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People construct simplified mental 
representations to plan

Mark K. Ho1,2 ✉, David Abel3,5, Carlos G. Correa4, Michael L. Littman3, Jonathan D. Cohen1,4 & 
Thomas L. Griffiths1,2

One of the most striking features of human cognition is the ability to plan. Two aspects 
of human planning stand out—its efficiency and flexibility. Efficiency is especially 
impressive because plans must often be made in complex environments, and yet 
people successfully plan solutions to many everyday problems despite having limited 
cognitive resources1–3. Standard accounts in psychology, economics and artificial 
intelligence have suggested that human planning succeeds because people have a 
complete representation of a task and then use heuristics to plan future actions in that 
representation4–11. However, this approach generally assumes that task 
representations are fixed. Here we propose that task representations can be 
controlled and that such control provides opportunities to quickly simplify problems 
and more easily reason about them. We propose a computational account of this 
simplification process and, in a series of preregistered behavioural experiments, show 
that it is subject to online cognitive control12–14 and that people optimally balance the 
complexity of a task representation and its utility for planning and acting. These 
results demonstrate how strategically perceiving and conceiving problems facilitates 
the effective use of limited cognitive resources.

In the short story On Exactitude in Science, Jorge Luis Borges describes 
cartographers who seek to create the perfect map—one that includes 
every possible detail of the country it represents. However, this inno-
cent premise leads to an absurd conclusion: the fully detailed map 
of the country must be the size of the country itself, which makes it 
impractical for anyone to use. Borges’ allegory illustrates an important 
computational principle. Namely, useful representations do not simply 
mirror every aspect of the world, but rather pick out a manageable 
subset of details that are relevant to some purpose (Fig. 1a). Here we 
examine the consequences of this principle for how humans flexibly 
construct simplified task representations to plan.

Classic theories of problem solving distinguish between representing 
a task and computing a plan4,15,16. For example, Newell and Simon17 intro-
duced heuristic search, in which a decision-maker has a full representa-
tion of a task (such as a chess board, chess pieces and the rules of chess), 
and then computes a plan by simulating and evaluating possible action 
sequences (that is, sequences of chess moves) to find one that is likely 
to achieve a goal (for example, checkmate). In artificial intelligence, 
the main approach to making heuristic search tractable involves limit-
ing the computation of action sequences (such as thinking only a few 
moves into the future, or examining only moves that seem promising)5.  
Similarly, psychological research on planning largely focuses on how 
limiting, prioritizing, pruning or chunking action sequences can reduce 
computation6–11,18–20.

However, people are not necessarily restricted to a single, full or 
fixed representation for a task. This matters as simpler representa-
tions can make better use of limited cognitive resources when they are 

tailored to specific parts or versions of a task. For example, in chess, 
considering the interaction of a few pieces, or focusing on part of the 
board, is easier than reasoning about every piece and part of the board. 
Furthermore, it affords the opportunity to adapt the representation, 
tailoring it to the specific needs of the circumstance—a process that 
we refer to as controlling a task construal. Although studies show that 
people can flexibly form representations to guide action (such as form-
ing the ad hoc category of ‘things to buy for a party’ when organizing 
a social gathering21), a long-standing challenge for cognitive science 
and artificial intelligence is explaining, predicting and deriving such 
representations from general computational principles22,23.

Our approach to studying how people control task construals starts 
with the premise that effective decision-making depends on making 
rational use of limited cognitive resources1–3. Specifically, we derive how 
an ideal, cognitively limited decision-maker should form value-guided 
construals that balance the complexity of a representation and its use 
for planning and acting. We then show that preregistered predictions 
of this account explain how people attend to task elements in several 
planning experiments (see Data availability). Our analysis and findings 
suggest that controlled, moment-to-moment task construals have a 
key role in efficient and flexible planning.

Task construals from first principles
We build on models of sequential decision-making expressed as  
Markov decision processes24. Formally, a task T  consists of a state space 
S ; an initial state s ∈0 S ; an action space A; a transition function 
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P : × × → [0, 1]S A S ; and a utility function SU : → R. In standard formu-
lations of planning, the value of a plan S Aπ : × → [0, 1]  from a state  
s is determined by the expected, cumulative utility of using that  
plan25: V s U s π a s P s s a V s( ) = ( ) + ∑ ( | ) ∑

′
( ′| , ) ( ′).π a s π Standard planning 

algorithms5 (such as heuristic search methods) attempt to efficiently 
compute plans that optimize value by directly planning over a fixed 
task representation, T , that is not subject to the decision-maker’s con-
trol (Fig. 1b). Our aim is to relax this constraint and consider the process 
of adaptively selecting simplified task representations for planning, 
which we call the construal process (Fig. 1c).

Intuitively, a construal ‘picks out’ details in a task to consider. Here 
we examine construals that pick out cause–effect relationships in a 
task. This focus is motivated by the intuition that a key source of task 
complexity is the interaction of different causes and their effects with 
one another. For example, consider interacting with various objects in 

someone’s living room. Walking towards the couch and hitting it is a 
cause–effect relationship, while pulling on the coffee table and mov-
ing it might be another such relationship. These individual effects can 
interact and may or may not be integrated into a single representation 
of moving around the living room. For example, imagine pulling on 
the coffee table and causing it to move, but in doing so, backing into 
the couch and hitting it. Whether or not a decision-maker anticipates 
and represents the interaction of multiple effects depends on what 
causes and effects are incorporated into their construal; this, in turn, 
can affect the outcome of behaviour.

Related work has studied how attention guides learning about how 
different state features predict rewards26. By contrast, to model con-
struals, we require a way to express how attention flexibly combines 
different causes and their effects into an integrated model to use for 
planning. For this, we use a product of experts27, a technique from the 
machine learning literature for combining distributions that is similar 
to factored approximations used in models of perception28. Specifically, 
we assume that the agent has N primitive cause–effect relationships 
that each assign probabilities to state, action and next-state transitions, 

S A Sϕ : × × → [0, 1]i , i N= 1 ,..., . Each ϕ s s a( ′| , )i  is a potential function 
representing, for example, the local effect of colliding with the couch 
or pulling on the coffee table. Then a construal is a subset of these 
primitive cause–effect relationships, c ϕ ϕ⊆ { ,..., }N1 , that produces a 
task construal, Tc, with the following construed transition function:

∏P s s a ϕ s s a( ′| , ) ∝ ( ′| , ). (1)c
ϕ c

i
∈i

Here, we assume that task construals ( )cT  and the original task ( )T  
share the same state space, action space and utility function. But, cru-
cially, the construed transition function can be simpler than that of 
the actual task.

Ideally, a decision-maker would select a task construal that includes 
only those elements (cause–effect relationships) that lead to success-
ful planning, excluding any others so as to make the planning prob-
lem as simple as possible. To make this intuition precise, it is essential 
to first distinguish between computing a plan with a construal and 
using the plan induced by a construal. In our example, suppose the 
decision-maker forms a construal of their living room that includes the 
effect of pulling on the coffee table but ignores the effect of colliding 
with the couch. They might then compute a plan in which they pull on 
the coffee table without any complications, but when they use that 
plan in the actual living room, they inadvertently stumble over their 
couch. This particular construal is less than optimal.

Thus, we formalize the distinction between the computed plan asso-
ciated with a construal and its resulting behavioural utility: if the 
decision-maker has a task construal cT , denote the plan that optimizes 
it as πc. Then, the utility of the computed plan when starting at state s0 
is given by its performance when interacting with the actual transition 
dynamics, P:

∑ ∑U π U s π a s P s s a V s( ) = ( ) + ( | ) ( ′| , ) ( ′). (2)c
a

c
s

π0 0
′

0 c

Put simply, the behavioural utility of a construal is determined by the 
consequences of using it to compute a plan and then act according to 
that plan in the actual task.

Having established the relationship between a construal and its util-
ity, we can define the value of representation (VOR) associated with a 
construal. Our formulation resembles previous models of resource 
rationality2 and the expected value of control13 by discounting utilities 
with a cognitive cost, C. This cost could be further enriched by specify-
ing algorithm-specific costs29 or hard constraints30. However, our aim 
is to understand value-guided construal with respect to the complexity 
of the construal itself and with minimal algorithmic assumptions. To 

a

Task Action
a

Plan

Decision-maker

Decision-maker

Task
construal

c

b

c

Task Action
a

Plan

c

Fig. 1 | Construal and planning. a, A satellite photo of Princeton, New Jersey, 
USA (top) and maps of Princeton for bicycling versus automotive use cases 
(bottom). Like maps and unlike photographs, a decision-maker’s construal picks 
out a manageable subset of details from the world relevant to their current goals. 
Imagery © 2022 Google, Map data 2022. b, Standard models assume that a 
decision-maker computes a plan, π, with respect to a fixed task representation,  
T, and then uses it to guide their actions, a. c, According to our model of 
value-guided construal, the decision-maker forms a simplified task construal,  
T ,c  that is used to compute a plan, πc. This process can be understood as two 
nested optimizations: an ‘outer loop’ of construal and an ‘inner loop’ of planning.
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this end, we use a cost that penalizes the number of effects considered: 
C c c( ) = , where c  is the cardinality of c. Intuitively, this cost reflects  
the description length of a program that expresses the construed tran-
sition function in terms of primitive effects31. It also generalizes recent 
economic models of sparsity-based behavioural inattention32. The VOR 
for construal c is then its behavioural utility minus its cognitive cost:

c U π C cVOR( ) = ( ) − ( ). (3)c

In brief, we introduce the notion of a task construal (equation (1)) that 
relaxes the assumption of planning over a fixed task representation. We 
then define an optimality criterion for a construal based on its complex-
ity and its utility for planning and acting (equations (2) and (3)). This 
optimality criterion provides a normative standard that we can use to ask 
whether people form optimal value-guided construals33,34. Note that the 
question of precisely how people identify or learn optimal construals is 
beyond the scope of our current aims. Rather, here our goal is to simply 
determine whether their planning is consistent with optimal construal. 
If so, then understanding how people achieve (or approximate) this 
ability will be a key direction for future research (see the Supplemen-
tary Discussion for details about construal optimization algorithms).

A paradigm for examining construals
To examine whether people form construals that optimally balance 
complexity and utility, we designed a paradigm analogous to the exam-
ple in Fig. 1a, in which participants were shown a two-dimensional map 

of a maze and had to move a blue dot to reach a goal location. On each 
trial, the participants were shown a new maze composed of a start-
ing location, a goal location, centre black walls in the shape of a plus 
symbol (+) and an arrangement of blue obstacles. The goal, starting 
state and the blue obstacles (but not the centre black walls) changed 
on every trial, which required participants to examine the layout of the 
maze and plan an efficient route to the goal (Fig. 2a). In our framework, 
each obstacle corresponds to a cause–effect relationship, ϕi—that is, 
attempting to move into the space occupied by the obstacle and then 
being blocked. This is analogous to the effect of being blocked by a 
piece of furniture in our earlier example.

Two key features make our maze-navigation paradigm useful for 
isolating and studying the construal process. First, the mazes are fully 
observable: complete information about the task is immediately acces-
sible from the visual stimulus. Second, each instance of a maze emerges 
from a particular composition of individual elements (for example, the  
obstacles). This means that, although all of the components of a par-
ticular maze are immediately accessible, participants need to choose 
which ones to integrate into an effective representation for planning 
(that is, select a construal). Fully observable but compositionally struc-
tured problems occur routinely in everyday life—for example, using a 
map to navigate through exhibits in a museum—as well as in popular 
games, such as in chess, figuring out how to move one’s knight across 
a board occupied by an opponent’s pieces. By providing people with 
immediate access to all of the components of a task while planning, 
we can examine which ones they attend to versus ignore and whether 
these patterns of awareness reflect a process of value-guided construal 

b

An obstacle was either in the yellow or
green location (not both), which one was it? 

How con�dent are you?

Goal, agent and obstacles appear Obstacles are invisible
during navigation

Recall probe
Con�dence probe

a Trial begins
Goal, agent and obstacles appear

Participant navigates
Awareness probe

How aware of the highlighted
obstacle were you at any point? 

Fig. 2 | Value-guided construal predicts how people will form representations 
that are simple but useful for planning and acting. These predictions were 
tested in a new paradigm in which participants controlled a blue circle and 
navigated mazes composed of centre black walls in the shape of a cross, blue 
tetromimo-shaped obstacles, and a yellow goal state with a shrinking green 
square. We assume that attention to obstacles as a result of construal is reflected 
in memory of obstacles and used two types of probes to assess memory. a, In our 
initial experiment, the participants were shown the maze and navigated to  
the goal. The dashed line indicates an example path. After navigating,  

the participants were given awareness probes in which they were asked to report 
their awareness of each obstacle on an eight-point scale (for analyses, responses 
were scaled to range from 0 to 1). b, In a subsequent experiment, obstacles were 
visible only before moving to encourage planning up front, and participants were 
given recall probes in which they were shown a pair of obstacles in green and 
yellow, only one of which had been present in the maze that they had just 
completed. The participants were then asked which one had been in the maze as 
well as their confidence.
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(see the ‘Value-guided construal’ section in the Methods and the Code 
availability). Furthermore, this general paradigm can be used in con-
cert with several different experimental measures to assess atten-
tion (Extended Data Figs. 1–3, Data availability and Supplementary  
Methods).

Traces of construals in people’s memory
We assume that the obstacles included in a construal will be associated 
with greater awareness and therefore memory; accordingly, we began 
by probing memory for obstacles after participants completed each 
maze to test whether they formed value-guided construals of the 
mazes. In our initial experiment, the participants received awareness 
probes in which, after navigation, they were shown a picture of the 
maze that they had just completed with one of the obstacles high-
lighted. They were then asked, “How aware of the highlighted obstacle 
were you at any point?” and responded on an eight-point scale that 
was later scaled to range from 0 to 1 for analyses (Fig. 2a). If the par-
ticipants formed representations of the mazes that balance utility and 
complexity, their responses should be positively predicted by value-
guided construal. This is precisely what we found: value-guided con-
strual predicted awareness judgements (likelihood ratio test 
comparing hierarchical linear models with and without z-score normal-
ized value-guided construal probabilities:X1

2 = 2,297.21, P < 1.0 × 10−16; 
β = 0.133, s.e. = 0.003; see the ‘Experiment analyses’ section of 
the Methods; Fig. 3). Furthermore, we also observed the same results 
when the participants could not see the obstacles while moving and 
so needed to plan their route entirely up front (X1

2 = 726.95, P < 1.0 × 10−16; 

β = 0.115, s.e. = 0.004). This was also the case when we probed aware-
ness judgements immediately after planning but before execution 
(X1

2 = 679.20, P < 1.0 × 10−16; β = 0.106, s.e. = 0.004; see the ‘Up-front 
planning experiment’ section of the Methods; Supplementary Analy-
ses (memory experiment)).

Although the awareness probes provide useful insights into people’s 
task construals, it is a step removed from their memory (which is already 
a step removed from the construal process itself) as it requires par-
ticipants to reflect on their earlier awareness during planning. To 
address this limitation, we developed a second set of critical mazes 
with two properties. First, the mazes were designed to test the distinc-
tive predictions of value-guided construal (Fig. 4a). Second, these new 
mazes enabled us to use a more stringent measure of memory for task 
elements. Specifically, we used obstacle recall probes, in which, after 
navigation, the participants were shown a grid with the black centre 
walls, a green obstacle, a yellow obstacle and no other obstacles. Either 
the green or yellow obstacle had actually been present in the maze, 
whereas the other obstacle did not overlap with any of those that had 
been present. The participants were then asked, “An obstacle was either 
in the yellow or green location (not both), which one was it?” and could 
select either option, followed by a confidence judgement on an 
eight-point scale that was scaled to range from 0 to 1 for analyses  
(Fig. 2b and Extended Data Fig. 4a). The recall probes therefore pro-
vided two measures, accuracy and confidence, and using hierarchical 
generalized linear models (HGLMs) we found that value-guided con-
strual predicted both types of responses (likelihood ratio tests compar-
ing models on accuracy: X1

2 = 249.34, P < 1.0 × 10−16; β = 0.648, 
s.e. = 0.042; and confidence: X1

2 = 432.76, P < 1.0 × 10−16; β = 0.104, 
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Fig. 3 | Initial experiment results. In our initial planning experiment (out of 
four), each person (n = 161 independent participants) navigated 12 2D mazes, 
each of which had 7 blue tetronimo-shaped obstacles. To assess whether 
attention to obstacles reflects a process of value-guided construal, the 
participants were given an awareness probe (Fig. 2a) for each obstacle in each 
maze. a, For our first analysis, we split the set of 84 obstacles across mazes on 
the basis of whether value-guided construal assigned a probability of less than 
or equal to 0.5 or greater than 0.5. The participants’ mean awareness responses 
corresponding to the two sets of obstacles is shown (≤0.5 in grey, >0.5 in blue; 
individual by-obstacle mean awareness underlying the histograms are 
represented underneath). We then similarly split the obstacles on the basis of 

whether mean awareness responses were less than or equal to 0.5 or greater 
than 0.5 and, using a χ2 test for independence, found that this split was 
predicted by value-guided construal X1

2 = 23.03, P = 1.6 × 10−6, effect size 
w = 0.52, n = 84. b, Value-guided construal predictions for 3 out of the 12 mazes 
used in the experiment. The blue circles indicate the starting location; the 
green and yellow squares indicate the goal; the obstacle colours represent 
model probabilities according to the colour scale. c, Participants’ mean 
awareness judgements for the same three mazes. Obstacle colours represent 
mean judgements according to the colour scale. Responses in this initial 
experiment generally reflect value-guided construal of mazes. The participants 
were recruited through the Prolific online experiment platform.
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s.e. = 0.005; see the ‘Experiment analyses’ section of the Methods). 
Moreover, when we gave a separate group of participants the awareness 
probes on these mazes, value-guided construal was again predictive 
(awareness: X1

2 = 837.47, P < 1.0 × 10−16; β = 0.175, s.e. = 0.006). Thus, 
using three different measures of memory (recall accuracy, recall con-
fidence and awareness judgements), we found further evidence that, 
when planning, people form task representations that optimally bal-
ance complexity and utility.

Controlling for perception and execution
The memory studies provide preliminary confirmation of our 
hypothesis, but they have several limitations. One is that, although 

the participants were engaged in planning, they were also necessarily 
engaged in other forms of cognitive processing, and these unrelated 
processes may have influenced memory of the obstacles. In particular, 
participants’ perception of a maze or their execution of a particular plan 
through a maze may have influenced their responses to the memory 
probes. This potentially confounds the interpretation of our results, as 
a key part of our hypothesis is that task construals arise from planning, 
rather than simply perceiving or executing.

Thus, to test that responses to the memory probes cannot be fully 
explained by perception and/or execution, we administered two sets 
of yoked controls that did not require planning (see the ‘Control 
experiments’ section of the Methods). In the perception controls, 
new participants were shown patterns that looked exactly like the 
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Fig. 4 | Critical mazes recall experiment, model comparisons and control 
studies. a, The critical mazes recall experiment (n = 78 independent 
participants; one version of one of the four planning experiments) used critical 
mazes that included critical obstacles, defined as obstacles that are highly 
relevant to planning but far from an optimal path (dashed line). Value-guided 
construal predicts critical obstacles will be included in a construal whereas 
irrelevant obstacles will not, independent of the distance to the optimal path. 
b, We fit a global model to recall responses that included the fixed parameter 
value-guided construal modification model (VGC) along with ten alternative 
predictors: trajectory-based heuristic search score (Traj. HS), graph-based 
heuristic search score (Graph HS), bottleneck state distance (Bottleneck), 
successor representation overlap (SR overlap), minimum navigation distance 
(Nav. dist.), timestep of minimum navigation distance (Nav. dist. step), distance 
to goal (Goal dist.), distance to start (Start dist.), distance to centre walls (Wall 
dist.) and distance to the centre of the maze (Centre dist.) (see the ‘Experiment 
analyses’ section of the Methods). Each predictor was then removed from this 
global model, and we calculated the resulting change in fit (in AIC). Removing 

value-guided construal led to the largest degradation of fit (greatest increase 
in AIC), underscoring its unique explanatory value. c, In a pair of non-planning 
control experiments, new participants either viewed patterns that looked 
exactly like the mazes (perception control; n = 88 independent participants) or 
followed ‘breadcrumbs’ through the maze along a path taken by a participant 
from the original experiment (execution control; n = 80 independent 
participants). The participants then answered the exact same recall questions. 
Value-guided construal remains a significant factor when explaining recall in 
the original critical mazes experiment (planning) while including mean recall 
from the perception and execution controls as covariates (likelihood ratio test 
for accuracy: X1

2 = 106.36, P = 6.2 × 10−25; confidence:  X1
2 = 18.56, P = 1.6 × 10−5; P 

values are unmodified). This confirms that responses consistent with 
value-guided construal are not a simple function of perception and execution. 
The participants were recruited through the Prolific online experiment 
platform. For c, data are mean ± s.e.m. values for each obstacle, with relevant/
near, relevant/far (critical) and irrelevant obstacle types distinguished.
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mazes, but they performed an unrelated, non-planning task. Each 
pattern was presented to a new participant for the same amount of 
time that a participant in the original experiments had examined the 
corresponding maze before moving—that is, the amount of time that 
the original participant spent examining the maze to plan. The new 
participant then responded to the same probes, in the same order 
as the original participant. For the execution controls, we recruited 
another group of participants and gave them instructions similar 
to those in the planning experiments. However, in contrast to the 
original experiments, the task did not require planning. Rather, 
these mazes included ‘breadcrumbs’ that needed to be collected 
and that appeared every two steps. Breadcrumbs appeared along 
the exact path taken by one of the original participants, meaning 
that the new participant executed the same actions but without 
having planned. After completing each maze, the participant 
then received the same probes in the same order as the original  
participant.

We assessed whether responses in the planning experiments can 
be explained by a simple combination of perception and/or execu-
tion by testing whether value-guided construal remained a signifi-
cant factor after accounting for control responses. Specifically, we 
used the mean by-obstacle responses from the perception and 
execution controls as predictors in HGLMs fit to the corresponding 
planning responses. We then tested whether adding value-guided 
construal as a predictor improved fits. For the awareness, accuracy 
and confidence responses in the recall experiment, we found that 
including value-guided construal significantly improved fits (likeli-
hood ratio tests comparing models on accuracy: X1

2 = 106.36, 
P = 6.2 × 10−25; confidence: X1

2 = 18.56, P = 1.6 × 10−5; and awareness: 
X1

2 = 55.34, P = 1.0 × 10−13) and that value-guided construal predic-
tions were positively associated with responses (coefficients for 
accuracy: β = 0.58, s.e. = 0.058; confidence: β = 0.039, s.e. = 0.009; 
and awareness: β = 0.054, s.e. = 0.007). Thus, responses after plan-
ning are not reducible to a simple combination of perception and 
execution, and they can be further explained by the formation of 
value-guided construals (Fig. 4c and Supplementary Analyses 
(control experiment)).

Externalizing the planning process
Another limitation of the previous planning experiments is that they 
assess construal after planning is complete (that is, by probing mem-
ory). To obtain a measure of the planning process as it unfolds, we 
developed a process-tracing paradigm. In this version of the task,  
the participants never saw all of the obstacles at once. Instead, at the 
beginning of the trial, after being shown the start and goal locations, 
they could use their mouse to reveal individual obstacles by hovering 
over them (see the ‘Process-tracing experiments’ section of the Meth-
ods; Extended Data Fig. 4b). This led participants to externalize the 
planning process, and their behaviour on this task therefore provides 
insights into how planning computations unfolded internally. We 
tested whether value-guided construal accounted for behaviour by 
analysing two measures: whether an obstacle was hovered over and, 
if it was hovered over, the duration of hovering. Value-guided con-
strual was a significant predictor for both these measures on both 
the initial mazes (likelihood ratio tests comparing HGLMs for hover-
ing: X1

2 = 1,221.76, P < 1.0 × 10−16; β = 0.704, s.e. = 0.021; and hover 
duration (log-transformed time in ms): X1

2 = 169.90, P < 1.0 × 10−16; 
β = 0.161, s.e. = 0.012) and on the critical mazes (hovering: 
X1

2 = 1,361.92, P < 1.0 × 10−16; β = 0.802, s.e. = 0.023; hover duration 
(log-transformed time in ms): X1

2 = 540.63, P < 1.0 × 10−16; β = 0.369, 
s.e. = 0.016). Thus, these results complement our original 
memory-based measurements of people’s task representations and 
strengthen the interpretation of them in terms of value-guided 
construal during planning.

Characterizing value-guided construal modification
Thus far, our account of value-guided construal has assumed that 
an obstacle is either always or never included in a construal. This 
simplification is useful as it enables us to derive clear qualitative pre-
dictions based on whether a plan is influenced by an obstacle, but it 
overlooks graded factors such as how much of a plan is influenced 
by an obstacle. For example, an obstacle may be relevant only for 
planning a few movements around a participant’s initial location in a 
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Fig. 5 | Fitted value-guided construal modification. Our initial model of value-
guided construal focuses on whether an obstacle should or should not be 
included in a construal. We developed a generalization that additionally accounts 
for how much an obstacle influences a plan if a decision-maker is optimally 
modifying their construal during planning (see the ‘Value-guided construal’ 
section in the Methods). We used an ε-softmax noise model39 for computed 

action plans and construal modification policies and, for each planning 
experiment and measure, searched for parameters that maximize the R2 between 
model predictions and mean by-obstacle responses. Plots comparing the scores 
that the fitted construal modification model assigns to each obstacle with the 
participants’ mean by-obstacle responses for the nine measures are shown (data 
are based on n = 84,215 observations taken from 825 independent participants).
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maze and, as a result, could receive less total attention than one that 
is relevant for deciding how to act across a larger area of the maze. To 
characterize these more fine-grained attentional processes, we first 
generalized the original construal selection problem to a one in which 
the decision-maker revisits and potentially modifies their construal 
during planning. We then derived obstacle awareness predictions 
based on a theoretically optimal construal modification policy that 
balances complexity and utility (see the ‘Value-guided construal’ 
section in the Methods).

To assess value-guided construal modification, we reanalysed our 
data using three versions of the model with increasing ability to capture 
variability in responses. First, we used an idealized fixed-parameter 
model to derive a single set of obstacle attention predictions and con-
firmed that they also predict participant responses on the planning 
tasks (Supplementary Analyses (construal modification)). Second, for 
each planning measure and experiment, we calculated fitted-parameter 
models in which noise parameters for the computed plan and con-
strual modification policy were fit (see the ‘Value-guided construal’ 
section in the Methods). Scatter plots comparing mean by-obstacle 
responses and model outputs for parameters with the highest R2 are 
shown in Fig. 5. Finally, we fit a set of models that allowed for biases 
in computed plans (for example, a bias to stay along the edge of a 
maze or an explicit penalty for bumping into walls) and found that 
this additional expressiveness led to obstacle attention predictions 
with an improved correspondence to participant responses (Supple-
mentary Analyses (construal modification)). Together, these analyses 
provide additional insights into the fine-grained dynamic structure of 
value-guided construal modification.

Accounting for alternative mechanisms
Although the analyses so far confirm the predictive power of 
value-guided construal, it is also important to consider alternative 
planning processes. For example, differential awareness could have 
been a passive side-effect of planning computations, rather than an 
active facilitator of planning computations as posited by value-guided 
construal. In particular, participants could have been planning by 
performing heuristic search over action sequences without actively 
construing the task, which would have led to differential awareness 
of obstacles as a byproduct of planning. Differential awareness could 
also have arisen from alternative representational processes, such as 
those based on the successor representation35 or related subgoaling 
mechanisms36. Similarly, perceptual factors, such as the distance to 
the start, goal, walls, centre, optimal path or path taken, could have 
influenced responses.

On the basis of these considerations, we identified ten alternative 
predictors (see the ‘Model Implementations’ section in the Methods 
and the Code availability; Extended Data Figs. 5–7). All ten predictors 
plus the fixed value-guided construal modification predictions were 
included in global models that were fit to each of the nine planning 
experiment measures and, in all cases, value-guided construal was 
a significant predictor (Extended Data Table 1; see Supplementary 
Analyses (alternative mechanisms) for the same analyses with the 
single-construal model).

Furthermore, to assess the relative importance of each predic-
tor, we calculated the change in fit (in terms of Akaike information 
criterion (AIC)) that resulted from removing each predictor from a 
global model (see the ‘Experiment analyses’ section of the Methods). 
Across all planning experiment measures, removing value-guided 
construal led to the first or second largest reduction in fit (Fig. 4b; 
Extended Data Table 1). These ‘knock-out’ analyses demonstrate the 
explanatory necessity of value-guided construal. To assess explana-
tory sufficiency, we fit a new set of single-predictor and two-predictor 
models using all predictors and then calculated their ΔAICs (see 
the ‘Experiment analyses’ section of the Methods; Extended Data 

Fig. 8). For all nine experimental measures, value-guided construal 
was one of the top two single-predictor models and was one of the 
two factors included in the best two-predictor model. Together, 
these analyses confirm the explanatory necessity and sufficiency 
of value-guided construal.

Discussion
We tested the idea that, when people plan, they do so by constructing a 
simplified mental representation of a problem that is sufficient to solve 
it—a process that we refer to as value-guided construal. We began by 
formally articulating how an ideal, cognitively limited decision-maker 
should construe a task so as to balance complexity and utility. We then 
showed that preregistered predictions of this model explain people’s 
awareness, ability to recall problem elements (obstacles in a maze), 
confidence in recall ability and behaviour in a process-tracing para-
digm, even after controlling for the baseline influence of perception 
and execution as well as ten alternative mechanisms. These findings 
support the hypothesis that people make use of a controlled process 
of value-guided construal, and that it can help to explain the efficiency 
of human planning. More generally, our account provides a framework 
for further investigating the cognitive mechanisms that are involved in 
construal. For example, future work can examine how construal strate-
gies are acquired or how construal selection is shaped by computation 
costs, time or constraints. From a broader perspective, our analysis 
suggests a deep connection between the control of construals and the 
acquisition of structured representations like objects and their parts 
that can be cognitively manipulated37,38, which can inform the develop-
ment of intelligent machines. Future investigation into these and other 
mechanisms that interface with the control of representations will be 
crucial for developing a comprehensive theory of flexible and efficient 
intelligence.
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Methods

Model implementations
Value-guided construal. Our model assumes that the decision-maker 
has a set of cause–effect relationships that can be combined into a task 
construal that is then used for planning. To derive empirical predictions 
for the maze tasks, we assume a set of primitive cause–effect relation-
ships, each of which is analogous to the example of interacting with 
furniture in a living room (see ‘A paradigm for examining construals’). 
For each maze, we modelled the following: the default effect of move-
ment (that is, pressing an arrow key causes the circle to move in that 
direction with probability 1 − ε and stay in place with probability ε, 
ε = 10−5), ϕMove; the effect of being blocked by the centre, plus-shaped 
(+) walls (that is, the wall causes the circle to not move when the arrow 
key is pressed), ϕWalls; and effects of being blocked by each of the N 
obstacles, ϕ i N, = 1 ,.., .Obstaclei

. As every maze includes the same move-
ments and walls, the model selected only which obstacle effects to 
include. The utility function for all mazes was given by a step cost of −1 
until the goal state was reached.

Value-guided construal posits a bilevel optimization procedure 
involving an ‘outer loop’ of construal and an ‘inner loop’ of planning. 
Here we exhaustively calculate potential solutions to this nested opti-
mization problem by enumerating and planning with all possible con-
struals (that is, subsets of obstacle effects). We exactly solved the inner 
loop of planning for each construal using dynamic programming40 
and then evaluated the optimal stochastic computed plan under the 
actual task dynamics (that is, equation (2)). For planning and evaluation, 
transition probabilities were multiplied by a discount rate of 0.99 to 
ensure that values were finite. The general procedure for calculating 
the value of construals is outlined in the algorithm in Extended Data 
Table 2. To be clear, our current research strategy is to derive theoreti-
cally optimal predictions for the inner loop of planning and outer loop 
of construal in the spirit of resource-rational analysis2. Thus, this spe-
cific procedure should not be interpreted as a process model of human 
construal. In the Supplementary Discussion (algorithms for construal 
optimization), we discuss the feasibility of optimizing construals and 
how an important direction for future research will involve investigat-
ing tractable algorithms for finding good construals.

Given a VOR function that assigns a value to each construal, we model 
participants as selecting a construal according to a softmax decision rule:

P c α c( ) ∝ exp{ VOR( )}, (4)−1

where α > 0 is a temperature parameter (for our preregistered predic-
tions α = 0.1). We then calculated a marginalized probability for each 
obstacle being included in the construal, from the initial state, s0, cor-
responding to the expected awareness of that obstacle:

∑P ϕ c P c(Obstacle ) = ∈ ( ), (5)i
c

Obstaclei





�

where, for a statement X, � X[ ] evaluates to 1 if X is true and 0 if X is false. 
We implemented this model in Python v.3.7.4 using the msdm library 
(see Code availability).

The basic value-guided construal model makes the simplifying 
assumption that the decision-maker plans with a single static con-
strual. We can extend this idea to consider a decision-maker who revisits 
and potentially modifies their construal at each stage of planning. In 
particular, we can conceptualize this process in terms of a sequential 
decision-making problem induced by the interaction between task 
dynamics (such as those of a maze) and the internal state of an agent (for 
example, a construal)41. The solution to this problem is then a sequence 
of modified construals associated with planning over different parts 
of the task (for example, planning movements for different areas of 
the maze).

Formally, we denote the set of possible construals as C P ϕ ϕ= ({ ,..., })N1 , 
the powerset of cause–effect relationships, and define a construal 
modification Markov decision process, which has a state space cor-
responding to the Cartesian product of task states and construals, 

S Cs c( , ) ∈ × , and an action space corresponding to possible next con-
struals, Cc′ ∈ . Having chosen a new construal c′, the probability of 
transitioning from task state s to s′ comes from first calculating a joint 
distribution using the actual transition function P s s a( ′| , ) and plan 
π a s

′
( | )c  and then marginalizing over task actions a:

∑P s s c π a s P s s a( ′| , ′) =
′
( | ) ( ′| , ). (6)

a
c

In this construal modification setting, the analogue to the VOR (equa-
tion (3)) is the optimal construal modification value function, defined 
over all s, c:

∑V s c U s P s s c V s c C c c( , ) = ( ) + max ( ′| , ′) ( ′, ′) − ( ′, ) , (7)
c s′ ′











where C c c c c( ′, ) = ′ −  is the number of additional cause–effect rela-
tionships in the new construal c′ compared to c (for sets A and B, the set 
difference A B a a A a B− = { : ∈ and ∉ }). Importantly, this cost on mod-
ifying the construal encourages consistency—that is, without C(c′, c),  
a decision-maker would have no disincentive to completely change 
their construal for each state. Note that, in the special case where  
c = ∅, we recover the original static construal cost for a single step. 
Finally, using the construal modification value function, we define a 
softmax policy over the task/construal state space, π c s c( ′| , )∝  

α P s s c V s c C c cexp{ [∑
′

( ′| , ′) ( ′, ′) − ( ′, )]}.c s
−1 For the fixed parameter model,  

we set αc = 0.1 (as with the single-construal model).
The construal modification formulation enables us to consider not 

only whether an obstacle appears in a construal, but also how long it 
appears in a construal. In particular, we would like to compute a quan-
tity that is analogous to equation (5) that assigns model scores for each 
obstacle. To do this, we use the normalized task/construal state occu-
pancy induced by a construal policy π from the initial task/construal 
state, ρ s c s c M s c s c( , | , ) ∝ ( , , , )π π0 0 0 0 , where c = ∅0  and Mπ is the succes-
sor representation under π (for a self-contained review of Mπ, see the 
‘Successor representation-based predictors’ section below). Given a 
policy π and starting task state s0, for each obstacle, we calculate the 
probability of having a construal that includes that obstacle:





�∑P ϕ c ρ s c s c(Obstacle ) = ∈ ( , | , ). (8)i

s c
π

,
Obstacle 0 0

i

To calculate the optimal construal modification value function, V(s, c),  
for each maze, we constructed construal modification Markov decision 
processes in Python (v.3.7.4) using scipy (v.1.5.2) sparse matrices42.  
We then exactly solved for V(s, c) using a custom implementation of 
policy iteration43 designed to take advantage of the sparse matrix  
data structure (see Code availability). For the fitted parameter models, 
we used separate ε-softmax noise models39 for the computed plans, 
πc(a|s), and construal modification policy, π(c′|s,c), and performed  
a grid search over the four parameters for each of the nine plan
ning measures α ε α( ∈ {1, 3, 5, 7} ; ∈ {0.0, 0.1, 0.2} ; ∈ {1, 3, 5, 7, 9};a a c

−1 −1  
ε ∈ {0, 0.05, 0.1, 0.2, 0.3}).c  Moreover, for parameter fitting, we limited 
the construals Cc′ ∈  to be of size three. This improves the speed of 
parameter evaluation and yields results comparable to the fixed param-
eter model, which uses the full construal set. Finally, to obtain obstacle 
value-guided construal probabilities, we simulate 1,000 rollouts of the 
construal modification policy to estimate ρ s c(⋅| , )π 0 0 . As with the initial 
model, we emphasize that these procedures are not intended as an 
algorithmic account of construal modification but, rather, enable us 
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to derive theoretically optimal predictions of the fine-grained dynam-
ics of value-guided construals during planning.

Heuristic search over action sequences. Value-guided construal pos-
its that people control their task representations to actively facilitate 
planning, which, in the maze navigation paradigm, leads to differential 
attention to obstacles. However, differential attention could also occur 
as a passive side-effect of planning, even in the absence of active con-
strual. In particular, heuristic search over action sequences is another 
mechanism for reducing the cost of planning, but it accomplishes this 
in a different way—by examining possible action sequences in order of 
how promising they seem, not by simplifying the task representation. 
If people are simulating candidate action sequences through heuristic 
search (and not engaged in an active construal process), differential 
attention to task elements could have simply been a side effect of how 
those simulations unfolded.

Thus, we wanted to derive predictions of differential awareness as 
a byproduct of search over action sequences. To do so, we considered 
two general classes of heuristic search algorithms. The first, a variant 
of real-time dynamic programming (RTDP)44,45, is a trajectory-based 
search algorithm that simulates physically realizable trajectories (that 
is, sequences of states and actions that could be generated by repeat-
edly calling a fixed transition function). The algorithm works by first 
initializing a heuristic value function (for example, based on domain 
knowledge). It then simulates trajectories that greedily maximize the 
heuristic value function while also performing Bellman updates at simu-
lated states44. This scheme then leads RTDP to simulate states in order 
of how promising they are (according to the continuously updated heu-
ristic value function) until the value function converges. Importantly, 
RTDP can end up visiting a fraction of the total state space, depending 
on the heuristic. Our implementation was based on the labelled RTDP 
algorithm of Bonet & Geffner45, which additionally includes a labelling 
scheme that marks states where the estimate of the value function has 
converged, leading to faster overall convergence.

To derive obstacle awareness predictions, we ran RTDP (implemented 
in msdm; see Code availability) on each maze and initialized it with a heu-
ristic corresponding to the optimal value function assuming that there 
are plus-shaped walls but no obstacles. This models the background 
knowledge that participants have about distances, while also providing 
a fair comparison to the initial information provided to the value-guided 
construal implementation. Moreover, if at any point the algorithm had 
to choose actions on the basis of an estimated value, ties were resolved 
randomly, making the algorithm stochastic. For each maze, we ran 200 
simulations of the algorithm to convergence and examined which states 
were visited by the algorithm over all simulations. We calculated the 
mean number of times that each obstacle was ‘hit’ by the algorithm, 
where a hit was defined as a visit to a state adjacent to an obstacle such 
that the obstacle was in between the state and the goal. As the distribu-
tion of hit counts has a long tail, we used the natural log of hit counts 
+1 as the obstacle hit scores. The reason why the raw hit counts have a 
long tail is due to the particular way in which RTDP calculates the value 
of regions where the heuristic value is much higher than the actual value 
(for example, dead ends in a maze). Specifically, RTDP explores such 
regions until it has confirmed that it is no better than an alternative path, 
which can take many steps. More generally, trajectory-based algorithms 
are limited in that they can only update states by simulating physically 
realizable trajectories starting from the initial state.

The limitations of trajectory-based planning algorithms motivated 
our use of a second class of graph-based planning algorithms. We used 
LAO*46, a version of the classic A* algorithm47 generalized to be used on 
Markov decision processes (implemented in msdm; see Code availabil-
ity). In contrast to trajectory-based algorithms, graph-based algorithms 
such as LAO* maintain a graph of previously simulated states. LAO* in 
particular builds a graph of the task rooted at the initial state and then 
continuously plans over the graph. If it computes a plan that leads it 

to a state at the edge of the graph, the graph is expanded according to 
the transition model to include that state and then the planning cycle 
is restarted. Otherwise, if it computes an optimal plan that only visits 
states in the simulated graph, the algorithm terminates. By continu-
ously expanding the task graph and performing planning updates, the 
algorithm can intelligently explore the most promising (according to 
the heuristic) regions of the state space being constrained to physically 
realizable sequences. In particular, graph-based algorithms can quickly 
‘backtrack’ when they encounter dead ends.

Obstacle awareness predictions based on LAO* were derived by using 
the same initial heuristic as was used for RTDP and a similar scheme for 
handling ties. We then calculated the total number of times an obstacle 
was hit during graph expansion phases only, using the same definition 
of a hit as above. For each maze, we generated 200 planning simulations 
and used the raw hit counts as the hit score.

Algorithms like RTDP and LAO* plan by simulating realizable action 
sequences that begin at the start state. As a result, these models tend 
to predict greater awareness to obstacles that are near the start state 
and are consistent with the initial heuristic, regardless of whether those 
obstacles strongly affect or lie along the final optimal path. For example, 
obstacles down initially promising dead ends have a high hit score. This 
contrasts with value-guided construal, which predicts greater attention 
to relevant obstacles, even if they are distant, and lower attention to 
irrelevant ones, even if they are nearby. For an example of these distinct 
model predictions, see maze 14 in Extended Data Fig. 6.

To be clear, our goal was to obtain predictions for search over action 
sequences in the absence of an active construal process for comparison 
with value-guided construal. However, in general, heuristic search 
and value-guided construal are complementary mechanisms, as the 
former is a way to plan given a representation and the latter is a way 
to choose a representation for planning. For example, one could per-
form heuristic search over a construed planning model, or a construal 
could help with selecting a heuristic to guide search over actions. These 
types of interaction between action-sequence search and construal 
are important directions for future research that can be built on the 
ideas developed here.

Successor representation-based predictors. We also considered 
two measures based on the successor representation, which has been 
proposed as a component in several computational theories of efficient 
sequential decision-making35,48. Importantly, the successor represen-
tation is not a specific model; rather, it is a predictive coding of a task 
in which states are represented in terms of the future states likely to 
be visited from that state, given the decision-maker follows a certain 
policy. Formally, the value function of a policy π(a|s) can be expressed 
in the following two equivalent ways:

∑ ∑V s U s π a s P s s a V s( ) = ( ) + ( | ) ( ′| , ) ( ′) (9)π
a s

π
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∑ M s s U s= ( , ) ( ), (10)
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π
+ +
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where Mπ(s, s+) is expected occupancy of s+ starting from s, when acting 
according to π. The successor representation of a state s under π is then 
the vector Mπ(s, ·). Algorithmically, Mπ can be calculated by solving a 
set of recursive equations (implemented in Python with numpy49; see 
Code availability):
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Again, the successor representation is not itself an algorithm, but 
rather a policy-conditioned recoding of states that can be a compo-
nent of a larger computational process (for example, different kinds 



of learning or planning). Here, we focus on its use in the context of 
transfer learning48,50 and bottleneck states36,51.

Research on transfer learning posits that the successor repre-
sentation supports transfer that is more flexible than pure model- 
free mechanisms but less flexible than model-based planning.  
For example, previous work50 modelled agents that learned a suc-
cessor representation for the optimal policy in an initial maze and 
then examined transfer when the maze was changed (for example, 
adding in a new barrier). While their research focuses on learning, 
rather than planning, we can borrow the basic insight that the suc-
cessor representation induced by the optimal policy for a source 
task can influence the encoding of a target task, which constitutes 
a form of construal. In our experiments, the participants were not 
trained on any particular source task, but we can use the maze with 
all of the obstacles removed as a proxy (that is, representing what 
all mazes had in common). Thus, we calculated the optimal policy 
π for the maze without any obstacles (but with the start and goal), 
computed the successor representation Mπ and then calculated, for 
each obstacle i in the actual maze with the obstacles, a successor 
representation overlap (SR-Overlap) score:

∑i M s sSR−Overlap( ) = ( , ), (12)
s

π
∈Obs

0
i

where s0 is the starting state and Obsi is the set of states occupied by the 
obstacle i. This quantity can be interpreted as the amount of overlap 
between an obstacle and the successor representation of the starting 
state. If the successor representation shapes how people represent 
tasks, this quantity would be associated with greater awareness of 
certain obstacles.

The second predictor is related to the idea of bottleneck states. 
These emerge from how the successor representation encodes mul-
tiscale task structure36, and they have been proposed as a basis for 
subgoal selection51. If bottlenecks guide subgoal selection, then dis-
tance to bottleneck states could give rise to differential awareness of 
obstacles through subgoaling processes. Thus, we wanted to test that 
responses consistent with value-guided construal were not entirely 
attributable to the effect of bottleneck states calculated in the absence 
of an active construal process. Importantly, we note that as with alter-
native planning mechanisms like heuristic search, the identification 
of bottleneck states for subgoaling is compatible with value-guided 
construal (for example, one could identify subgoals for a construed 
version of a task).

When viewing the transition function of a task (such as a maze) as a 
graph over states, bottleneck states lie on either side of a partitioning 
of the state space into two regions such that there is high intra- 
region connectivity and low inter-region connectivity. This can be 
computed for any transition function using the normalized min-cuts 
algorithm52 or derived from the second eigenvector of the successor 
representation under a random policy36. Here we use a variant of  
the second approach as described in the appendix of ref. 36. Formally, 
given a transition function, P s s a( ′| , ), we define an adjacency matrix, 
A s s a P s s a( , ′) = [∃ . ( ′| , ) > 0]� , and a diagonal degree matrix, 
D s s A s s( , ) = ∑

′
( , ′)s . Then, the graph Laplacian, a representation often 

used to derive low-dimensional embeddings of graphs in spectral graph 
theory, is L = D − A. We take the eigenvector with the second largest 
eigenvalue, which assigns a positive or negative value to each state in 
the task. This vector can be interpreted as projecting the state space 
onto a single dimension in a way that best preserves connectivity infor-
mation, with a zero point that represents the mid-point of the projected 
graph. Bottleneck states correspond to those states nearest to 0. For 
each maze, we used this method to identify bottleneck states and fur-
ther reduced these to the optimal bottleneck states, defined as bot-
tleneck states with a non-zero probability of being visited under the 
optimal stochastic policy for the maze. Finally, for each obstacle, we 

calculated a bottleneck distance score, the minimum Manhattan dis-
tance from an obstacle to any of these bottleneck states.

Notably, value-guided construal also predicts greater attention to 
obstacles that form bottlenecks because one often needs to carefully 
navigate through them to reach the goal. However, the predictions of 
our model differ for obstacles that are distant from the bottleneck. 
Specifically, value-guided construal predicts greater attention to 
relevant obstacles that affect the optimal plan, even if they are far 
from the bottleneck (see the model predictions for maze 2 in Extended 
Data Fig. 5).

Perceptual landmarks. Finally, we considered several predictors based 
on low-level perceptual landmarks and participants’ behaviour. These 
included the minimum Manhattan distance from an obstacle to the start 
location, the goal location, the centre black walls, the centre of the grid 
and any of the locations visited by the participant in a trial (navigation 
distance). We also considered the timestep at which participants were 
closest to an object as a measure of how recently they were near an 
object. In cases in which navigation distance was not an appropriate 
measure (for example, if the participants never navigated to the goal), 
we used the minimum Manhattan distance to trajectories sampled from 
the optimal policy averaged over 100 samples.

Experimental design
All of the experiments were preregistered (see Data availability) and 
approved by the Princeton Institutional Review Board (IRB). All of the 
participants were recruited from the Prolific online platform and pro-
vided informed consent. Sample sizes were determined on the basis 
of pilot experiments (see Reporting Summary). At the end of each 
experiment, the participants provided free-response demographic 
information (age and gender, coded as male/female/neither). Experi-
ments were implemented with psiTurk53 and jsPsych54 frameworks 
(see Code availability). Instructions and example trials are shown in 
the Supplementary Methods.

Initial experiment. Our initial experiment used a maze-navigation 
task in which the participants moved a circle from a starting location 
on a grid to a goal location using the arrow keys. The set of initial mazes 
consisted of twelve 11 × 11 mazes with seven blue tetronimo-shaped 
obstacles and centre walls arranged in a cross that blocked movement. 
On each trial, the participants were first shown a screen displaying only 
the centre walls. When they pressed the spacebar, the circle they con-
trolled, the goal and the obstacles appeared, and they could begin mov-
ing immediately. Moreover, to ensure that the participants remained 
focused on moving, we placed a green square on the goal that shrank 
and would disappear after 1,000 ms but reset whenever an arrow key 
was pressed, except at the beginning of the trial when the green square 
took longer to shrink (5,000 ms). The participants received US$0.10 for 
reaching the goal without the green square disappearing (in addition 
to the base pay of US$0.98). The mazes were pseudorandomly rotated 
or flipped, so the start and end state was constantly changing, and the 
order of mazes was pseudorandomized. After completing each trial, 
the participants received awareness probes, which showed a static 
image of the maze they had just navigated, with one of the obstacles 
shown in light blue. The participants were asked “How aware of the 
highlighted obstacle were you at any point?” and could respond using 
an eight-point scale (which was rescaled to 0–1 for analyses). Probes 
were presented for the seven obstacles in a maze. None of the probes 
were associated with a bonus.

We requested 200 participants on Prolific and received 194 com-
plete submissions. Following preregistered exclusion criteria, a trial 
was excluded if, during navigation, >5,000 ms was spent at the initial 
state, >2,000 ms was spent at any non-initial state, >20,000 ms was 
spent on the entire trial or >1,500 ms was spent in the last three steps 
in total. Participants with <80% of trials after exclusions or who failed 2 
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of 3 comprehension questions were excluded, which resulted in n = 161 
participants’ data being analysed (median age of 28; 81 male, 75 female, 
5 neither).

Up-front planning experiment. The up-front planning version of the 
memory experiment was designed to dissociate planning and execu-
tion. The main change was that, after participants took their first step, 
all of the blue obstacles (but not the walls or goal) were removed from 
the display (although they still blocked movement). This strongly en-
couraged planning before execution. To provide sufficient time to plan, 
the green square took 60,000 ms to shrink on the first step. Further-
more, on a random half of the trials, after taking two steps, the partici-
pants were immediately presented with the awareness probes (early 
termination trials). The other half were full trials. We reasoned that 
responses after early termination trials would better reflect awareness 
after planning but before execution (see the Supplementary Analyses 
(memory experiment) for analyses comparing early versus full trials).

We requested 200 participants on Prolific and received 188 com-
plete submissions. The exclusion criteria were the same as in the initial 
experiment, except that the initial state and total trial time criteria were 
raised to 30,000 ms and 60,000 ms, respectively. After exclusions,  
we analysed data from n = 162 participants (median age of 28; 85 male, 
72 female, 5 neither).

Critical mazes experiment. In the critical mazes experiment, partici-
pants again could not see the obstacles while executing and therefore 
needed to plan up front, but no trials ended early. There were two 
main differences compared with the previous experiments. First, 
we used a set of four critical mazes that included critical obstacles 
chosen to test predictions specific to value-guided construal. These 
were obstacles relevant to decision-making, but distant from the 
optimal path (see Supplementary Analyses (memory experiment) 
for analyses focusing on these critical obstacles). Second, half of the 
participants received recall probes in which they were shown a static 
image of the grid with only the walls, a green obstacle and a yellow 
obstacle. They were then asked “An obstacle was either in the yellow or 
green location (not both), which one was it?” and could select either 
option, followed by a confidence judgement on an eight-point scale 
(rescaled to 0–1 for analyses). Pairs of obstacles and their contrasts 
in the critical mazes are shown in Extended Data Fig. 4a. Participants 
each received two blocks of the four critical mazes, pseudorandomly 
oriented and/or flipped.

We requested 200 participants on Prolific and received 199 com-
plete submissions. The trial and participant exclusion criteria were 
the same as in the up-front planning experiment. After exclusions, we 
analysed data from n = 156 participants (median age of 26; 78 male,  
75 female, 3 neither).

Control experiments. The aim of the control experiments was to obtain 
yoked baselines for perception and execution for comparison with 
probe responses in the memory studies. The perception control used 
a variant of the task in which the participants were shown patterns that 
were perceptually identical to the mazes. Instead of solving a maze, 
they were told to “catch the red dot”. On each trial, a small red dot could 
appear anywhere on the grid, and the participants were rewarded on 
the basis of whether they pressed the spacebar after it appeared. Each 
participant was yoked to the responses of a participant from either 
the up-front planning or critical mazes experiments. On yoked trials, 
the participants were shown the exact same maze/pattern as their 
counterpart. They were also shown the pattern for the amount of time 
that their counterpart took before making their first move—as the 
obstacles were not visible during execution for the counterpart, this 
is approximately the time the counterpart spent looking at the maze to 
plan. A red dot never appeared on these trials, and they were followed 
by the exact same probes that the counterpart received. References 

to ‘obstacles’ were changed to ‘tiles’ (for example, “highlighted tiles” 
as opposed to “highlighted obstacle” for the awareness probes). We 
also included dummy trials, which showed mazes in orientations not 
appearing in the yoked trials, for durations sampled from the yoked 
durations. Half of the dummy trials had red dots. We recruited enough 
participants such that at least one participant was matched to each 
participant from the original experiments and excluded people who 
said that they had participated in a similar experiment. This resulted 
in data from n = 164 participants being analysed for the initial mazes 
perception control (median age of 30.5; 84 male, 79 female, 1 neither) 
and n = 172 for the critical mazes perception control (median age of 
36.5; 86 male, 85 female, 1 neither).

The execution control used a variant of the task in which participants 
followed a series of ‘breadcrumbs’ through the maze to the goal and 
so did not need to plan a path to the goal. Each participant was yoked 
to a counterpart in either the initial experiment or the critical mazes 
experiment so that the breadcrumbs were generated based on the exact 
path taken by the counterpart. The ordering of the mazes and obstacle 
probes (that is, awareness or location recall) were also the same. We 
recruited participants until at least one participant was matched to each 
participant from the original experiments. Furthermore, we used the 
same exclusion criteria as in the initial experiment with the additional 
requirement that all black dots be collected on a trial. This resulted 
in data from n = 163 participants being analysed for the initial mazes 
execution control (median age of 29; 86 male, 77 female) and n = 161 
for the critical mazes execution control (median age of 30; 94 male, 63 
female; 4 neither).

Process-tracing experiments. We ran process-tracing experiments 
using the initial mazes and the critical mazes. These experiments were 
similar to the memory experiments, except they used a process-tracing 
paradigm designed to externalize the planning process. Specifically, 
the participants never saw all of the obstacles in the maze at once. 
Rather, at the beginning of a trial, after clicking on a red X in the centre 
of the maze, the goal and agent appeared, and the participants could 
use their mouse to hover over the maze and reveal individual obstacles. 
An obstacle would become completely visible if the mouse hovered 
over any tile that was part of it for at least 25 ms, until the mouse was 
moved to a tile that was not part of that obstacle. Once the participant 
started to move using the arrow keys, the cursor became temporarily 
invisible (to prevent using the cursor as a cue to guide execution), and 
the obstacles could no longer be revealed. We examined two depend-
ent measures for each obstacle: whether participants hovered over 
an obstacle and, if so, the log-transformed duration of hovering in 
milliseconds.

For each experiment with each set of mazes, we requested 200 
participants on Prolific. The participants who completed the task 
had their data excluded if they did not hover over any obstacles on 
more than half of the trials. For the experiment with the initial mazes 
set, we received completed submissions from 174 people and, after 
exclusions, analysed data from n = 167 participants (median age of 30;  
82 male, 82 female, 3 neither). For the experiment with the critical 
mazes set, we received completed submissions from 188 people and, 
after exclusions, analysed data from n = 179 participants (median age 
of 32; 89 male, 86 female, 4 neither).

Experiment analyses
HGLMs were implemented in Python and R using the lme455 and 
rpy256 packages (see Code availability). For all models, we included 
by-participant and by-maze random intercepts, unless the result-
ing model was singular, in which case we removed by-maze random 
intercepts. For the memory experiment analyses testing whether 
value-guided construal predicted responses, we fit models with and 
without z-score normalized value-guided construal probabilities as a 
fixed effect and performed likelihood ratio tests to assess significance. 



For the control experiment analyses reported in the main text, we 
calculated mean by-obstacle responses from the perception and execu-
tion controls, and then included these values as fixed effects in models 
fit to the responses in the planning experiments. We then contrasted 
models with and without value-guided construal and performed likeli-
hood ratio tests (additional analyses are reported in the Supplemen-
tary Analyses (memory experiment and control experiment)).

For our comparison with alternative models, we considered 11 
different predictors that assign scores to obstacles in each maze: 
fixed-parameter value-guided construal modification probability 
(VGC), trajectory-based heuristic search score (Traj. HS), graph-based 
heuristic search score (Graph HS), bottleneck state distance (Bottle-
neck), successor representation overlap (SR overlap), minimum navi-
gation distance (Nav. dist.), timestep of minimum navigation distance 
(Nav. dist. step), minimum optimal policy distance (Opt. dist.), distance 
to goal (Goal dist.), distance to start (Start dist.), distance to centre 
walls (Wall dist.) and distance to the centre of the maze (Centre dist.). 
We included predictors in the analysis of each experiment’s data where 
appropriate. For example, in the up-front planning experiment, the 
participants did not navigate on early termination trials, and we there-
fore used the optimal policy distance rather than navigation distance. 
All predictors were z-score normalized before being included as fixed 
effects in HGLMs to facilitate comparison of estimated coefficients.

We performed three types of analyses using the 11 predictors. 
First, we wanted determine whether value-guided construal cap-
tured variability in responses from the planning experiments even 
when accounting for the other predictors. For these analyses, we 
compared HGLMs that included all predictors to HGLMs with all pre-
dictors except value-guided construal and tested whether there was 
a significant difference in fit using likelihood ratio tests. Second, 
we wanted to evaluate the relative necessity of each mechanism for 
explaining attention to obstacles when planning. For these analyses, 
we compared global HGLMs to HGLMs with each of the predictors 
removed and calculated the resulting change in AIC (see Extended 
Data Table 1 for estimated coefficients and resulting AIC values). 
Finally, we wanted to assess the relative sufficiency of predictors in 
accounting for responses on the planning tasks. For these analyses, 
we fit HGLMs to each set of responses that included only individual 
predictors or pairs of predictors and, for each model, we calculated 
the ΔAIC relative to the best-fitting model (Extended Data Fig. 8). Note 
that, for all of these models, AIC values are summed over participants.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data for the current study are available through the Open Science Foun-
dation repository https://doi.org/10.17605/OSF.IO/ZPQ69.

Code availability
Code for this study is available through the Open Science Foundation 
repository https://doi.org/10.17605/OSF.IO/ZPQ69, which links to a 
GitHub repository and contains an archived version of the repository. The 
value-guided construal model and alternative models were implemented 
in Python (v.3.7.4) using the msdm (v.0.6) library, numpy (v.1.19.2) and 
scipy (v.1.5.2). Experiments were implemented using psiTurk (v.3.2.0) 
and jsPsych (v.6.0.1). Hierarchical generalized linear regressions were 
implemented using rpy2 (v.3.3.6), lme4 (v.1.1.21) and R (v.3.6.1).
 
40.	 Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).
41.	 Parr, R. & Russell, S. in Proc. Advances in Neural Information Processing Systems (eds 

Jordan, M. I. et al.) 10 (MIT Press, 1997).
42.	 Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. 

Nat. Methods 17, 261–272 (2020).
43.	 Howard, R. A. Dynamic Programming and Markov Processes (MIT Press, 1960).
44.	 Barto, A. G., Bradtke, S. J. & Singh, S. P. Learning to act using real-time dynamic 

programming. Artif. Intell. 72, 81–138 (1995).
45.	 Bonet, B. & Geffner, H. Labeled RTDP: improving the convergence of real-time dynamic 

programming. In Proc. International Conference on Planning and Automated Scheduling 
Vol. 3 (ed. Giunchiglia, E.) 12–21 (AAAI Press, 2003).

46.	 Hansen, E. A. & Zilberstein, S. LAO∗: a heuristic search algorithm that finds solutions with 
loops. Artif. Intell. 129, 35–62 (2001).

47.	 Hart, P. E., Nilsson, N. J. & Raphael, B. A formal basis for the heuristic determination of 
minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968).

48.	 Momennejad, I. et al. The successor representation in human reinforcement learning. 
Nat. Hum. Behav. 1, 680–692 (2017).

49.	 Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
50.	 Russek, E. M., Momennejad, I., Botvinick, M. M., Gershman, S. J. & Daw, N. D. Predictive 

representations can link model-based reinforcement learning to model-free 
mechanisms. PLoS Comput. Biol. 13, e1005768 (2017).

51.	 Solway, A. et al. Optimal behavioral hierarchy. PLoS Comput. Biol. 10, e1003779 (2014).
52.	 Shi, J. & Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. 

Mach. Intell. 22, 888–905 (2000).
53.	 Gureckis, T. M. et al. psiTurk: an open-source framework for conducting replicable 

behavioral experiments online. Behav. Res. Methods 48, 829–842 (2016).
54.	 De Leeuw, J. R. jsPsych: a JavaScript library for creating behavioral experiments in a web 

browser. Behav. Res. Methods 47, 1–12 (2015).
55.	 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using 

lme4. J. Stat. Softw. 67, 1–48 (2015).
56.	 The rpy2 Contributors. rpy2 version 3.3.6. (2020); https://rpy2.github.io/

Acknowledgements We thank J. Hamrick, L. Gularte, C. Sayalı, Q. Zhang, R. Dubey and  
W. Thompson for feedback on this work. This work was funded by NSF grant 1545126,  
John Templeton Foundation grant 61454 and AFOSR grant FA 9550-18-1-0077.

Author contributions All of the authors contributed to conceptualizing the project and editing 
the manuscript. M.K.H., D.A., M.L.L. and T.L.G. developed the value-guided construal model. 
M.K.H. implemented the value-guided construal model. M.K.H. and C.G.C. implemented the 
heuristic search models and msdm library. M.K.H., J.D.C. and T.L.G. designed the experiments. 
M.K.H. implemented the experiments, analysed the results and drafted the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-022-04743-9.
Correspondence and requests for materials should be addressed to Mark K. Ho.
Peer review information Nature thanks Wei Ji Ma, Redmond O’Connell and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.17605/OSF.IO/ZPQ69
https://doi.org/10.17605/OSF.IO/ZPQ69
https://rpy2.github.io/
https://doi.org/10.1038/s41586-022-04743-9
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Experimental measures on mazes 0 to 5. Average 
responses associated with each obstacle in mazes 0 to 5 in the initial experiment 
(awareness judgement), the up-front planning experiment (awareness 
judgement), and the process-tracing experiment (whether an obstacle was 

hovered over and, if so, the duration of hovering in log milliseconds). Obstacle 
colours are normalized by the minimum and maximum values for each measure/
maze, except for awareness judgements, which are scaled from 0 to 1.



Extended Data Fig. 2 | Experimental measures on mazes 6 to 11. Average 
responses associated with each obstacle in mazes 6 to 11 in the initial experiment 
(awareness judgement), the up-front planning experiment (awareness 
judgement), and the process-tracing experiment (whether an obstacle was 

hovered over and, if so, the duration of hovering in log milliseconds). Obstacle 
colours are normalized by the minimum and maximum values for each measure/
maze, except for awareness judgements, which are scaled from 0 to 1.
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Extended Data Fig. 3 | Experimental measures on mazes 12 to 15. Average 
responses associated with each obstacle in mazes 12 to 15 in the critical mazes 
experiment (recall accuracy, recall confidence, and awareness judgement) and 
the process-tracing experiment (whether an obstacle was hovered over and,  

if so, the duration of hovering in log milliseconds). Obstacle colours are scaled 
to range from 0.5 to 1.0 for accuracy, 0 to 1 for hovering, confidence, and 
awareness judgements, and the minimum to maximum values across obstacles 
in a maze for hovering duration in log milliseconds.



Extended Data Fig. 4 | Additional Experimental Details. a, Items from 
critical mazes experiment. Blue obstacles are the location of obstacles during 
the navigation part of the trial. Orange obstacles with corresponding number 
are copies that were shown during location recall probes. During recall probes, 
participants only saw an obstacle paired with its copy. b, Example trial from 

process-tracing experiment. Participants could never see all of the obstacles  
at once, but, before navigating, could use their mouse to reveal obstacles.  
We analyzed whether value-guided construal predicted which obstacles 
people tended to hover over and, if so, the duration of hovering.
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Extended Data Fig. 5 | Model predictions on mazes 0 through 7. Shown are 
the predictions for six of the eleven predictors we tested: fixed parameter 
value-guided construal modification obstacle probability (VGC, our model); 
trajectory-based heuristic search obstacle hit score (Traj HS); graph-based 
heuristic search obstacle hit score (Graph HS); distance to optimal bottleneck 

(Bottleneck); successor representation overlap score (SR Overlap); and 
distance to optimal paths (Opt Dist) (see Methods, Model Implementations). 
Mazes 0 to 7 were all in the initial set of mazes. Darker obstacles correspond to 
greater predicted attention according to the model. Obstacle colours 
normalized by the minimum and maximum values for each model/maze.



Extended Data Fig. 6 | Model predictions on mazes 8 through 15. Shown are 
the predictions for six of the eleven predictors we tested (see Methods, Model 
Implementations). Mazes 8 to 11 were part of the initial set of mazes, while 
mazes 12 to 15 constituted the set of critical mazes. Darker obstacles 

correspond to greater predicted attention according to the model.  
Obstacle colours normalized by the minimum and maximum values for each 
model/maze.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Summaries of candidate models and data from 
planning experiments. Each row corresponds to a measurement of attention 
to obstacles from a planning experiment: Awareness judgements from the 
initial memory experiment, the up-front planning experiment, and the critical 
mazes experiment; recall accuracy and confidence from the critical mazes 
experiment; and the binary hovering measure and hovering duration measure 
(in log milliseconds) from the two process-tracing experiments. Each column 
corresponds to candidate processes that could predict attention to obstacles: 
fixed parameter value-guided construal modification obstacle probability 
(VGC, our model), trajectory-based heuristic search hit score (Traj HS),  
graph-based heuristic search hit score (Graph HS), distance to bottleneck 
states (Bottleneck), successor-representation overlap (SR Overlap), expected 
distance to optimal paths (Opt Dist), distance to the goal location (Goal Dist), 

distance to the start location (Start Dist), distance to the invariant black walls 
(Wall Dist), and distance to the centre of the maze (Centre Dist). Note that for 
distance-based predictors, the x-axis is flipped. For each predictor, we quartile-
binned the predictions across obstacles, and for each bin we plot (bright red 
lines) the mean and standard deviation of the predictor and mean by-obstacle 
response (overlapping bins were collapsed into a single bin). Black circles 
correspond to the mean response and prediction for each obstacle in each 
maze. Dashed dark red lines are simple linear regressions on the black circles, 
with R2 values shown in the lower right of each plot. Across the nine measures, 
value-guided construal tracks attention to obstacles, while other candidate 
processes are less consistently associated with obstacle attention (data are 
based on n = 84215 observations taken from 825 independent participants).



Article

Extended Data Fig. 8 | Sufficiency of individual and pairs of mechanisms for 
explaining attention to obstacles when planning. To assess the individual 
and pairwise sufficiency of each predictor for explaining responses in the 
planning experiments, we fit hierarchical generalized linear models (HGLMs) 
that included pairs of predictors as fixed effects. Each lower-triangle plot 
corresponds to one of the experimental measures, where pairs of predictors 
included in a HGLM as fixed-effects are indicated on the x- and y-axes.  

Values are the ΔAIC for each model relative to the best fitting model associated 
with an experimental measure (lower values indicate better fit). Values along 
the diagonals correspond to models fit with a single predictor. According to 
this criterion, across all experimental measures, value-guided construal is in 
the first or second best single-predictor HGLM, and is always in the best 
two-predictor HGLM.



Extended Data Table 1 | Necessity of different mechanisms for explaining attention to obstacles when planning

For each measure in each planning experiment, we fit hierarchical generalized linear models (HGLMs) that included the following predictors as fixed-effects: fixed parameter value-guided 
construal modification obstacle probability (VGC, our model); trajectory-based heuristic search obstacle hit score (Traj HS); graph-based heuristic search obstacle hit score (Graph HS); 
distance to optimal bottleneck (Bottleneck); successor representation overlap score (SR Overlap); distance to path taken (Nav Dist); timestep of point closest along path taken (Nav Dist Step); 
distance to optimal paths (Opt Dist); distance to the goal state (Goal Dist); distance to the start state (Start Dist); distance to any part of the centre walls (Wall Dist); and distance to the centre 
of the maze (Centre Dist) (Methods, Model Implementations). If the measure was taken before participants navigated, distance to the optimal paths was used, otherwise, distance to the path 
taken and its timestep were used. a, b, Estimated coefficients and standard errors for z-score normalized predictors in HGLMs fit to responses from the initial experiment, up-front planning 
experiment (F = full trials, E = early termination trials), the critical mazes experiment, and the process-tracing experiments. We found that value-guided construal was a significant predictor 
even when accounting for alternatives (likelihood ratio tests between full global models and models without value-guided construal: Initial Exp, Awareness: χ2(1) = 501.11, p < 1.0 × 10−16; Up-front 
Exp, Awareness (F): χ2(1) = 282.17, p < 1.0 × 10−16; Up-front Exp, Awareness (E): χ2(1) = 206.14, p < 1.0 × 10−16; Critical Mazes Exp, Accuracy: χ2(1) = 114.87, p < 1.0 × 10−16; Critical Mazes Exp, Confidence: 
χ2(1) = 181.28, p < 1.0 × 10−16; Critical Mazes Exp, Awareness: χ2(1) = 486.99, p < 1.0 × 10−16; Process-Tracing Exp (Initial Mazes), Hovering: χ2(1) = 294.40, p < 1.0 × 10−16; Process-Tracing Exp (Initial Mazes), 
Duration: χ2(1) = 177.58, p < 1.0 × 10−16; Process-Tracing Exp (Critical Mazes), Hovering: χ2(1) = 183.52, p < 1.0 × 10−16; Process-Tracing Exp (Critical Mazes), Duration: χ2(1) = 251.16, p < 1.0 × 10−16). c, To 
assess the relative necessity of each predictor for the fit of a HGLM, we conducted lesioning analyses in which, for each predictor in a given global HGLM, we fit a new lesioned HGLM with only 
that predictor removed. Each entry of the table shows the change in AIC when comparing global and lesioned HGLMs, where larger positive values indicate a greater reduction in fit as a result 
of removing a predictor. According to this criterion, across all experiments and measures, value-guided construal is either the first or second most important predictor. *Largest increase in AIC 
after lesioning; †Second-largest increase.
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Extended Data Table 2 | Algorithm for Computing the VOR Function

To obtain predictions for our our ideal model of value-guided construal, we calculated the VOR of all construals in a maze. This was done by enumerating all construals (subsets of obstacle 
effects) and then, for each construal, calculating its behavioural utility and cognitive cost. This allows us to obtain theoretically optimal value-guided construals. For a discussion of alternative 
ways of calculating construals, see the Supplementary Discussion of Construal Optimization Algorithms.
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