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Abstract

Marr’s levels of analysis constitute one influential approach to
the central program of cognitive science—the multilevel anal-
ysis of cognition as information processing. The distinctive
aspects of Marr’s framework are an emphasis on identifying
the computational problems and constraints faced in cognition,
and conceptual machinery to relate cognitive mechanisms to
that computational level of analysis. Although related ideas
have been explored in a range of social science disciplines,
Marr’s framework, and particularly its notion of the precise
formulation of computational problems and solutions, has yet
to be applied widely in social analysis. In the present work
we develop a formulation of Marr’s levels for social systems,
provide examples of this approach, and address potential criti-
cisms. The consequence is a computational perspective on the
sociological school of structural functionalism, and an appara-
tus for conducting multiscale analysis of social systems.
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Introduction

Marr (1982) famously argued that any information processing
system can be analyzed at three levels, that of (1) the compu-
tational problem the system is solving; (2) the algorithm the
system uses to solve that problem; and (3) how that algorithm
is implemented in the “physical hardware” of the system.
This decomposition offers both functional and mechanistic
perspectives on information processing systems. Marr’s main
aim was understanding psychology and the human brain, and
his levels of analysis have proven to be a useful conceptual
tool for generations of cognitive scientists after him.
Considering that aspects of human cognition can be pro-
ductively viewed as information processing, and that social
groups consist in part of sets of people who exchange infor-
mation, it is natural think about how Mart’s levels of analysis
could be productively applied in the analysis of social sys-
tems. An immediate difficulty occurs with a naive applica-
tion, however. Taking the disciplinary commitments of cog-
nitive science for granted, we can clearly model social sys-
tems as distributed computer programs. Yet, there is no guar-
antee at all that the resulting computer programs implement
any coherent distributed solution to particular computational
problems. Far from all human collective behavior, or for
that matter far from all combinations of synthetic intelligent
agent behavior, has any functional purpose. Well-recognized
examples of collective dysfunction resulting even from in-
telligent agents include information cascades (Bikhchandani,
Hirshleifer, & Welch, 1992), phantom traffic jams (Kerner &
Konhéuser, 1993), and the tragedy of the commons (Ostrom,
2015). The naive application of Marr’s levels of analysis to
social systems therefore only extends as far as an algorithmic

level of analysis—representing social systems as distributed
computer programs. The naive application does not neces-
sarily extend through to the computational level, in which the
combination of agent behavior, taken holistically, would have
to yield coherent distributed computation at the population
level. To address this difficulty, we pursue a program of iden-
tifying which social behaviors and structures can be produc-
tively conceptualized as having computational roles.

There are several existing approaches in the social sciences
related to Marr’s framework. The field of organization sci-
ence has explicitly adopted information processing perspec-
tives since the seminal work of Herbert Simon. Simon, who
was an early thinker on the topic of information processing
in the context of human behavior (Simon, 1978), also applied
these ideas to organizations. In one famous passage, Simon
writes: “In the post-industrial society, the central problem
is not how to organize to produce efficiently ... but how to
organize to make decisions, that is, to process information”
(Simon, 1973, p. 269-270). Financial markets are also com-
monly understood as information processing systems. In a
classic economics paper, Hayek states: “the economic prob-
lem of society ... is a problem of the utilization of knowledge
not given to anyone in its totality” (Hayek, 1945, p. 519-520).

Marr’s algorithmic and implementation levels are akin to
mechanistic explanations. Mechanistic explanations are pop-
ular in the classical area of mathematical sociology, such as
in Schelling’s seggregation model (Schelling, 1971) or Gra-
novetter’s threshold model (Granovetter, 1978), and remain
popular in the modern area of analytical sociology (Hedstrom
& Bearman, 2009). Recent progress in the field of economics
and computation highlights the algorithmic side of the math-
ematical notion of game-theoretic equilibrium (Daskalakis,
Goldberg, & Papadimitriou, 2009). Mechanisms have also
been a target of inquiry in organization science, such as in the
study of transactive memory (Wegner, 1987).

These existing lenses in the social sciences fit naturally
within Marr’s framework, and therefore point towards a syn-
thesis of a cognitive, information-processing view of a wide
variety of social systems. At the same time, many of these
classic works did not draw explicit parallels to distributed
computation, or did not leverage the hierarchies of abstrac-
tion familiar to computer scientists that Marr deploys. Cog-
nitive scientists have begun to explicitly explore the appli-
cation of Marr’s levels to social systems. Hutchins (1995)
pioneered the application of Marr’s levels to social systems
in his ethnography of distributed cognition in team behavior
on a naval vessel. To Hutchins, the computation performed
by a naval vessel was that of navigation—calculating where



you are and determining how to get where you want to go.
Hutchins provided a detailed account of how this function
is accomplished by the crew members and their interactions
with each other and with artifacts on the ship.

Hutchins’ example makes it clear that the explicit applica-
tion of Marr’s levels can be productive in the context of teams
and organizations. However, one of the reasons this exam-
ple easily fits into Marr’s framework is because teams and
organizations have well-defined group boundaries and have
functions that are explicit in the goals of these groups. These
goals then dictate the information processing challenges the
groups face. An important outstanding question is to what
extent Marr’s approach can be applied to more loosely orga-
nized social systems that are often the subject of sociology.

The functionalist lens, used in sociology for a variety
of less strictly organized and less explicitly engineered so-
cial systems, provides reason to believe that there is space
for such an attempt to be fruitful. Structural or sociologi-
cal functionalism—i.e., the pursuit of understanding social
structures and behavior in terms of how they solve social
problems—is one of the classic theoretical perspectives in so-
ciology. Many early sociologists held views that a variety of
social phenomena played functional roles in society. For in-
stance, Spencer (1898) advocated for an equilibrium view of
society and drew extensive analogies between social and bi-
ological function. Durkheim (1893) presented a functionalist
argument that division of labor acts as a mechanism of so-
cial solidarity promoting a cohesive social bond. Although
functionalism was and continues to be controversial in soci-
ology (Weber, 1922; Giddens, 1984), scholars still lean on it
in modern studies. Yet, unlike in organization science, ex-
plicit information processing analogies are barely ever used
in sociology.

In the present work, we explicate the application of Marr’s
levels to loosely organized social systems, review examples
of recent work that fit within this paradigm, address chal-
lenges to this approach, and explore its potential and limi-
tations. The main benefit of Marr’s approach is that com-
putation provides an expressive language for high-level, ab-
stract theory, while providing the conceptual machinery to re-
late that abstract level to mechanistic explanations. Computa-
tional social theory can therefore be precisely specified, and
tested via its relation to algorithmic and behavioral descrip-
tions. At the same time, Marr’s charge to identify compu-
tational problems that information processing systems solve
could provide inspiration for research questions in computa-
tional social science.

Ilustrative Examples

Before more carefully defining Marr’s levels for social anal-
ysis, we begin with three motivating illustrative examples.

Waiting in Line
A simple example that illustrates Marr’s three levels of anal-

ysis in a social system is waiting in line. A line, for instance
outside a professor’s office, consists of a group of people,

Computational Level:

FIFO Queue Problem

Serve people in order of arrival.

Algorithmic Level:

Distributed Linked List Data Structure

Maintains arrival order.
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Figure 1: Marr’s levels of analysis for waiting in line.

each standing behind another. This social behavior imple-
ments the computation of a first-in, first-out (FIFO) queue. A
FIFO queue is a simple function used in computer science,
for example to prioritize computer processes in the CPU. A
FIFO queue takes as input a stream of entries, maintains the
order of those entries, and outputs entries in that order. The
representation that is used to solve the FIFO queue problem
in the case of waiting in line is to maintain a linked list data
structure between elements of the queue, and pop elements
off the list as needed. A linked list is another data struc-
ture used computer science, in which each entry contains a
“pointer” to the next element in the list. To “pop” a linked list
means to remove the head element. In the example of waiting
in line, the distributed algorithm that implements this linked
list is for each person in the line to keep track of who is ahead
of them. The physical implementation used to keep track of
who is ahead of you in the line is simply to stand behind that
person. Figure 1 illustrates this example.

There are many failure modes to standing in line. Two peo-
ple can arrive at a similar time or be in a similar position and
not be certain who is ahead of whom. Some people cut in
line. Sometimes lines fail to form at all or totally collapse
and become disorganized crowds of people waiting. There
is also cultural variation in how much importance or value
people place on lines as a useful mechanism. Taking Marr’s
approach abstracts away these details and exposes the under-
lying information processing challenge at the heart of stand-
ing in line. Our ability to reason about the computational
function of waiting in line can also suggest other engineered



solutions. Waiting in line is not the only solution to the FIFO
queue problem. For example, some delis, grocery stores, and
government offices implement ticket and announcement sys-
tems that obviate the need to keep your own place in line.

Status Hierarchies

As another example, many species of animals maintain some
kind of social hierarchy, influencing the interactions between
animals in a group and the way that they allocate resources
such as food. At a computational level, this structure can be
viewed as a solution to the problem of performing resource
allocation with a minimum of conflict—an alternative to a
costly free-for-all whenever resources become available. At
the algorithmic level, there are many kinds of algorithms that
can be used to impose an ordering on a group through pair-
wise comparison (i.e. fights or displays)—a whole branch of
theoretical computer science is devoted to questions about
sorting. However, here the implementation details matter:
most sorting algorithms involve maintaining some kind of
global record of the current ordering of the items being sorted.
In an animal group, each animal needs to maintain such a
record independently. Thus it makes sense to think about
distributed algorithms in which individual animals operate as
computational elements. Flack and Krakauer (2011) applied
exactly this approach to modeling the decisions of monkeys to
engage in fights, viewing these individual decisions as form-
ing “adaptive social circuits”.

Rumors and Collective Sensemaking

As a final motivating example, a classical and now well-
supported sociological theory of rumors conceptualizes ru-
mors as a natural part of a process of collective sensemaking
(Shibutani, 1966; Bordia & DiFonzo, 2004; Huang, Starbird,
Orand, Stanek, & Pedersen, 2015). According to this view,
people try to make sense of the world together when they
find themselves in uncertain environments. A computational
perspective of rumors based on this view is as functioning to
communicate hypotheses about the state of the environment
(Krafft, Zhou, Edwards, Starbird, & Spiro, 2017). This per-
spective frames rumors as oriented towards a distributed in-
ference problem of inferring the state of the world given the
evidence at hand.

Marr’s Levels for Social Systems

Having motivated computational and algorithmic perspec-
tives of social systems through our examples, we now expand
upon the usage of Marr’s levels of analysis in social systems.

Computational Level

The first level of analysis Marr defined is the computational
level. The computational level describes the problem that an
information processing system is oriented towards solving.
The information processing function that the social system
accomplishes may be explicit due to design or implicit, as
in Merton’s manifest versus latent functions (Merton, 1949).
For this level of analysis to apply, the group must face some

computational problem. The computational problems in our
examples were implementing a FIFO queue, resource alloca-
tion, and distributed inference. Other common computational
problems in social systems include aligning group mem-
ber preferences and solving coordination problems (Krafft,
2018). Unlike in cognition, in which computational problems
are frequently posed by the external environment, many com-
putational problems faced by groups are endogenous. The
need to coordinate is one example. The need to coordinate
is an inherent result of existing as differentiated people. An-
other type of endogeneity is in problems that are created by
history dependence. For instance, Durkheim offers that one
view of the division of labor could be that by increasing our
ability to create goods to relieve our increasing fatigue, divi-
sion of labor functions in part to meet the needs created by its
very existence (Durkheim, 1893).

The computational level of analysis is important because it
allows the researcher to answer “why” questions—to under-
stand why people behave in a certain way. In order to justify
a teleological interpretation of a social function, that function
should either be explicitly intended or otherwise be evidently
addressing a problem that threatens the group. For instance,
we can say that conventions about which side of the street to
drive on exist in order to solve a coordination problem. Some
coherent distributed computations do not meet this criterion
of solving a computational problem associated with an inten-
tion or a need of the group. In the tragedy of the commons,
rational agents are computing an equilibrium, and therefore
accomplishing a computational function, but this outcome is
neither intended nor meeting a need. Therefore this collective
behavior cannot be productively interpreted as functional, and
Marr’s computational level does not apply.

Another important qualification in the social case is that
the computational problem is one faced by the group, com-
munity, or society. Every individual in a group has their own
problems and goals, and some behavior will be oriented to-
wards those individual needs and not any shared needs of the
group. Selfish behavior of this sort is one reason why we can-
not treat all compositions of rational behavior as functional
group behavior. This issue is at play in the tragedy of the
commons and other social dilemmas from game theory.

The definition of social functions is also only with respect
to the boundaries of the group being analyzed, and does not
represent a moral judgment. Accomplishing a computational
function in one group can cause problems for other groups;
consider the case of one group finding a new place to build
a settlement and displacing another group. In line with We-
ber’s interpretive approach (Weber, 1922), insofar as we are
aiming to understand why people are engaging in certain so-
cial behaviors, we must interpret function with respect to the
values of the people in the group being analyzed.

Algorithmic Level

Marr’s second level of analysis is the algorithmic level. The
algorithmic level describes the way in which a computational
problem associated with an information processing system is



solved. An algorithm involves both the representations of in-
formation used and the transformations of those representa-
tions. In social systems, the fundamental algorithms at play
are most readily conceptualized as distributed algorithms, in
which multiple people are participating as agents akin to net-
worked computer processors. This perspective of social pro-
cesses as distributed algorithms is closely related to agent-
based modeling (Macy & Willer, 2002), the study of social
mechanisms in analytical sociology (Hedstrom & Bearman,
2009), and the study of natural algorithms in theoretical com-
puter science (Chazelle, 2009).

The critical criterion for an algorithmic explanation within
Marr’s framework is that the behavior being examined offers
a proper solution to the computational problem posed in the
computational level of analysis. This criterion pushes beyond
purely descriptive studies of social mechanisms, as in many
agent-based or rational models, towards a formal relationship
between mechanisms and social functions. In the example of
waiting in line, the FIFO queue is accomplished if each per-
son keeps their place. While deviant behavior such as line-
cutting could be included in an agent-based model, a strict al-
gorithmic analysis does not accommodate cases when some
people cut in line for no reason other than their own self-
interest, because this behavior undermines the correct com-
putation of the FIFO queue.

Implementation Level

The final level of analysis Marr defines is the implementation
level. An algorithm is an abstract process-level description.
The implementation level explains how the algorithm is im-
plemented through actual interaction of basic elements. In
social systems, the definition of the implementation level is
contingent on what elements of the system are taken as prim-
itive. Typically, social systems are reduced to psychologi-
cal processes, and connections to neural processes are left to
cognitive scientists. This division leaves the implementation
level to be concerned with psychological processes, details
of social interaction, and contextual elements such as geogra-
phy, social network structure, and artifacts in the environment
as building blocks. The implementation level can be thought
of as a second, lower-level algorithmic analysis.

Benefits of the Approach

There are several potential gains to be had from employing
Marr’s levels of analysis to understand social systems. One
benefit is a deductive approach to discovering mechanisms.
In analytical sociology, the discovery of mathematical de-
scriptions for social mechanisms is often post hoc and in-
ductive from observations. Marr’s levels provide a deductive,
reverse-engineering approach. In this approach, the compu-
tational problem being faced by a group is specified first, and
then algorithms to solve that problem are explored. For in-
stance, in the case of conceptualizing rumors as distributed
inference, we can look to the literature on algorithms for dis-
tributed inference in search of mechanisms. To understand

coordination, there is a wealth of literature in computer sci-
ence on engineering distributed systems.

A second benefit is a rigorous approach to providing math-
ematical evidence for functionalist sociological theories. Tak-
ing the rumor example again, suppose we wanted to provide
evidence that rumors function as a mechanism of collective
sensemaking. Suppose we can show that a distributed in-
ference algorithm as a behavioral model explains observed
behavior better than alternative mechanisms, such as a con-
tagion model or a thermodynamic model. The evidence for
that distributed algorithm then in turn provides evidence for
the functional interpretation of rumors since there is a math-
ematical relationship between the algorithmic model and the
problem of distributed inference.

A final benefit is for design. Once a social problem is spec-
ified precisely as a computational problem, then we can do
more than just understand how current social behavior might
address this problem. We can also search for alternative social
behaviors or structures that better solve the problem accord-
ing to some criteria. The value of precise computational spec-
ification is that this search through design space can be auto-
mated. An example of this approach is in automated mecha-
nism design (Conitzer & Sandholm, 2003).

Challenges to the Approach

There are several interrelated challenges and potential cri-
tiques of the indiscriminate application of Marr’s approach
to social systems. We now address what we view as the
major challenges. Our responses to these challenges center
around an argument that a program of Marr’s approach to
social systems aims to produce useful, idealized hierarchical
mathematical descriptions, but should not be conducted with-
out also paying careful attention to the specifics of the social
context being studied and the political aspects of that inquiry.

Multiagent Systems versus Human Social Systems

One potential criticism that we can readily dismiss involves
the difference between human social systems and artificial
multiagent systems or distributed computer systems. Com-
puter networks offer quite different affordances and con-
straints as compared to social systems. For instance, comput-
ers can easily communicate their entire internal states with
complete precision to each other. Communication is much
harder for people, but at the same time, people have a richer
range of distinctive forms of communication, including sym-
bolic and cultural systems. Social networks, the physical-
ity of human interaction, social norms and institutions, and
many other contextual factors form additional components
that must be considered in the case of social systems. Al-
though distributed computer systems and distributed social
systems clearly have widely differing constraints and affor-
dances, the mathematical language we use to describe both
types of systems, the classes of algorithms that are employed,
and some fraction of the computational problems each type
of system faces could still be similar.



Methodological Individualism

A classic criticism of functionalism is that of methodological
individualists or “reductionists”. The view of methodologi-
cal individualism would assert that a group-level functional-
ist perspective is unnecessary for explaining the behavior of
social systems. Under such a view, any group-level structure
supervenes on the individual-level beliefs, intentions, plans,
and behaviors. A social system therefore cannot be properly
understood as having a function. To have a function means
that the social system as a whole has a causal role in a broader
ecosystem. But according to the reductionist view, the social
system as a whole plays no causal role in the system dynam-
ics. The only causally relevant entities are the components.

There are several responses to such a criticism. The re-
sponse requiring the weakest logical commitments is that
function can serve as a useful description that succinctly
summarizes the behavior of the system, without making any
causal claims. The usefulness of the description alone justi-
fies a functionalist inquiry. When conceptualizing social sys-
tems “as if” they had functions allows us to better understand
them, then such concepts are valuable. Another response is to
assert that there can be multiple scales of causal explanations,
and functions serve a causal role at an aggregate level. For in-
stance, in a counterfactual world where people have no way
to implement a FIFO queue at the professor’s office, then the
operations of the group—who gets in when—would be fun-
damentally different. Therefore the operation of office hours
can rightfully be conceptualized as having a dependence on
the ability of people to implement a FIFO queue.

A related response is that certain functions are irreducible
emergent properties of the social system, meaning that the
behavior of the social system cannot be properly understood
without understanding its emergent functions. This argument
asserts that there is downward causality from emergent func-
tion to the constituents of the system. For instance, consider
two competing hunting groups whose members must hunt
together to be successful, and suppose the members of one
group have synchronized clocks. It is the ability of the group
to accomplish the task of coordination that allows the group
to be more effective, not anything about the individuals in and
of themselves. If the clocks did not accomplish the function
of coordination, the individuals would not benefit.

Non-adaptive Functions

We argued in our definition of the computational level of anal-
ysis that the computational functions being analyzed must be
beneficial to the group in order for the function to have a tele-
ological interpretation, which is an implicit aim of Marr’s
computational level. Some collective behavior implements
coherent computation that is either harmful or epiphenom-
enal. For instance, Schelling’s (1971) segregation model
showed how small individual biases could lead to a popu-
lation clustering itself according to attributes such as race.
Clustering or sorting could then be said to be an information
processing function implemented by Schelling’s mechanism.

At the same time, we might think that segregation is actually
a maladaptive characteristic of a population. In a more recent
example, a group of analytical sociologists presented a mul-
tiscale analysis of adolescent sexual behavior, and showed
that the behavioral mechanisms of these people led to net-
works that tended to have structures similar to spanning trees
(Bearman, Moody, & Stovel, 2004). Spanning trees are good
for the sexual health of the community in some ways but bad
in other ways, and thus do not serve a clear function. These
analyses benefit from the same mathematical machinery that
we use in the computational level analysis, but fall outside its
scope in our definition.

Dysfunctional Collective Behavior

Another concern is individual behaviors that lead to incoher-
ent or unstructured collective behavior, and individual or col-
lective behaviors that appear functionally oriented but fail to
accomplish any function. Social behavior that leads to in-
coherent or unstructured collective behavior, such as people
going about their own individual business within their homes,
simply may not have group-level structure that lends itself to
illuminating interpretation via Marr’s levels. One prominent
and perhaps surprising example of this sort is agent-based
models. Although agent-based models can be described as
computer programs, their aggregate dynamics are sometimes
chaotic or unstructured. The scope of Marr’s levels therefore
is not as wide as the class of all processes that can be de-
scribed as distributed computer programs. Other behaviors
may appear functionally oriented but are suboptimal or to-
tally dysfunctional. Here, Marr’s approach simply may not
apply if the social system does not have group-level informa-
tion processing characteristics.

Sociological Critiques

A final set of threats to applying Marr’s levels to social sys-
tems are inherited from other challenges to sociological func-
tionalism. Despite still being influential in contemporary so-
ciology, functionalism has been criticized for abstracting and
obscuring many key details of social phenomena. Conflict
theorists have emphasized how functionalism diminishes the
struggle of marginalized groups, the importance of revolu-
tionary change, and the role of individual human agency in
society. In a somewhat separate line of critique, Giddins’
structuration theory explores how function and structure co-
evolve continuously across space and time and cannot be
neatly separated (Giddens, 1984).

We follow Weber (1922) in responding to these criticisms
by noting firstly that a functional description can still be use-
ful for certain ends, although non-functional aspects must
be considered for a complete treatment of any system; and
a functionalist analysis may still be illuminating to see how
a population deviates from an idealized solution. That said,
we must always keep in mind the balance between the clarity
provided by abstraction and the frequent importance of the
details that are abstracted away.



Conclusion

Analysis of social systems is challenging in part due to the
diversity and complexity of the people in these systems and
their interactions. Abstraction of social processes should be
approached with caution but can help to highlight generaliz-
able insights and underlying principles at play. In the present
work we have outlined the application of Marr’s levels of
analysis to a broad range of social systems. This framework
provides machinery for abstraction, and for relating abstract
levels to lower levels of explanation.

Given our discussion of criticisms in the previous section,
we can make an informed attempt at outlining the scope of
Marr’s approach for social systems. Marr’s levels have clear
utility and have been used in cases where groups have an
explicit shared goal of executing an information processing
task, such as in teams and organizations. We have argued that
Marr’s levels of analysis can also be useful in cases where
people are self-organized—whether by coincidence, by inten-
tion, or through biological or cultural evolution—to execute
coherent information processing. Cases that are less appro-
priate are when group behavior is unstructured, incoherent, or
structured but not oriented towards information processing.

There are several classes of computational problems
and algorithms that may be useful in deploying Marr’s
levels of analysis for social systems. Multiagent systems is
one of the most relevant areas (Shoham & Leyton-Brown,
2008). The area of multiagent systems provides a wide
variety of formalisms that are useful for both specifying
problems and algorithms, including multiagent decision
problems (Bernstein, Zilberstein, & Immerman, 2000) and
computational models of shared cooperative activity (Grosz,
Hunsberger, & Kraus, 1999). There are also many distributed
algorithms outside the literature on multiagent systems, such
as fault-tolerant distributed algorithms for consensus (Lynch,
1996). Distributed machine learning is another promising
area to draw upon. Future work could deploy Marr’s levels
of analysis to further explore links between developments in
these areas and the study of social systems.
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