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A B S T R A C T   

Researchers across cognitive science, economics, and evolutionary biology have studied the ubiquitous phe-
nomenon of social learning—the use of information about other people’s decisions to make your own. Decision- 
making with the benefit of the accumulated knowledge of a community can result in superior decisions compared 
to what people can achieve alone. However, groups of people face two coupled challenges in accumulating 
knowledge to make good decisions: (1) aggregating information and (2) addressing an informational public 
goods problem known as the exploration-exploitation dilemma. Here, we show how a Bayesian social sampling 
model can in principle simultaneously optimally aggregate information and nearly optimally solve the 
exploration-exploitation dilemma. The key idea we explore is that Bayesian rationality at the level of a popu-
lation can be implemented through a more simplistic heuristic social learning mechanism at the individual level. 
This simple individual-level behavioral rule in the context of a group of decision-makers functions as a 
distributed algorithm that tracks a Bayesian posterior in population-level statistics. We test this model using a 
large-scale dataset from an online financial trading platform.   

1. Introduction 

There are thousands of investment opportunities listed on the 
world’s various stock exchanges. The options each person has for what 
occupations to pursue or what paths to take in life are vast. Even in 
decisions as mundane as where to buy a cup of coffee or where to go out 
to eat for dinner, a city dweller is faced with a dizzying array of 
options—Boston’s North End neighborhood has over 50 Italian restau-
rants; downtown Manhattan has hundreds of bars. Furthermore, the 
information available about the options in each of these cases changes 
over time, creating complex and ever-evolving decision-making land-
scapes for many of the choices we face. Yet we do not have to make these 
decisions alone. Entire communities of people are faced with the same 
sets of options in many decision-making contexts, and can communicate 
information about the different options available in the decisions at 
hand. Decision-making with the benefit of the accumulated knowledge 
of a community can result in superior decisions compared to what 
people can achieve alone (Boyd et al., 2011; Hidalgo, 2015; Hillel et al., 

2013; Mason & Watts, 2012; Rendell et al., 2010). Which of the many 
potential investment opportunities, career paths, or coffee shops is the 
best fit for a person like you? Relying on information from other people 
can be an effective component of how to decide. 

However, decision-making in the context of a group of people pre-
sents its own challenges. Two coupled challenges that groups face in 
accumulating reliable knowledge to make good decisions are (1) 
aggregating information and (2) addressing an informational public 
goods problem known as the exploration-exploitation dilemma (Hills 
et al., 2015; March, 1991; Toyokawa et al., 2014). The problem of in-
formation aggregation is a matter of how to get information as effi-
ciently as possible from as many people as possible who have faced the 
same decision. In other words, the challenge of information aggregation, 
at least in cases where preferences are roughly shared, is for decision- 
makers to pool the experiences they have had and to determine the 
most informed beliefs about the qualities of options available in the 
decision at hand. A naïve version of ideal information aggrega-
tion—directly sharing all personal preferences and experiences—is not 
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possible for people to do, but even if it were, the second challenge of the 
exploration-exploitation dilemma would still remain to be met. The 
exploration-exploitation dilemma is a matter of balancing relying on the 
knowledge that a population of decision-makers has accumulated with 
contributing to that pooled knowledge through exploration that goes 
beyond what is known already. If all decision-makers focus on the best- 
looking options at a given time according to all the available aggregated 
information, the group will learn little about less-explored potentially 
higher quality options. Both of these challenges are intrinsic computa-
tional problems that groups face in accumulating knowledge about the 
world. How do groups of people in shared decision-making contexts 
address these challenges? Are there mechanisms of human collective 
behavior that enable effective information aggregation and a good 
balance between exploration and exploitation? 

We answer these question by developing a new model that synthe-
sizes approaches from two strands of related work on modeling human 
social learning. We establish that a simple heuristic social decision- 
making procedure called social sampling is capable of achieving ideal 
information aggregation and a good trade-off between exploration and 
exploitation. To test our model, we study how people address the 
problems of information aggregation and exploration versus exploita-
tion in a large, highly instrumented social system. We examine collective 
behavior in an online social financial trading platform. In this environ-
ment, users are able to follow and copy each other’s trades, and users are 
therefore faced with a difficult decision of who among the many users of 
the platform to follow. This observational dataset allows us to study 
social learning in a large group regime, which is prohibitively costly in 
the laboratory but theoretically important since the emergent properties 
of our model fully appear only in large groups. A unique advantage of 
the environment we study among observational datasets of large groups 
is that explicit objective evidence of trading performance is available to 
both users on the site and to us as analysts. We can therefore compute 
normative benchmarks for ideal information aggregation and explora-
tion versus exploitation, and check the predictions of our model by 
comparing how closely collective behavior accords with these norma-
tive benchmarks. 

2. Background 

Our work contributes to the extensive literature on social learning, 
which studies the use of information about other people’s decisions to 
make your own. One key line of work on social learning has centered on 
what kinds of social learning behaviors and mechanisms people engage 
in social learning contexts, and how the various candidate behavioral 
models solve or fail to solve computational problems like information 
aggregation and exploration versus exploitation. Mathematical and 
computational models are commonly employed in this literature to try 
to answer these questions by modeling behavior and then studying the 
properties of those models. Two different classes of models have been 
especially common, heuristic social learning models and Bayesian social 
learning models (Acemoglu & Ozdaglar, 2011; Golub & Sadler, 2016), 
and prior works have also combined these classes. Our contributions rely 
on a new synthesis of these two approaches. 

2.1. Heuristic social learning models 

Heuristic social learning models describe behavior as resulting from 
simple hard-coded rules involving a combination of social observation 
and individual consideration (Laland, 2004). In cognitive science, 
Goldstone and colleagues have studied a range of heuristic social 
learning mechanisms (Wisdom et al., 2013), as well as how these 
different mechanisms affect task performance and allow groups to 
collectively solve problems, from exploring complex decision landscapes 
(Goldstone et al., 2013; Mason et al., 2008; Mason & Watts, 2012) to 
finding shortest paths (Gureckis & Goldstone, 2006). Economists and 
sociologists have a parallel scholarly literature on heuristic social 

learning models (DeGroot, 1974; Friedkin, 2006; Friedkin & Johnsen, 
2011; Gupta et al., 2006; Lazer & Friedman, 2007; March, 1991). Re-
searchers in complex systems have also studied a range of similar 
models, including replicator dynamics (Henrich & Boyd, 2002), major-
ity dynamics (Mossel et al., 2014; Tamuz & Tessler, 2015), linear 
opinion dynamics (Becker et al., 2017), statistical physics models 
(Castellano et al., 2009), and contagion models (Guille et al., 2013). The 
heuristic approach has been used to study both problems of information 
aggregation and exploration versus exploitation, although typically in 
separate pieces of work using separate models. 

2.2. Bayesian social learning models 

Bayesian social learning models relate closely to the frameworks of 
rational agent modeling and Bayesian cognition (Griffiths et al., 2008; 
Griffiths & Tenenbaum, 2006; Tenenbaum et al., 2011). The core 
premise of Bayesian cognition is that agents have a mental model of the 
world that is used for making inferences about the world. Bayesian so-
cial learning models most commonly examine how social observation 
can be optimally integrated into this process of rational Bayesian 
inference. Griffiths and others in cognitive science have studied how 
social learning relates to cultural accumulation (Beppu & Griffiths, 
2009; Griffiths & Kalish, 2007; Kalish et al., 2007; Navarro et al., 2018; 
Sanborn & Griffiths, 2008; Thompson & Griffiths, 2019) and optimal use 
of social information (Baker et al., 2017; Miller & Steyvers, 2011; 
Whalen et al., 2018). Economists and sociologists have a parallel 
scholarly literature on Bayesian social learning models examining 
similar questions (Acemoglu et al., 2011; Bikhchandani et al., 1992; 
Chamley, 2004; Lobel et al., 2009; Mueller-Frank, 2013). Another highly 
related line of work is that of Pérez-Escudero and de Polavieja (Pérez- 
Escudero & De Polavieja, 2011) and colleagues (Arganda et al., 2012; 
Eguíluz et al., 2015; Pérez et al., 2016). These researchers were some of 
the first to specify Bayesian models of social decision-making in the 
context of collective animal behavior. Their model is also distinctive 
among Bayesian social learning models because it has been successfully 
empirically tested on human behavioral data. Bayesian social learning 
models are most often used to study information aggregation, but a 
similar class of rational game theoretic equilibrium-based analyses have 
also been used to study the exploration-exploitation trade-off (Bolton & 
Harris, 1999). 

2.3. Boundedly rational social learning models 

Researchers have also studied a class of models in between the 
heuristic and Bayesian approaches called boundedly rational models, 
which are motivated by the fact that Bayesian computation is too 
computationally intensive to be cognitively plausible. While Bayesian 
models involve optimal reasoning according to agents’ veridical mental 
models, boundedly rational models explore relaxations of these as-
sumptions. Most boundedly rational social learning models involve 
agents performing exact inference in approximate mental models of the 
environment (Bala & Goyal, 1998; Butts, 1998; Easley & Kleinberg, 
2010; Ellison & Fudenberg, 1993; Ellison & Fudenberg, 1995; Eyster & 
Rabin, 2010; Feldman, Immorlica, Lucier, & Weinberg, 2014; Golub & 
Jackson, 2010; Goyal, 2011; Jadbabaie, Molavi, Sandroni, & Tahbaz- 
Salehi, 2012; Molavi, Tahbaz-Salehi, & Jadbabaie, 2018; Rahimian & 
Jadbabaie, 2017). Typical simplifying assumptions made in this type of 
boundedly rational model are that agents neglect certain dependencies 
between observations. Other boundedly rational models involve agents 
performing approximate inference, or acting probabilistically, using 
exact mental models of the environment (Anderson & Holt, 1997; 
Arganda et al., 2012; Whalen et al., 2018). As with fully Bayesian 
models, the focus of much of the work on boundedly rational models has 
been on studying information aggregation. 
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2.4. Synthesizing Bayesian and heuristic models with distributed 
algorithms 

The advantage of the heuristic approach is that heuristics tend to be 
better descriptive models with better fidelity to data. Their key weak-
ness is that they tend to be post hoc and underconstrained—there are 
few unifying principles to guide researchers towards particular forms of 
heuristic mechanisms that might be expected to be observed. In contrast, 
Bayesian social learning models are often less cognitively plausible due 
to the extreme complexity involved in fully rational Bayesian reasoning. 
The advantage of Bayesian models, though, is that they have the 
normative force of the axiomatic foundation of optimal statistical 
inference and decision theory, and therefore come with a fuller expla-
nation for why we would expect a particular mechanism to be observed. 
With the exception of some theoretical work such as by Rahimian and 
Jadbabaie (2017), boundedly rational models typically keep the struc-
ture of Bayesian models while sacrificing the normative force of their 
axiomatic foundations, effectively specifying heuristic models using 
Bayesian language. 

Our contribution is to use the framework of distributed algorithms to 
develop a much closer synthesis of the Bayesian and heuristic ap-
proaches to modeling social learning. While heuristic models and fully 
rational Bayesian models are at first glance inconsistent, complex 
distributed computations are possible from combinations of simple 
agents (Chazelle, 2012; Lynch, 1996). Is it possible that some simple 
heuristic mechanism might be able to function as a distributed algorithm 
for ideal Bayesian inference at the group level? 

The new synthesis of the heuristic and Bayesian perspectives we 
present combines the unique explanatory benefits of each. The key idea 
we explore is that Bayesian rationality at the level of a population can be 
implemented through a heuristic social learning mechanism at the in-
dividual level. In this formulation, the computational problems of in-
formation aggregation and exploration-versus-exploitation are solved 
through collective computation at the group level, while individuals 
behave according to a simple rule-of-thumb heuristic we call “social 
sampling”. Our social sampling model, which has close parallels to 
models of evolutionary dynamics (Chastain et al., 2014; Ewens, 2013; 
Nowak, 2006), offers a Bayesian formulation of social learning that 
represents population-level statistics as tracking a Bayesian posterior 
distribution despite more simplistic heuristic individual-level behavior. 
This Bayesian social sampling model shows how groups can in principle 
simultaneously optimally aggregate information and nearly optimally 
solve the exploration-exploitation dilemma through what would other-
wise appear to be a simple social learning heuristic. 

Our modeling effort draws upon Goldstone’s and others’ efforts to 
identify simple rules that can implement distributed computation 
(Chazelle, 2012; Goldstone & Janssen, 2005), and upon the Bayesian 
approach of “top-down” computational modeling (Griffiths et al., 2010; 
Hutchins, 1995; Marr, 1982) in which the information processing 
problem is specified by analysis of the decision-making environment and 
an optimal solution is derived from the principles of statistics, decision- 
theory, and in our case, distributed algorithms. Our normative analysis 
explains why social sampling, among many plausible heuristics, is a 
uniquely suitable mechanism for groups to employ. Our approach 
complements other recent frameworks for reconciling heuristic and 
Bayesian cognition that propose certain classes of heuristic as rational 
under resource constraints (Gershman et al., 2015; Lieder & Griffiths, 
2020). We propose that social resources can buttress Bayesian compu-
tation in aggregate, even while individual cognition is resource- 
constrained. 

3. Social sampling model 

In order to understand how heuristic social learning behavior could 
lead to distributed Bayesian computation in aggregate, we first construct 
a model that demonstrates this effect. This model involves a large group, 

i.e. a population, of agents who incorporate social and asocial sources of 
information in a temporally extended (repeated) shared decision task. 
The model makes direct predictions, which we test empirically. The goal 
of the model is to establish how a population of decision-makers using a 
simple heuristic rule might be able to address the computational prob-
lems of information aggregation and balancing exploration versus 
exploitation to accumulate information about a decision at hand as a 
population over time. The notation we use is summarized in Table 1. 

We assume that at each time t, a set of N agents is faced with a de-
cision between M distinct options. Each of these options, j ∈ 1, …, M, has 
an underlying quality, ηj ∈ (0,1), and generates a directly observable 
asocial performance signal, xjt ∈ {0,1}, at each time t. This performance 
signal, xjt, is related to the reward outcomes in the decision-making task. 
A decision-maker i receives a positive reward from option j on time step t 
if xjt = 1 and a non-positive reward on that time step if xjt = 0, with the 
probability of a positive performance signal/reward corresponding to 
the underlying quality of the option, P(xjt = 1| ηj) = ηj. We let η* denote 
the underlying quality of the highest quality option, η* ≥ ηj, ∀ j. We 
denote the history of performance signals for an option j up to a 
particular time t as xj,≤t = {xj1,xj2,…,xjt}, and we denote the total in-
formation that has been available about all options up to time t as X≤t =

{x1,≤t,x2,≤t,…,xM,≤t}. In addition to the asocial information in X≤t, 
decision-makers also have social information available to them at each 
time step. We assume that the social information decision-makers can 
observe is the popularity of each option in the decision at hand at each 
time. We let ait ∈ 1, …, M denote the decision of agent i at time t, i.e. the 
option that agent i chose to select at time t. The popularity of option j at 
time t is the number of decision-makers who select that option on the 
previous time step, pjt =

∑
i=1
N (ai,t− 1 = j). 

The social learning mechanism we study, which we call social sam-
pling, is a variant of heuristic two-stage decision mechanisms studied by 
previous researchers (Howard & Sheth, 1969; Krumme et al., 2012; 
Payne, 1976; Pratt et al., 2005; Seeley & Buhrman, 1999). The social 
sampling model that we propose supposes that people first select options 
to consider by consulting others’ decisions, and then commit to options 
being considered by privately evaluating whether the options seem good 
according to recent information available. This first step reduces the 
cognitive burden of evaluating many options by allowing the decision- 
maker to consider only a small set of options, rather than all the op-
tions available. In contrast to prior proposed two-stage social learning 
models, we propose that in the second step the decision-maker performs 
an abbreviated Bayesian computation to assess the quality of the option 
being considered, which is what enables Bayesian aggregation at the 
group level in this model. 

In the first stage of making a decision at time t, an agent i chooses 
option oit ∈ 1, …, M to consider at random with probability proportional 
to the current popularity of that option, P(oit = j) =

pjt∑M
k=1

pkt
. In the sec-

ond stage of making a decision, the agent decides whether to accept or 
reject the option being considered, oit, based on that option’s most recent 
performance signal. The agent commits to making decision oit with 
probability P(ait = j| oit = j) = P(xjt| ηj = η*) = (η*)xjt(1 − η*)(1− xjt). This 
quantity used in the second stage of decision-making is a Bayesian 
likelihood function giving the likelihood that option oit is the highest 
quality option. This second stage is a heuristic use of a Bayesian quantity 
that is motivated by recent results in the cognitive science literature 
arguing that people resort to approximate Bayesian computations in 
many decision-making scenarios (Gershman et al., 2015; Vul et al., 
2014). In the case that the option oit is rejected in the second stage, the 
agent repeats this two-stage procedure, choosing another option to 
consider oit

′ with the same probability proportional to pjt. The same 
option may be considered again or another option may be considered. 
This two-stage decision-making procedure is repeated until an option is 
accepted in the second stage. An algorithmic description of the model is 
given in Fig. 1. 

Because each option is considered according to the same process in 
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each repetition, there is a simple closed form equation that gives the 
overall probability that agent i makes decision j on time step t, P(ait = j). 
In each loop of the two-stage process, the joint probability of an agent 
considering and accepting an option j at time t is the multiplication of 
the probability in each of the two stages, P(ait = j, oit = j) = P(oit =

j)P(ait = j |oit = j) =
pjt∑M
k=1

pkt
(η*)

xjt (1 − η*)(
1− xjt). The probability that 

some option at all is accepted on a particular loop of the two-stage 

process is given by 
∑M

j=1
pjt∑M
k=1

pkt
(η*)

xjt (1 − η*)(
1− xjt). The conditional 

probability on each loop of selecting and accepting j given that some 
option is ultimately accepted on that iteration is then given by dividing 
these quantities. Since this probability is identical on each iteration of 
the loop, the overall probability of an agent choosing option j at time t is: 

P(ait = j) =
pjt(η*)

xjt (1 − η*)
1− xjt

∑
kpkt(η*)

xkt (1 − η*)
1− xkt

.

Both of the two stages in the social sampling model are crucial. 
Incorporating social information in the first stage by sampling according 
to popularity allows for the aggregation of information over time, while 
a personal assessment based on new information in the second stage 
allows new information to be incorporated. It’s also important to note 
that while a Bayesian computation is being used in the second stage of 
the two-stage social sampling model, it is only a highly bounded one. 
The only information each decision-maker accesses is the most recent 
performance signal associated with the one option or the small set of 
options being considered. What we will show is that even though each 
individual decision-maker accesses only this small amount of informa-
tion, the boundedly rational heuristic social sampling model collectively 
yields a fully rational Bayesian sampling scheme that leverages all the 
information available over time for all options. 

3.1. Model analysis 

Despite its simplicity and heuristic appearance, the social sampling 
model can achieve both excellent information aggregation and a highly 
efficient balance between exploration and exploitation. In order to 
analyze the social sampling model, we consider a simplified model of the 
decision-making environment. In this simplified model, known as a 
“hide-and-seek” problem (Shamir, 2014), there is a single best option j* 
that has a probability ηj* = η* of producing positive rewards, while all 
other options j′ produce positive and negative rewards uniformly at 
random, ηj′ = 0.5. When the number of options is large or when η* = 0.5 
+ ϵ for small ϵ > 0, this hide-and-seek setting can be thought of as a 
pessimistic assumption about the identifiability of the best option in the 
environment. In other words, this setting can be interpreted as one in 
which good options are rare or difficult to identify. Similar results can 
also be derived in more general contexts (Celis et al., 2017). 

Table 1 
Table of notation used in our social sampling model specification, analysis, and 
application.  

Mathematical notation 

∈, ∀ , ∣ , 
∑

Standard mathematical notation for “element in”, “for all”, “such 
that”, and summation over a set 

P(⋅), P(⋅| ⋅) Notation for the marginal probability and conditional 
probabilities of observations/events 

ℕ; {…}; (⋅⋅);P (⋅) Standard mathematical notation for the set of non-negative 
integers; a set of arbitrary elements; an open interval; and a 
power set    

Domain Name Social sampling 
model 

eToro application 

Indices 
T ℕ Time Number of time 

steps in the 
repeated decision- 
making task 

Total number of 
days of data 
analyzed 

N ℕ Agents Number of agents 
(decision-makers) 

Nt is the number of 
following 
relationships on 
day t 

M ℕ Options Number of options 
available for 
agents to decide 
between 

Mt is the number of 
traders available to 
follow on day t 

t, i, j 1, …, T; 
1, …, N; 
1, …, M  

Indices for time, 
agents, and 
options in the 
decision-making 
task 

Indices for day, 
following user/ 
follow relationship, 
and followed trader  

Decision-making environment 
ait 1, …, M Decision The decision of 

agent i at time t 
The trader followed 
by the user in 
follow relationship 
i on day t 

xjt {0,1} Performance The outcome 
generated by 
option j at time t, 
which determines 
the reward for an 
agent choosing 
that option on that 
time step 

An indicator 
variable that equals 
1 if the ROI from 
the trades of trader 
j on day t is 
positive, and 
0 otherwise 

pjt ℕ Popularity The number of 
agents who chose 
option j at time t −
1 

The number of 
followers trader j 
has at the end of 
day t − 1  

Model parameters 
ηj (0,1) Quality The probability of 

option j generating 
a positive 
performance 
outcome on any 
time step 

The estimated 
underlying 
probability of user j 
displaying positive 
performance on 
any day 

η* (0,1)  The probability of 
the highest quality 
option generating 
a positive 
performance 
outcome 

The highest 
estimated 
underlying 
probability of 
positive 
performance 
among all users 

oit 1, …, M  The index of an 
option tentatively 
being considered 
by agent i at time t 
in an inner step of 
the social 
sampling model 

The index of a 
trader that the user 
in follow 
relationship i is 
considering 
following during 
day t  

Model analysis 
j* 1, …, M and 

P (1,…,M)

In the hide-and- 
seek model, the 
index of the single 

The set of indices of 
the traders with the 
highest estimated  

Table 1 (continued )  

Domain Name Social sampling 
model 

eToro application 

highest quality 
option 

probability of 
positive 
performance. 

xj,≤t {0,1}t Performance 
History 

The set of 
performance 
outcomes that 
option j has 
generated on all 
time steps up to 
and including t 

The days up to and 
including t on 
which trader j has 
had positive versus 
nonpositive 
performance 

X≤t {0,1}(M×t) Total 
Information 

The set of all 
performance 
histories for all 
options at time t 

The record of all 
traders’ current and 
past performances 
on day t  
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3.2. Information aggregation with social sampling 

We first relate the expected popularity of each option under social 
sampling to a Bayesian posterior distribution involving all information 
that has been available in the environment. In the case of the hide-and- 
seek environment model, the true state of the world is characterized by 
the identity of j*, so the rational analysis only needs to consider whether 
each option is or is not option j*. 

Given the history of all rewards up to time t, X≤t, (as defined above) 
the Bayesian posterior distribution over the environment parameter is 

P(j = j* |X≤t) =
(η*)

xjt (1 − η*)
1− xjt P(j = j* |X<t)

∑
k(η*)

xkt (1 − η*)
1− xkt P(k = j* |X<t)

,

where we assume a uniform prior P(j = j*) = 1
M. This posterior proba-

bility bears a striking resemblance to the probability of choosing option j 
under social sampling. In fact, in an infinite population of decision- 
makers who implement social sampling, the following invariant will 
be maintained: pjt ∝ P(j = j*| X<t); i.e., with an infinite population in a 
“hide-and-seek” environment the popularity of option j at time t will be 
proportional to the posterior probability that j = j* given all the infor-
mation that has been available in the environment. Popularity can thus 
be precisely understood as compactly summarizing the past information 
about the options available to decision-makers. In other words, popu-
larity under social sampling has an exact correspondence to a Bayesian 
posterior distribution that each option is best in a hide-and-seek 
environment. 

3.3. Exploration-exploitation with social sampling 

We now argue that social sampling can also be expected to achieve a 
good balance between exploration versus exploitation by relating the 
aggregate dynamics of the social sampling model to a well-known, near- 
optimal single-agent decision-making procedure for multiarmed bandits 
known as Thompson sampling (Thompson, 1933). A multiarmed bandit 
is a sequential decision-making task with essentially the same structure 
as we describe for the context of our model. The Thompson sampling 
algorithm is a commonly studied approach to solving multiarmed ban-
dits that relies on establishing Bayesian posterior distributions for the 
underlying quality of each option available. To make a decision on a 
particular time step, the single-agent algorithm probabilistically sam-
ples an option with probability equal to the probability that the option is 
the best option available given the rewards the agent has seen. In a 
single-agent environment where each option has a distinct reward 
probability ηj and where agent i is taking an action ait on each time step t 
and observing reward xit, the Thompson sampling probability is P(ηj >

ηk ∀ k| xi1,…,xit). Thompson sampling works well in practice (Chapelle 
& Li, 2011) in both stationary and non-stationary environments, and 
was recently proven to achieve a near-optimal balance between explo-
ration and exploitation in the stationary case (Agrawal & Goyal, 2012; 
Kaufmann et al., 2012). 

To relate social sampling to Thompson sampling, we note that in the 
case of the hide-and-seek environment, P(ηj > ηk ∀ k| x) = P(j = j*| x) 
for any set of observations x. Therefore, since in an infinite population of 
agents we have from the previous section that P(ait) = P(j = j*| X≤t), the 

probability that agent i takes action ait in social sampling is equal to the 
Thompson sampling probability given all information available to the 
group and under the parametric assumption of the hide-and-seek 
context. 

4. Modeling “follow” decisions in a financial social network 

To empirically test the social sampling model, we examine collective 
behavior in an online social financial trading platform called eToro (Pan 
et al., 2012). eToro’s platform allows users to make trades on their own, 
predominantly in foreign exchange markets, or to choose other users on 
the site to follow. When one user chooses to follow another, the follower 
allocates a fixed amount of funds to automatically mirroring the trades 
that the followed user makes. eToro then proportionally executes all of 
the trades of the followed user on the follower’s behalf. Although in 
general, copying someone else’s trading could lead to market movement 
that affects the return of those trades, the trading on eToro is marginal 
enough that it is unlikely to cause such feedback effects. Therefore, the 
problem of choosing who to follow on eToro can be well modeled as a 
choice between options with exogenous reward outcomes. 

4.1. eToro context 

Day trading in foreign exchange markets is notoriously risky, and 
typically amounts to little more than gambling. eToro—as a company 
that mechanizes, encourages, and profits from users’ day trading—faces 
controversy and criticism about its intentions and practices. Many users 
complain about losing money because of high fees and deceptive per-
formance statistics. However, some users systematically lose less money 
on eToro, and traders who follow others tend to perform better than 
users who make trading decisions for themselves (Pan et al., 2012)— 
though still often not making profit, at least losing less. 

There are several decisions that are intertwined with each other on 
eToro: whether to put money into the platform at all, how much of your 
money to trade yourself, and how much to use in social trading. These 
decisions interact with each other, and also interact both with your own 
perceptions of your abilities, your judgments about the reliability and 
capabilities of the platform, and your impression of how well other 
people on the site trade. 

Our study simplifies these complexities by focusing on the choices 
that are made within social trading behavior exclusively. We only model 
who decides to follow whom and we do not factor into consideration the 
trade-offs between investing by following others versus trading for 
yourself. Empirically this decision is justified by the fact that the ma-
jority of users on the site use it either for social trading (following other 
peoples’ trades) or for nonsocial trading exclusively or almost exclu-
sively, generally not so much for both kinds of trading. Fig. 2 shows the 
distribution of the proportion of trades for each user that are nonsocial 
versus social. 8% of users on the site never conduct a nonsocial trade. 
47% never conduct a social trade. 86% conduct 75% all of their trades as 
either exclusively social or exclusively nonsocial. These numbers suggest 
that empirically we can focus on social trading as a relatively isolated 
mode of behavior from nonsocial trading on the site. 

This analysis choice is also informed by our theoretical motivation. 
Most social learning models involve discrete forced choice situations 

Fig. 1. Algorithmic description of the social sampling model. The total number of options considered in the inner while loop is a geometric random variable that is 
finite with probability one, with mean bounded by 1/(1 − η*) when η* > 0.5. 
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between a fixed set of options. While we could consider nonsocial 
trading and social trading to both be options in a fuller decision-making 
model, these options are quite different in terms of how they are sup-
ported by the platform. In contrast, the choice of who to follow in social 
trading is a relatively clear discrete forced choice within the platform, 
and highly distinct in the platform design from either copying individual 
trades or making individual trades in the markets the site provides ac-
cess to. For the remainder of the paper we therefore only consider 
modeling follow decisions in social trading. The decision-making 
problem in this case is that each user can choose to follow anyone 
with a public profile on the site, and traders generate new information 
about their performance each day through their new trades. A user who 
wants to follow someone must choose who to follow on each day among 
all the options available. 

Another simplification made by our study is treating each follow 
relationship as a separate independent decision. While modeling the 
follow decisions as independent has its limitations (e.g., neglecting the 
constraint that a user can’t follow the same trader multiple times), the 
actual number of traders each user tends to follow is often just one trader 
per day (see Fig. 4), and we only analyze the model predictions in 
aggregate rather than at an individual level. 

While the hide-and-seek model we use to derive our analytical results 
does not need to apply in order for social sampling behavior to be 
employed, it is worth noting that the assumptions of the hide-and-seek 
model are also not far from what we observe in the eToro context. As 
shown in Fig. 3, the vast majority of users have very close to zero 
average return (just from trading profit/loss; not including all platform 
fees). Users who are looking for someone to follow can therefore 
reasonably expect that there are at most a handful of people on the site, 

if even one, that they will benefit from following. The challenge the 
users face is to find such people among the incredibly noisy information 
from trading behavior. 

In order to assist in users’ decisions about who to follow, eToro 
provides information about the trades and trading performance of each 
user via a search interface and public profiles. eToro’s interface also 
reports the current popularity of each user, i.e., the number of people 
currently following that user. The eToro interface has many other 
complex facets, and has changed substantially over time. At the present 
time of writing, there were additional features for automatic search, 
such as a “Top Investors” category that uses a curated combination of 
search filters. While the current range of advanced curated search fea-
tures did not exist to our knowledge at the time of data collection, there 
were many ways to find traders to follow at that time too, such as 
featured users and followers listed in users profiles. We unfortunately 
have no way to reconstruct which users might have been highlighted in 
such ways, but the predominant search mechanism at the time of our 
data collection was a table of all the site’s users that could be sorted by 
popularity or various user statistics. The user statistics included a 
measure of risk, percentage of profitable weeks, and a “gain” statistic 
most closely related to the performance metric we will use in our 
modeling. We focus on the gain statistic from that search interface 
because it was the performance measure that was most emphasized in 
the search interface and in users’ profile pages at the time of data 
collection. 

4.2. Model application 

Despite all these ways to search for traders to follow on eToro at the 
time of our data collection, the interface does not make it easy to make 
good decisions. The statistics presented vary over time and must be 
carefully integrated to form a complete picture of each trader’s perfor-
mance. The statistics reported by the platform are potentially over-
inflated by the platform designers to incentivize trading activity, and the 
traders on the platform themselves also try to manipulate their perfor-
mance statistics to make themselves look good, such as by leaving trades 
open when those trades have lost money. The easiest way to learn if 
someone will make you money is to start following them and see what 
happens, but of course trading performance is highly stochastic. Users 
on eToro are therefore faced with a difficult decision problem of 
choosing who to follow among a large set of options of users, given 
unreliable, multidimensional, temporally varying performance signals, 
as well as social signals of popularity. We use the social sampling model 
to understand how well the community of users on eToro manages to 
address this information processing challenge. 

Fig. 2. A histogram plotting for each user the fraction of their trading activity 
that is purely nonsocial. Most users engage in either purely social trading or 
purely nonsocial trading on the platform we study, which justifies our analysis 
decision to focus only on social trading (i.e., decisions about whose trades to 
copy on the site). 

Fig. 3. The vast majority of users on the platform we study achieve close to 
zero mean daily return on investment (just from trading profit/loss; not 
including all platform fees). Users are therefore presented a difficult problem of 
finding good traders to follow. 

Fig. 4. A histogram of the fraction of users who followed a certain number of 
traders per day. For each user who followed at least one trader, we take the 
median number of traders that user followed across all days they followed at 
least one trader. 54% of the users followed a median of a single trader. 
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5. Methods 

5.1. Data 

We received our data from the eToro company. The data was 
generated from the normal activity of users of the website etoro.com. 
The raw data was in the form of a list of trades conducted on the site. We 
processed the data to reconstruct follower relationships and aggregate 
performance statistics. More details on eToro and our data processing 
are given in the supplementary material. To keep our analysis 

computationally tractable, we focused on the first year of data we 
received, from June 1, 2011 to June 30, 2012. Because of the way we 
measure active users, the actual days analyzed are July 4, 2011 to June 
29, 2012. This time period included 57,455 users. We included each user 
on each day that user was active, giving us 3,606,903 data points to 
analyze. We do not endorse eToro as a company or the usage of its 
services. 

Fig. 5. Daily changes in popularity on eToro tend to be positive for those traders who are performing well and negative for those traders who are performing poorly, 
and the magnitude of those changes are greater as popularity increases. (Left) A scatter plot illustrating the observed relationship between daily change in popularity 
on eToro with past popularity and recent performance. There is one data point shown for each trader on each day. Points are colored by whether recent performance 
is positive or negative. (Center) A binned plot visualizing the same data to highlight the trends we observe. (Right) Predicted changes in popularity according to a 
fitted social sampling model. 

Fig. 6. Plots showing the relationship be-
tween the value of η* fitted to follow de-
cisions users made and the descriptive 
statistics of the eToro dataset. (Left) A scatter 
plot comparing the number of days each user 
was active in our dataset and the proportion 
of days each user achieved positive ROI. 
Each point in the plot is a single user. The 
plot shows that the vast majority of users 
have below 51% days with positive ROI, and 
many of those with higher proportions were 
only active on a smaller number of days. 
(Right) A histogram plotting the frequency 
with which users have certain proportions of 
days with positive ROI. The fitted value of 
η* = 0.51 lies in a high percentile of the 
distribution.   

Fig. 7. Plots showing the match between 
normalized posterior values and popularity 
on eToro. (Left) Each point is one user on a 
particular day. The user’s normalized pos-
terior on that day is plotted against that 
user’s normalized popularity. The plot re-
veals a positive relationship between the 
normalized posterior for each user on each 
day and normalized popularity. (Right) Each 
point represents the average popularity of 
all users within a range of posterior values, 
using an evenly spaced binning. This plot 
further highlights the relationship between 
popularity and the normative posterior dis-
tribution of the environment in our data.   
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5.2. Popularity and performance signals 

We analyze one year of data at a daily temporal granularity, and we 
model the follow decisions each user makes on each day. Although we 
do not have access to the specific performance statistics that were dis-
played to users, we summarize trading performance with return on in-
vestment (ROI) from closed trades on the most recent day, which is 
closely related to the “gain” performance metric presented to the site’s 
users. Details on how we constructed this proxy are given in our sup-
plementary material. We set the performance signal xjt associated with 
following a trader j on a particular day t to be positive if liquidating that 
person’s new trades from that day at the end of the day would yield ROI 
greater than zero, and set xjt to zero otherwise. 

Putting these pieces together with our formal model, we have that at 
each time t there is a set of traders 1, …, Mt that each social user on eToro 
could choose to follow, and each trader generates performance signals/ 
rewards xjt to followers each day. We study how the new popularity pj,t+1 
of each trader j on each day t is determined as a function of the prior 
popularity of that trader pjt and their latest performance signal, xjt. We 
let followsjt be the number of new followers trader j gets on day t, and let 
unfollowsjt be the number of followers trader j loses on day t. In other 
words, pj,t+1 = pjt + followsjt − unfollowsjt. Our analysis assumes each 
follow decision is independent. We let Nt =

∑
j=1
Mt pj,t+1 be the total 

number of follow relationships at the end of day t. 

5.3. Regression analysis 

In our results, we first aim to test the multiplicative interaction be-
tween popularity and performance induced by the two stages in the 
social sampling model. To test for the presence of this interaction, we 
build a regression model of the new follow decisions made on each day. 
The regression model we use predicts the normalized number of new 
followers each user gets on each day based on that user’s normalized 
popularity from the previous day, and that user’s performance on that 
day. We include fixed effects for each user and each day. This regression 

model is followsjt∑
k
followskt

= β0 +
pjt∑

k
pkt

βpop + xjtβperf +
pjt∑

k
pkt

xjtβinteraction + βj +

βt. We compare the fit of this regression to a reduced model that omits 
the interaction term. We also compare to another baseline model that 

looks at aggregated performance over a 30-day period, followsjt∑
k
followskt

= β0 +

ROI(30)
j ⋅βperf + βj + βt, where ROIj(30) is the signed logarithm of the 30- 

day rolling average daily ROI of user j. This longer term performance 
baseline allows us to test whether new followers can be predicted just 
based on performance, using a longer term performance statistic. The 

signed logarithm adjusts for extreme values. 

5.4. Fitting the social sampling model 

In addition to our regression analysis, we also directly fit the social 
sampling model to our data. To conduct this model fitting, and to 
generate model predictions, we compute the follow decisions users on 
eToro would have been expected to have made on each day according to 
the social sampling model. We examine aggregates of these decisions in 
the form of predicting the total number of followers each trader on eToro 
has on each day. We predict the number of followers each user will have 
on each day given the performance and popularity of that user (and of 
every other user) on the previous day, and given the total number of 
followers across all users on those days. 

In the social sampling model, decision-makers make decisions 
independently, so the probability that a given decision-maker i chooses a 
specific new option j at time t is given by the decision probability P(SS)

jt =

(η*)
xjt (1− η*)

1− xjt ⋅pjt∑
k
(η*)xkt (1− η*)1− xkt ⋅pkt

. We fix the total number of follow relationships 

across all traders to the true value observed in the data, Nt. The expected 
number of followers user j gets at time t according to this model is then 
pj, t+t

(SS) = NtPjt
(SS). We fit η* by minimizing the mean-squared error in the 

log daily change in popularity, sign(followsjt
(SS) − unfollowsjt

(SS)) ⋅ log (| 
followsjt

(SS) − unfollowsjt
(SS)|+1), where followsjt

(SS) − unfollowsjt
(SS) = pj,t+1

(SS) 

− pjt. A coarse grid search over [0.5, 0.51, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 
0.85, 0.9] indicates that η* = 0.51 presents the best fit. 

5.5. Posterior comparison 

A key prediction of the social sampling model is that the popularity 
of each trader should track their performance over time. In order to test 
this prediction, we compute a normative posterior distribution based on 
the performance histories of each trader. Rather than employing the 
hide-and-seek posterior we used in our model analysis, we use a slightly 
relaxed model that allows for the possibility that multiple traders have 
the highest underlying quality η*. In this case, we let j* be the set of 
traders with ηj = η*, and aim to then compute the posterior P(j ∈ j*| X≤t). 
Without this relaxation, computing the posterior is complicated by 
missing data on days when traders were inactive. As in the hide-and-seek 
model we employed in our model analysis, we assume that traders 
outside the set η* have ηj = 0.5. 

The posterior here then becomes P
(
j ∈ j* |xj,≤t

)
=

(η*)
wjt (1− η*)

ljt

(η*)
wjt (1− η*)

ljt +0.5wjt+ljt
, 

where wjt =
∑

d=1
d≤t xjd is the number of positive performance signals a 

trader has had over time, and ljt =
∑

d=1
d≤t (1 − xjd) is the number of 

negative performance signals a trader has had. We then normalize these 
values to obtain the probability given by Thompson sampling on this 

posterior: P(j∈j* |xj,≤t)∑
k
P(k∈j* |xk,≤t)

. We compare these Thompson sampling values 

to daily popularity normalized by the total number of follow relation-
ships on each day, pjt∑

k
pkt

. In our empirical analysis, we use η* = 0.51 

based on our model fitting procedure. 

5.6. Simulating performance 

Finally, to explore the balance between exploration and exploitation 
achieved by the social sampling model in the eToro dataset, we simulate 
the behavior of an entire population of social samplers over the duration 
of our dataset. We look at how a population of social samplers would 
perform with alternative values of η*. To do so, we retrospectively 
simulate social sampling using the actual profits and losses from trades 
on eToro. To accommodate predicting positive changes in popularity for 
traders with zero followers, we add a small smoothing constant to 

popularity, (η*)
xjt (1− η*)

1− xjt ⋅(pjt+ϵ)∑
k
(η*)xkt (1− η*)1− xkt ⋅(pkt+ϵ)

, where ϵ > 0 is a small smoothing 

Fig. 8. Simulated mean daily ROI within a population of ideal social samplers 
following the traders on eToro over the time period we study, for different 
values of η*. These simulations check how well the social sampling model 
balances exploration versus exploitation. The fitted value of η* that achieves the 
best predictive accuracy of eToro follow decisions is suboptimal in terms of 
mean daily ROI in these simulations. 
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parameter that ensures all users have some probability of gaining fol-
lowers. We arbitrarily set ϵ = 0.0001. On each day, we set the size of the 
population of social sampling agents to Nt. As in our model fitting, we 
examine simulated behavior over the range η* ∈

[0.5,0.51,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9]. 

6. Results 

6.1. Evidence for social sampling 

Our first analysis confirms that the dynamics of popularity on eToro 
are well-modeled by social sampling. These results are summarized in 
Fig. 5. Traders who perform well on the site tend to gain followers, and 
traders who perform poorly tend to lose followers. At the same time, the 
magnitude of these changes becomes larger as the popularity of the 
trader increases. People with few followers are unlikely to gain many 
followers, even when they perform well. People with higher popularity 
gain more followers when they perform well, but lose more followers 
when they perform poorly (the interaction coefficient, βinteraction = 0.92, 
p < 0.0001, is positive and statistically significant). The regression 
model that includes the interaction term between popularity and recent 
performance improves the amount of variance explained to an R2 of 0.37 
compared to the model without an interaction term, R2 = 0.27, and a 
model that just includes a longer term performance metric, R2 < 0.01. 
This analysis shows that neither popularity nor performance alone can 
explain how users decide on new traders to follow. 

Simulations from a social sampling model with η* parameter fitted to 
the data confirm that social sampling can replicate this pattern of 
changes in popularity. These results are shown in Fig. 5. We also check 
that the fitted value of η* = 0.51 qualitatively matches the descriptive 
statistics of the dataset. Fig. 6 shows that, consistent with the interpre-
tation of η* in our model analysis as the plausible highest probability of 
positive returns, 95% of users have lower than a probability of 0.51 of 
achieving positive returns. 

Anecdotal reports from users of eToro also corroborate the social 
sampling model. One website states: “Here are some tips and things we 
look at when selecting the Professional Investors/Traders we copy: Most 
people will still want to start with looking at the ‘most copied traders’... 
Popularity is obviously a decent ‘starting’ point for finding traders to 
analyze further... putting in some time and effort to analyze the addi-
tional statistics is likely to lead to better long term results.”1 Another 
user explains: “[Ranking by gain] is what eToro’s [standard] ranking 
system is showing. And but [sic] this is not so much the way to really 
choose who’s a good trader because you just don’t know how long these 
traders have been trading until you go into details. Another good idea is 
to do this: What I’ll do is, you just go to ‘Copiers’, you just select the 
‘Copiers’ tab and show the ones who have the most copiers. Now, this 
isn’t a full-on good guide either, just choosing the amount of copiers. 
Cuz as you see, there are other traders in this line who have been making 
more. Like an example, over 300%, over 300%, and they’re down the 
line just cuz they’ve got less copiers.”2 These users are both describing 
how to use popularity as a kind of first-pass filter, before looking at 
performance information. 

6.2. Information aggregation 

We next directly test whether in this environment the aggregate 
population statistic of popularity tracks a normative Bayesian posterior 
distribution, i.e. that the variations in belief in the population of users 
reflect a rational representation of uncertainty about the decision of 

whom to follow. We find that normalized popularity is positively 
correlated (r = 0.03) with the normalized posterior described in our 
Methods section. Looking just at users with greater than zero followers, 
the correlation is higher (r = 0.17). Taking the logarithm of each 
quantity to reduce the impact of outliers increases the correlation (r =
0.06 for all traders and r = 0.43 for traders with greater than zero 
popularity). Fig. 7 visualizes this relationship. 

6.3. Exploration-exploitation 

The results of our simulation analysis are shown in Fig. 8. We esti-
mate the mean daily ROI for a population of social sampling agents that 
use different values of η* in our eToro data. A value close to 0.5, like the 
fitted parameter value in our above analysis, may be optimal in more 
general contexts (Celis et al., 2017), but is conservative in our data. 
Values closer to 0.5 lead to slower learning, and even though the pop-
ulation of users on eToro maintain rational representation of uncer-
tainty, we observe that collective learning is slower than optimal for this 
dataset. Therefore, even though social sampling may have the capacity 
to achieve a near optimal balance of exploration versus exploitation 
given an appropriate η value, the observed balance is suboptimal. 

7. Discussion 

We have examined how people address the computational problems 
of information aggregation and the exploration-exploitation dilemma in 
a large, highly instrumented social system. We proposed a social sam-
pling model that accurately models millions of decisions performed 
within an online social financial trading platform. Social sampling 
consists of a two-step decision-making process of seeking recommen-
dations from other people, and then privately evaluating those recom-
mendations. We established a relationship between social sampling and 
a well-known, near-optimal Bayesian learning and decision-making 
procedure called “Thompson sampling” (Agrawal & Goyal, 2012; 
Kaufmann et al., 2012; Thompson, 1933). This relationship reveals that 
groups can in theory use a simple mechanism to dynamically aggregate 
information, while collectively balancing exploration and exploitation, 
by using a simple probabilistic decision-making mechanism that 
approximately implements Thompson sampling in the aggregate. We 
empirically validated the information aggregation property predicted by 
this relationship, and also explored the balance people achieve between 
exploration and exploitation. Our results indicate that a form of 
Bayesian population rationality emerges from heuristic social learning 
in the case we study. The balance between exploration versus exploi-
tation we observed in this case was suboptimal, although still consistent 
with the social sampling model under a suboptimal parameter setting. 

7.1. Connections to the wisdom of crowds 

Beyond the literature on social learning we sought to inform, our 
paper also contributes to an ongoing debate in the literature on the 
wisdom of crowds around whether or in what ways social learning un-
dermines versus promotes the wisdom of crowds (Almaatouq et al., 
2020; Becker et al., 2017; Lorenz et al., 2011; Surowiecki, 2005). Many 
formal models of the wisdom of crowds rely on individuals in the crowd 
having independent pieces of information rather than information 
gained through social observation. The incorporation of both social in-
formation and making decisions based on your own experience is a 
crucial component of the social sampling model we study. In the context 
of eToro, all users in principle have access to all the same information. 
Any trader profile can be viewed by anyone. However it would be 
impossible for every user to view every profile to make a decision about 
who to follow. Independent pieces of information therefore come into 
play through users’ personal analyses of the performance of particular 
traders that those users decide to consider following. Simultaneously, 
paying attention to popularity facilitates ongoing aggregation of the 

1 “eToro Tips: Find Best Gurus” from SocialTradingGuru.com (http://socialt 
radingguru.com/tips/etoro-tips/select-etoro-gurus).  

2 “[Etoro Guide] How to Choose Good Traders or Gurus to Copy in Etoro?” 
YouTube (https://www.youtube.com/watch?v=ym8Amfurzb8, 2:42). 
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information from those personal assessments. 
Independent judgments through personal assessment and gradually 

gaining experience in the environment can also play a deeper role in 
social sampling. In the context of the social sampling model, the way 
private assessments come into play is in whether to accept or reject the 
popular options you are considering. In the basic social sampling model 
decisions are resampled every day, but a more robust model with 
equivalent collective behavior is a win-stay lose-sample kind of dynamic 
(Bonawitz et al., 2014) in which individuals stick with the options they 
have adopted until the personal evidence they collect through paying 
attention to that option invalidate it as a good choice. 

7.2. Potential extensions 

Looking beyond the eToro context, we can think about further ex-
tensions of the social sampling model. In many cases, preferences or 
taste will vary greatly from one individual to the next. In such cases, 
overall popularity is less relevant to an individual as an informative 
social signal. A similar challenge is to incorporate different levels of 
expertise among decision-makers. In some cases, there will only be a 
small set of experts who can evaluate options accurately, even if many 
people are expressing opinions. The social sampling model we examined 
can be viewed as social sampling on a random network. Looking at social 
sampling on complex networks, or networks with properties such as 
homophily, is also a natural next step. Similar studies have been 
investigated in the broader literature on social learning (Acemoglu et al., 
2011; Golub & Jackson, 2012; Lobel & Sadler, 2015). To better under-
stand how social sampling might be related to shared belief formation, 
looking at social sampling in cases where individual beliefs are com-
ponents of more complicated systems of beliefs is also an interesting 
possibility (Friedkin et al., 2016). It could also be interesting to extend 
our theoretical analysis to investigate optimal solutions to a related set 
of multi-armed bandit problems where multiple arms are pulled simul-
taneously. Thompson sampling algorithms have also been studied for 
this problem formulation (Komiyama et al., 2015). In all these potential 
extensions, the distinctive charge of the social sampling approach would 
be to constrain the extensions so that valid Bayesian learning still occurs 
in the aggregate. To do so may require careful attention to the computer 
science literature on distributed Bayesian inference (cf., (Alanyali et al., 
2004; Angelino, Johnson, & Adams, 2016; Ho et al., 2016; Misra et al., 
2011; Nishihara et al., 2014; Smith et al., 2013; Wang et al., 2019; Yang 
et al., 2018)). 

7.3. Limitations 

We finally address various limitations our work. Mathematical 
modeling always involves abstraction, and there are many details of the 
eToro context that are mismatched with an idealized social sampling 
model. First and foremost, it’s almost certainly the case that our social 
sampling model is only an approximation of what is happening on 
eToro. There are undoubtedly a variety of behaviors that people display 
in interacting with the site, some of which conform more or less to the 
social sampling model, others of which are somewhat approximated by 
the model, and a final category of which completely diverge. All our 
evidence for the social sampling model is at the aggregate level, in the 
trends in changes in popularity. Our analysis shows that social sampling 
is not a bad approximation in aggregate. We focused on Marr’s 
computational level of analysis (Marr, 1982)—of specifying a compu-
tational problem faced by users on eToro—and we studied one plausible 
distributed algorithm that we have some evidence for observing in terms 
of aggregate dynamics. Aside from assessing some anecdotal reports, we 
did not delve deeply into Marr’s implementation level of analysis and 
examine how particular users’ detailed interactions with the site might 
yield the aggregate dynamics we observe or might implement the 
distributed algorithm of social sampling. 

There are also other ways the social sampling model itself and our 

rational analysis of the eToro environment could be improved. We 
neglected the possibility of correlation in reward signals across time, 
changes in trader skill over time, traders coming or leaving the 
ecosystem, and the network effects of followers following followers. 
Along similar lines, there are several reasons to question how to inter-
pret the fitted parameters of the social sampling model. Past perfor-
mance of trading is not necessarily informative about future 
performance. People are risk averse: they care about both returns and 
the variance of returns. People are also choosing whether to follow 
others or make their own investment decisions. The fit of the model 
could surely be improved with further extensions along these lines, but 
these extensions would also yield a model that is more difficult to 
analyze. We focused on a simple model in order to isolate and test the 
key insights from social sampling. We are encouraged by the fact that 
our current social sampling model can replicate the average dynamics of 
popularity in its predictions. 

There are also several questions about the generalizability of our 
findings. eToro is an online sociotechnical system with an interface 
designed by software developers to facilitate following behavior. A 
major threat to generalizability is the contingency of our results on the 
design choices of this system. For instance, affording users the ability to 
sort traders by popularity surely encourages attention to that feature, 
and position bias in that returned list may affect how social sampling is 
implemented (Lerman & Hogg, 2014). However, the ways in which in-
formation is presented on the website do not guarantee the outcomes of 
our results. There is always an interaction between the structure of an 
environment and agent behavior in the environment in determining 
collective behavior. In the case we study, the users could very plausibly 
rely exclusively on performance statistics, which are prominently 
featured and easily searchable, rather than relying on social information 
at all, for instance. Even if the results were determined by the interface, 
though, our model would still be a contribution to understanding how 
that particular interface design yields good properties in terms of in-
formation aggregation and exploration versus exploitation in the pop-
ulation of users on the site. One of the strengths of normative models of 
the sort we pursue is exactly their usefulness for design questions of that 
sort. This topic deserves further research and offers a compelling 
connection to the literature on platform design from the computer sci-
ence communities of human-computer interaction and computer- 
supported cooperative work. Recent research in these fields has begun 
to investigate how interface design can impact the extent to which in-
dividuals conform to Bayesian reasoning in interacting with data visu-
alizations (Kim et al., 2019; Krafft & Spiro, 2019). Future research 
synthesizing that line of work with our own could study how interface 
design moderates the extent to which online communities are able to 
effectively co-produce knowledge and accumulate information through 
something like distributed Bayesian computation. It is possible that 
design aspects such as featured traders might promote knowledge pro-
duction relative to this normative ideal, or it is possible that such design 
features undermine knowledge production. What we have focused on 
showing in our work is that the framework of distributed Bayesian 
computation is at least a useful lens for studying these questions, and 
that the behavior on eToro shows a surprising degree of conformity to a 
normative standard along these lines—whether that is due to innate 
human behavioral mechanisms, encouragement from the interface, or a 
combination of both. 

In weighing our evidence for social sampling against the limitations 
of our analysis, we are further encouraged by the similarity between the 
social sampling model and the many other two-stage decision-making 
models from the existing literature (Howard & Sheth, 1969; Krumme 
et al., 2012; Payne, 1976; Pratt et al., 2005; Seeley & Buhrman, 1999). 
The specific form of social sampling that differentiates it from other two- 
stage models was motivated more by theoretical considerations and 
constraints from the literature on cognitive science than by fitting to the 
eToro context. Social sampling is an intuitive heuristic that could easily 
be implemented in a variety of contexts. eToro was uniquely suitable as 
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a test of social sampling because of its ecological validity and the exis-
tence of the explicit objective information signals needed to compute a 
normative posterior. 
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