available through the Open Science Foun-
dation repository https://doi.org/10.17605/0SF.10/ZPQ69.

Code availability

Code for this study is available through the Open Science Foundation
repository https://doi.org/10.17605/0SF.10/ZPQ69, which links to a
GitHubrepository and contains anarchived version of the repository. The
value-guided construalmodel and alternative models wereimplemented
in Python (v.3.7.4) using the msdm (v.0.6) library, numpy (v.1.19.2) and
scipy (v.1.5.2). Experiments were implemented using psiTurk (v.3.2.0)
and jsPsych (v.6.0.1). Hierarchical generalized linear regressions were
implemented using rpy2 (v.3.3.6), Ime4 (v.1.1.21) and R (v.3.6.1).
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Extended DataFig.1|Experimental measuresonmazes0to 5. Average hovered overand, if so, the duration of hovering in log milliseconds). Obstacle
responses associated witheach obstacleinmazes O to 5intheinitialexperiment  coloursare normalized by the minimum and maximum values for each measure/
(awareness judgement), the up-front planning experiment (awareness maze, except for awareness judgements, which arescaled fromOto1.

judgement), and the process-tracing experiment (whether an obstacle was
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Extended DataFig.2|Experimental measures on mazes 6 to11. Average
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Extended DataFig. 4 |Additional Experimental Details. a, Items from
criticalmazes experiment. Blue obstacles are the location of obstacles during
the navigation partof the trial. Orange obstacles with corresponding number
are copies that were shown duringlocation recall probes. During recall probes,
participants only saw an obstacle paired withits copy. b, Example trial from

process-tracing experiment. Participants could never see all of the obstacles
atonce, but, before navigating, could use their mouse to reveal obstacles.
We analyzed whether value-guided construal predicted which obstacles
peopletended to hoveroverand, if so, the duration of hovering.
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Extended DataFig.5|Model predictions on mazes O through 7. Shown are
the predictions for six of the eleven predictors we tested: fixed parameter
value-guided construal modification obstacle probability (VGC, our model);
trajectory-based heuristic search obstacle hitscore (TrajHS); graph-based
heuristic search obstacle hit score (Graph HS); distance to optimal bottleneck

(Bottleneck); successor representation overlap score (SR Overlap); and
distance to optimal paths (Opt Dist) (see Methods, Model Implementations).
Mazes O to 7 wereallin the initial set of mazes. Darker obstacles correspond to
greater predicted attention according to the model. Obstacle colours
normalized by the minimum and maximum values for each model/maze.



Traj HS Graph HS

o e [ e

Bottleneck SR Overlap

e

Opt Dist

Maze 8

Maze 9

Maze 10

Maze 11

N
o)
o
S

Maze 12

Maze 13

=
o o o
g - -
[m] [m] % 7 [m]
L L — Aol [
© ]
I L L i [ 1]
© .0 4.0
8 Sil f— . 5ol i ol
] ool ] L ] un ] Al ] 5o |
5 e s EEEaE e TG T fe RN
Extended DataFig. 6 |Model predictions onmazes 8 through 15. Shown are correspond to greater predicted attention according to the model.
the predictions for six of the eleven predictors we tested (see Methods, Model Obstacle colours normalized by the minimum and maximum values for each
Implementations). Mazes 8 to 11 were part of the initial set of mazes, while model/maze.

mazes12to15 constituted the set of critical mazes. Darker obstacles



Article

= 10 VGC Traj HS Graph HS Bottleneck SR Overlap Opt Dist Goal Dist Start Dist Wall Dist Center Dist
é .
-
i o §
X 3 o g
w-s ! o_d--
593 57 ) ° 0 o 1d---55° §°
=9 op 87 5 10%8 o g o
£ o < 8 ©
g 6 5 o8 88
2 R?=0.50 R?=0.05 R?=0.28 R?=0.32 R?=0.00 /, R?=0.55 R?=0.05
< 0.0y T T T T T T T T T T T T
0.0 0.0 25 0 5 10 5 0 2 75 50 25 75 50 25
1.0

°

n
oo
®o
\
@ 0oo do 0 oamon
) o
cmmo@p 4900 0ano
n
oo
|
|
|
@o
1
0 dogo ooman
o ol @o
\
oo
|
o0

Up-front Planning Exp
Awareness Judgment

Critical Maze Exp.
Recall Accuracy

20 10 50 25 10 5

o
o
o
I3
o
IS}
N
5
o
5
o
5
o
o
o
N
o
a
=
5

Critical Mazes Exp.
Recall Confidence

Cricical Mazes Exp
Awareness Judgment

0.0 Re=071 ] Re=0.15 ] R?=027 _ Re=0.1 R?=0.07 _Re=000]] R?=0.01
00 05 00 25 0 5 15 10 5 20 10 50 25 10 5
1.0
£ 8 o oBo o o oo o °

o= % °Q°®°°w Pl oo b & %o, 4 @%f ©°° eg% o oooogg ggo Sof | o0 oredicd R 8 § 8 § E g 9 g § g

so L B o ° 2,0° Spomb 7 oo dB.| 8P °gf of g0 3 H _

8a0o 55, o T F o | o e doshoo] o e - o g3

= 84% 05 4 o A od, ofeeT o ° = 2 - g s i °
N 51 d o d : iE; o g o

23 o o [ Te § g

g

85T o o |8 °

<= g °

Qe o
= ° R?=0.38 R?=0.23 | |° =0.07

0.0 T : , y
0.0 05 0.0 25 0 25
~c 3
23 .
co g8 8
]
fi¥a)
ENC -
229 o
8=3 § 3
8sT S g ®
=75 B
aco
=3 1o R?=0.00
; :
0 25
o

o o

cC N

5= g

S8s =

£

PR g i

822

owT - °

S0

<

£ o o
=
Q . R?=0.17

0 5

% 6 |

£9% o

© 03

Se3 B o

g <

B 1 R

s8%

[ o
& 8 R2="084°
Qo ; ;

0 5

Extended DataFig.7|See next page for caption.



Extended DataFig.7|Summaries of candidate models and datafrom
planning experiments. Each row corresponds to a measurement of attention
to obstacles fromaplanning experiment: Awareness judgements from the
initialmemory experiment, the up-front planning experiment, and the critical
mazes experiment; recallaccuracy and confidence from the critical mazes
experiment; and the binary hovering measure and hovering duration measure
(inlog milliseconds) from the two process-tracing experiments. Each column

corresponds to candidate processes that could predict attention to obstacles:

fixed parameter value-guided construal modification obstacle probability
(VGC, our model), trajectory-based heuristicsearch hitscore (TrajHS),
graph-based heuristic search hit score (Graph HS), distance to bottleneck
states (Bottleneck), successor-representation overlap (SR Overlap), expected
distanceto optimal paths (Opt Dist), distance to the goal location (Goal Dist),

distancetothestartlocation (Start Dist), distance to the invariant black walls
(Wall Dist), and distance to the centre of the maze (Centre Dist). Note that for
distance-based predictors, the x-axisis flipped. For each predictor, we quartile-
binned the predictionsacross obstacles, and for each bin we plot (bright red
lines) the mean and standard deviation of the predictor and mean by-obstacle
response (overlapping bins were collapsed into a single bin). Black circles
correspond to the meanresponse and prediction for each obstacleineach
maze.Dashed darkred lines are simple linear regressions on the black circles,
with R?values shownin the lower right of each plot. Across the nine measures,
value-guided construal tracks attention to obstacles, while other candidate
processes are less consistently associated with obstacle attention (dataare
based onn=84215observations taken from 825 independent participants).
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Extended DataFig. 8 |Sufficiency ofindividual and pairs of mechanismsfor  Valuesarethe AAIC foreachmodel relative to the best fitting model associated

explaining attention to obstacles when planning. To assess the individual withanexperimental measure (lower values indicate better fit). Values along
and pairwise sufficiency of each predictor for explaining responsesin the the diagonals correspond to models fit with asingle predictor. According to
planning experiments, we fit hierarchical generalized linear models (HGLMs) thiscriterion, across all experimental measures, value-guided construalisin
thatincluded pairs of predictors as fixed effects. Each lower-triangle plot thefirstorsecond bestsingle-predictor HGLM, and is always in the best
corresponds to one of the experimental measures, where pairs of predictors two-predictor HGLM.

includedinaHGLM as fixed-effects areindicated on the x-and y-axes.



Extended Data Table 1| Necessity of different mechanisms for explaining attention to obstacles when planning

a
Initial Exp Up-front Exp Critical Mazes Exp
Awareness Awareness (F) Awareness (E) Accuracy Confidence Awareness
B SE B SE B SE B SE B SE B SE
Intercept 0.530 0.017 0.325 0.019 0.494 0.016 0.560  0.066 0.644  0.041 0.429 0.044
VGC 0.085 0.004 0.095 0.006 0.081  0.006 0.150 0.015 0.118  0.009 0.212  0.009
Traj HS 0.000 0.005 0.003  0.008 0.015  0.008 0.026 0.030 -0.011 0.017 0.013  0.019
Graph HS 0.029  0.005 0.012  0.007 0.005 0.007 -0.034 0.034 -0.036 0.020 -0.042 0.021
Bottleneck -0.028  0.003 -0.044 0.005 -0.052 0.005 0.004 0.014 -0.013 0.008 -0.034 0.009
SR Overlap -0.031  0.003 -0.036 0.005 -0.037 0.005 -0.033 0.046 0.004 0.027 0.086  0.028
Nav Dist -0.114  0.003 -0.277 0.012 — — -0.035 0.012 -0.009 0.007 -0.064 0.007
Nav Dist Step 0.014 0.004 -0.027 0.003 — — -0.009 0.010 -0.007 0.006 -0.043 0.007
Opt Dist — — — — -0.084 0.005 — — — — — —
Goal Dist -0.007  0.005 0.005 0.007 -0.006 0.007 0.116  0.073 -0.095 0.043 0.083  0.046
Start Dist -0.021  0.005 0.017 0.007 -0.023 0.007 0.069 0.069 -0.126 0.040 -0.014  0.043
Wall Dist -0.237 0.024 -0.153 0.037 -0.191 0.037 -0.039 0.068 -0.095 0.040 0.066  0.043
Center Dist 0.238 0.025 0.182  0.038 0.214  0.038 0.019 0.058 0.114  0.034 0.007 0.036
b
Process-Tracing Exp (Initial Mazes) Process-Tracing Exp (Critical Mazes)
Hovering Duration Hovering Duration
B SE B SE B SE B SE
Intercept 0.717 0.128 6.515  0.071 0.544  0.320 5.887 0.181
VGC 0.588  0.035 0.234  0.017 0.702  0.054 0.481 0.030
Traj HS 0.452  0.046 0.102  0.028 0.197 0.134 0.352 0.080
Graph HS -0.196  0.045 -0.089 0.024 0.395 0.141  -0.311 0.084
Bottleneck -0.224  0.031 -0.175 0.016 0.058 0.059 -0.057 0.030
SR Overlap  -0.017  0.028 0.024 0.016 1.359  0.221 0.388 0.106
Opt Dist -0.402 0.032 -0.022  0.020 0.329  0.054 0.147 0.032
Goal Dist -0.146  0.045 0.025 0.024 -1.037 0.334 0.071 0.190
Start Dist -0.331  0.042 0.048 0.022 -1.618 0.311 -0.190 0.182
Wall Dist -0.987 0.207 -0.908 0.117 -0.145 0.252 -0.339 0.147
Center Dist 1.294 0.211 1143  0.119 1.282 0.189 0.817 0.127
[+
. g - Process-Tracing Exp Process-Tracing Exp
Initial Exp Up-front Exp Critical Mazes Exp (Initial Mazes) (Critical Mazes)
Awareness  Awareness (F)  Awareness (E)  Accuracy  Confidence  Awareness  Hovering Duration Hovering Duration
VGC 4991 280" 2041 112* 179* 484~ 292+ 175* 181~ 249~
Traj HS -1 -1 1 -1 -1 -1 95 10 13 13
Graph HS 30 0 -1 -1 1 1 17 11 4 9
Bottleneck 69 72 96 -1 0 13 49 1131 2 1
SR Overlap 93 55 57 -1 -1 7 -1 0 94t 10
Nav Dist 1080~ 508~ — 6t 0 72t — — — —
Nav Dist Step 12 59 — -1 0 40 — — — —
Opt Dist — — 244* — — — 163f 0 15 19
Goal Dist 0 -1 -1 1 2 1 8 0 9 -1
Start Dist 17 3 8 0 7 -1 59 2 37 -1
Wall Dist 94 14 24 -1 3 0 20 57 -1 3
Center Dist 90 20 30 -1 of -1 34 89 39 38t

*Largest increase in AIC after lesioning; T Second-largest increase

For each measure in each planning experiment, we fit hierarchical generalized linear models (HGLMs) that included the following predictors as fixed-effects: fixed parameter value-guided
construal modification obstacle probability (VGC, our model); trajectory-based heuristic search obstacle hit score (Traj HS); graph-based heuristic search obstacle hit score (Graph HS);
distance to optimal bottleneck (Bottleneck); successor representation overlap score (SR Overlap); distance to path taken (Nav Dist); timestep of point closest along path taken (Nav Dist Step);
distance to optimal paths (Opt Dist); distance to the goal state (Goal Dist); distance to the start state (Start Dist); distance to any part of the centre walls (Wall Dist); and distance to the centre

of the maze (Centre Dist) (Methods, Model Implementations). If the measure was taken before participants navigated, distance to the optimal paths was used, otherwise, distance to the path
taken and its timestep were used. a, b, Estimated coefficients and standard errors for z-score normalized predictors in HGLMs fit to responses from the initial experiment, up-front planning
experiment (F =full trials, E = early termination trials), the critical mazes experiment, and the process-tracing experiments. We found that value-guided construal was a significant predictor
even when accounting for alternatives (likelihood ratio tests between full global models and models without value-guided construal: Initial Exp, Awareness: x%(1)=501.11, p<1.0 x 107; Up-front
Exp, Awareness (F): xX(1)=282.17, p<1.0 x 107'; Up-front Exp, Awareness (E): x%(1)=206.14, p<1.0 x 10°%; Critical Mazes Exp, Accuracy: x2(1)=114.87, p<1.0 x 107'%; Critical Mazes Exp, Confidence:
X(1)=181.28, p<1.0 x 107'%; Critical Mazes Exp, Awareness: x*(1)=486.99, p<1.0 x10; Process-Tracing Exp (Initial Mazes), Hovering: x2(1)=294.40, p<1.0 x 107; Process-Tracing Exp (Initial Mazes),
Duration: x4(1)=177.58, p<1.0 x 10™'; Process-Tracing Exp (Critical Mazes), Hovering: x4(1)=183.52, p<1.0 x 107'; Process-Tracing Exp (Critical Mazes), Duration: x%(1)=251.16, p<1.0 x107). ¢, To
assess the relative necessity of each predictor for the fit of a HGLM, we conducted lesioning analyses in which, for each predictor in a given global HGLM, we fit a new lesioned HGLM with only
that predictor removed. Each entry of the table shows the change in AIC when comparing global and lesioned HGLMs, where larger positive values indicate a greater reduction in fit as a result
of removing a predictor. According to this criterion, across all experiments and measures, value-guided construal is either the first or second most important predictor. ‘Largest increase in AIC
after lesioning; 'Second-largest increase.
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Extended Data Table 2 | Algorithm for Computing the VOR Function

Algorithm 1 Calculate value of representation function for construals, VOR, given states S, ini-
tial state sp, actions A, transition function P, state utility function U, and primitive cause-effect
relationships {¢1, ..., N}

Require: COMPUTEPLAN and EVALUATEPLAN functions
1: function CONSTRUALVALUES(S, so, A, P, U, {¢1,...,on})

2 Initialize value of representation map VOR

3 forc C {¢1,...6n} do

4: forse S,ac A,s’ € Sdo

5: Pe(s' | s,a) = [y 8(s' | 5,a) > Multiply primitive effects in construal

6: end for

7: forse S,ac A, s’ € Sdo

8: P.(s' | s,a) = Pe(s' | s,a)/ >, Pe(2] s,0a) > Normalize construed transitions

9: end for
10: ze =|c > Complexity of construal
11: me. = COMPUTEPLAN(S, A, P, U) > Plan with construal
12: ue = EVALUATEPLAN(P, U, s, 7c) > Utility of construal
13: VOR[c] = uc — z¢ > Value of representation
14: end for

15: return VOR
16: end function

To obtain predictions for our our ideal model of value-guided construal, we calculated the VOR of all construals in a maze. This was done by enumerating all construals (subsets of obstacle
effects) and then, for each construal, calculating its behavioural utility and cognitive cost. This allows us to obtain theoretically optimal value-guided construals. For a discussion of alternative
ways of calculating construals, see the Supplementary Discussion of Construal Optimization Algorithms.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
2N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X| A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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|X| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

L O X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection  Experiments were run on Prolific using custom extensions of psiTurk (version 2.3.7 - 2.3.12) and jsPsych (version 6.0.1). Code for generating
and running trials are available through http://doi.org/10.17605/0SF.I0/ZPQ69.

Data analysis Data was analyzed using the R statistical language (version 3.6.1) and Python (version 3.7.4). We used the following open source libraries for
our analyses: Ime4 (R; version 1.1.21), rpy2 (Python; version 3.3.6), msdm (Python; version 0.6), scipy (Python; version 1.5.2). Custom code
used for analyses are available through http://doi.org/10.17605/0SF.I0/ZPQ69.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data for the current study are available through http://doi.org/10.17605/0SF.10/ZPQ69.
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Research sample Participants were recruited from the Prolific experimental platform. We limited participants to those who had not participated in
other studies in our group and who had IP addresses in the US and UK because our IRB protocol only covered US/UK participants.
This was acceptable since the instructions were in English and so focusing on this population reduces variability due to language
differences. In total we analyzed data from 1485 participants (median age of 30; 737 male, 722 female, 26 neither). Since we believe
the phenomenon being studied reflects a general cognitive ability, we were not targeting a representative sample of a specific group,
and relied on the sampling process provided by an online crowdsourcing platform.

Sampling strategy Participants were requested from the pool of Prolific participants, as such the sample was a convenience sample. No formal power
analyses were done prior to the experiments reported, but we ran a pilot version of the initial experiment with 21 participants and
found that VGC was significantly predictive (p < 2e-16) using hierarchical linear models that included a subset of the alternative
predictors presented in the final manuscript (new predictors were added during review). Based on these pilot results, we concluded
that a study of at least the pilot sample size would have been sufficient for testing the main hypothesis about the significance of VGC.
A power analysis using these pilot data conducted after the reported experiments were run confirmed this earlier conclusion.
Specifically, we used the simr R package (n=200) with the pilot data and analysis, which estimated statistical power at 95.5% for
detecting an effect of VGC when alpha=1e-10.

Although the pilot sample size would have been sufficient for testing an effect of VGC, we increased the size to 200 for several
reasons: to obtain more precise estimates of fixed-effects coefficients (especially for the alternative models), to ensure we had
enough data in anticipation of possible future analyses with other predictors, and to have a large dataset to release once the data
was made public. For the other planning studies, we requested the same number of participants (200) based on the results of the
initial experiment and for consistency. For the yoked control experiments, participants were recruited such that at least one was
matched to participants whose data was analyzed in the corresponding memory studies.

Data collection Data were collected entirely online through a website. Data were recording using the participant's computer, and participants could
only participate if they were on a desktop or laptop with a keyboard and monitor.

Timing Data were collected on 10/6/2020, 11/9/2020, 11/19/2020, 6/16/2021, 6/17/2021, 6/19/2021, 6/20/2021 and 6/23/2021

Data exclusions All exclusion criteria were pre-registered. In the first experiment, trials were excluded if >5000ms were spent at the initial state,
>2000ms were spent at any non-initial state, >20000ms were spent navigating the entire trial, or >1500ms were spent on the last
three steps in total. Participants with <80% of trials after exclusions or who failed 2 of 3 comprehension questions were entirely
excluded, which resulted in 33 of 194 who completed the first experiment being excluded. In the up-front planning experiment, the
trial and participant exclusion criteria were the same except for the initial state criteria and total trial time criteria were raised to
30000ms and 60000ms, respectively. This resulted in excluding 26 of 188 participants. In the critical mazes experiment, the same
exclusion criteria as the up-front planning experiment was used, resulting in excluding 43 of 199 participants. In the process-tracing
experiments, we excluded participants who did not hover over any obstacles on more than half of their trials. This resulted in
excluding 7 of 174 participants in the first process-tracing experiment and 9 of 188 in the second one. In the perceptual controls, we
excluded participants who answered affirmatively that they had participated in a similar experiment, resulting in 3 of 167 in the first
and 1 of 173 in the second perceptual control being excluded. In the execution controls, we used the same exclusion criteria as in the
first memory experiment as well as the trial-exclusion criterion that all the black dots be collected, resulting in 15 of 178 in the first
and 39 of 200 being excluded in the second execution control being excluded.

Non-participation Participants were recruited online and did not complete the task for various unknown reasons. In some cases participants started the
task but returned it for another person to take. For the first experiment, 48 participants did not complete the task; in the up-front
planning experiment, 60 participants; in the critical mazes experiment, 29 participants; in the first process-tracing experiment, 63
participants; in the second process-tracing experiment, 43 participants; in the first perceptual control, 42 participants; in the second
perceptual control, 25 participants; in the first execution control, 28 participants; in second execution control, 15 participants.

Randomization Participants were randomly allocated into experimental groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Population characteristics Participants were recruited from the Prolific experimental platform. We limited participants to those who had not
participated in other studies in our group and who had IP addresses in the US and UK because our IRB only covered US/UK
participants. This was acceptable since the instructions were in English and so focusing on this population reduces variability
due to language differences. In total we analyzed data from 1485 participants (median age of 30; 737 male, 722 female, 26
neither). This sample is representative of online participants from the US/UK.

Recruitment Participants were recruited online through the Prolific platform and who had US/UK IP addresses. This biases the sample
towards people who have internet access and are comfortable with computers. As this study focuses on general perceptual
and high-level cognitive processes like planning in a maze, this bias is unlikely to affect how our results/conclusions
generalize.

Ethics oversight Princeton University Institutional Review Board (IRB)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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