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Abstract

Humans extract useful abstractions of the world from noisy
sensory data. Serial reproduction allows us to study how peo-
ple construe the world through a paradigm similar to the game
of telephone, where one person observes a stimulus and repro-
duces it for the next to form a chain of reproductions. Past
serial reproduction experiments typically employ a single sen-
sory modality, but humans often communicate abstractions of
the world to each other through language. To investigate the
effect language on the formation of abstractions, we imple-
ment a novel multimodal serial reproduction framework by
asking people who receive a visual stimulus to reproduce it
in a linguistic format, and vice versa. We ran unimodal and
multimodal chains with both humans and GPT-4 and find that
adding language as a modality has a larger effect on human
reproductions than GPT-4’s. This suggests human visual and
linguistic representations are more dissociable than those of
GPT-4.
Keywords: serial reproduction, Bayesian inference, multi-
modal models, abstraction, vision, language

Introduction
Abstraction is a hallmark of human intelligence that helps us
make sense of our complex environment. The ability to form
abstractions has been proposed as a key component of hu-
man cognition, and necessary for artificial intelligence to ex-
hibit the same ability to generalize from limited data (Lake,
Ullman, Tenenbaum, & Gershman, 2017). Large Language
Models (LLMs) are sophisticated, high-performing artifi-
cial intelligence systems that have emergent properties some
claim may rival human-level general intelligence (Wei et al.,
2022; Bubeck et al., 2023). However, others have pointed
out inconsistencies in their reasoning abilities (Mitchell, Pal-
marini, & Moskvichev, 2023). The difficulty of assessing
these capacities highlights the need to develop rigorous ex-
perimental tools for probing abstraction in humans and ma-
chines (Lake et al., 2017; Mitchell et al., 2023; Kumar, Das-
gupta, Daw, Cohen, & Griffiths, 2023).

Abstraction involves capturing the essential details of
incoming information that will help us generalize to fu-
ture experiences while discarding less useful information
(Giunchiglia & Walsh, 1992). The choice of what to focus on
and what to ignore can be a reflection of our prior beliefs or
expectations. Serial reproduction (Bartlett, 1932) is a method
used to elicit such priors in human perception and memory
through a telephone-game-like experiment (Xu & Griffiths,
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2008). People are asked to pass a piece of information to one
another in sequence, with each person reproducing the infor-
mation from memory for the next person. Studying how the
information changes as it is passed along the chain of people
can be used as a window into their prior beliefs.

When using serial reproduction to study abstraction, one
must consider that abstractions are not only a noisy compres-
sion of a stimulus, but they are also formed to communicate
information to others (Tessler & Goodman, 2019; Tessler et
al., 2021). In humans this is often done through language
(Lupyan & Bergen, 2016). The extent to which our abstrac-
tions are influenced by language is a central but unanswered
question in cognitive science (Quilty-Dunn, Porot, & Man-
delbaum, 2023; Kumar et al., 2022; Lupyan, Rakison, & Mc-
Clelland, 2007). Most experiments involving human partici-
pants constructing a serial reproduction chain (e.g. Langlois,
Jacoby, Suchow, & Griffiths, 2021; Anglada-Tort, Harrison,
Lee, & Jacoby, 2023) employ only one sensory modality.
Therefore, incorporating language as a transmission modal-
ity in multimodal serial reproduction potentially provides a
way to understand its influence on human abstractions.

In this work, we explore how adding language to a vi-
sual serial reproduction chain influences the output of that
chain, comparing human participants and GPT-4 (a contem-
porary LLM with visual capabilities; Achiam et al., 2023).
To simulate multimodal serial reproduction, participants who
observed a visual stimulus were asked to produce a textual
stimulus for the next participant and vice versa. As a result,
the multimodal serial reproduction chain alternates between
the visual and language modalities. We present a theoretical
analysis showing that comparing unimodal and multimodal
chains can allow us to assess whether distinct priors are be-
ing used to make inferences in different modalities.

To establish this comparison, we collected data from both
human participants and GPT-4 in two serial reproduction
paradigms, one unimodal and one multimodal. This allows
us to compare emergent distributions from vision-only vs. hy-
brid vision-language chains to see the impact of transmission
through multiple modalities. Our results show that transmis-
sion through both language and vision has a significant im-
pact on the level of abstraction demonstrated within human
participants’ chains but does not have as significant impact
on GPT-4, suggesting that GPT-4, unlike humans, naturally
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relies on language representations by default even in a vision-
only paradigm.

Methods
Theoretical Framework
Bartlett (1932) proposed serial reproduction to study how bias
from people’s previous experiences influences how they per-
ceive new experiences. In a unimodal serial reproduction
study, the original stimulus is presented to the first partici-
pant, who then reproduces it for the second participant, and
so on. Formally, serial reproduction can be interpreted as a
Markov chain over a pair of variables (x,µ) where x repre-
sents the distribution of stimuli in the world and µ represents
the abstractions people infer from those stimuli, · · ·xt → µt →
xt+1 → µt+1 → ···. A mathematical interpretation of this pro-
cess used by Xu and Griffiths (2010) treats xt as a noisy stim-
ulus, and assumes humans share a prior distribution pS(µ)
about the world. To reconstruct the observed stimulus xt , hu-
mans try to estimate the true state of the world µt by sam-
pling the posterior distribution p(µt |xt), and the next stimulus
is then sampled from the likelihood pS(xt+1|µt). Under this
assumption and ergodicity (i.e., that there is a finite proba-
bility for reaching any one state from another), the stationary
distribution of the Markov chain over µ converges to the prior
pS(µ). Related analyses for this paradigm offer similar con-
clusions (Jacoby & McDermott, 2017).

Consider next a serial reproduction process in which infor-
mation is transmitted bimodally, e.g., through images x and
language ℓ. The process unfolds as follows: at a given itera-
tion t, a human participant observes a stimulus xt and forms
an abstraction µt about its content which they then use to form
a text description ℓt+1/2. The text description is then read by
another participant who in turn forms an abstraction µt+1/2
and uses that abstraction to produce a new stimulus xt+1. In
other words, we are concerned with the Markov process · · ·→
xt → µt → ℓt+1/2 → µt+1/2 → xt+1 → ··· and want to char-
acterize the stationary distribution of p(xt+1|xt). Following
Xu and Griffiths (2010), we assume the agents are Bayesian
and that they use some prior knowledge to form abstractions
from language and stimuli, namely p(µ|x) ∝ pS(x|µ)pS(µ)
and p(µ|ℓ) ∝ pL(ℓ|µ)pL(µ) where S and L indicate stimulus
and language, respectively. The stimulus and language priors
over abstractions need not be the same (the likelihoods are
by definition different because they are defined on different
input). If, however, they were aligned, i.e. pS(µ) = pL(µ)
for all µ, then propagation through the additional linguistic
modality does not alter the stationary distribution over stim-
uli x. This can be verified by checking that the prior predictive
distribution p̂(x) =

∫
pS(x|µ)pS(µ)dµ satisfies the stationarity

condition
∫

p(xt+1|xt)p̂(xt)dxt = p̂(xt+1), similar to the uni-
modal case of Xu and Griffiths (2010). Discrepancies in the
stationary distribution over stimuli x between the unimodal
and multimodal serial reproduction chains in this theoretical
setup would reflect a difference in priors pL(µ) and pS(µ).
This suggests that comparison of the stationary distributions

produced by unimodal and multimodal chains is an effective
way of discovering differences in the way that agents construe
the world across different modalities.

Figure 1: Example Multimodal Serial Reproduction
Chain in Humans. One participant sees a stimulus and trans-
mits a language description of the stimulus. The next par-
ticipant sees a language description and produces a stimulus
matching the description. The chain alternates between vi-
sion and language.

Human Experiments
We recruited N = 348 participants from Prolific. Participants
were required to be native English speakers to ensure high
textual data quality, and they provided informed consent prior
to participation in accordance with an approved institional re-
view board (IRB) protocol. We collected 100 chains of 10
visual steps of both unimodal and multimodal serial repro-
duction. Both conditions were intitialzed with the same set
of randomly sampled boards. Although 10 iterations can be
considered on the short side, sampling-based chains with peo-
ple tend to converge much faster than their theoretical coun-
terparts (Sanborn & Griffiths, 2007; Harrison et al., 2020).
To compensate for the chain length, we run many different
chains (Harrison et al., 2020).

In this work, we use a simple stimulus space of binary 7×
7 grid patterns (Fig. 1), which has previously been used to
study abstraction in humans and machines (Kumar, Dasgupta,
Cohen, Daw, & Griffiths, 2021; Kumar et al., 2022, 2023) due
to having a nice balance between being rich enough to elicit
interesting abstractions but small enough to enable rigorous
experimentation.

Unimodal Serial Reproduction: To implement unimodal
serial reproduction in humans, at each step, the participant is
asked to memorize a stimulus board for 5 seconds and tasked
with reproducing the board afterwards. The new board serves
as the stimulus for the next iteration of the chain. After run-
ning all the unimodal chains, we then collected language de-
scriptions of all boards produced post-hoc by having a sepa-
rate set of participants give board descriptions. Each partici-
pant completed up to 10 trials and was allowed to visit each
chain only once (to reduce trial dependence within chains).
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Figure 2: Serial Reproduction Chains Across Modalities. Five example human and GPT-4 chains for each paradigm.

Multimodal Serial Reproduction: In multimodal serial
reproduction, a participant can be shown either a stimulus
board, or a string of textual description. If shown a board,
then they are asked to provide an accurate textual description
of the board such that the board can be reconstructed from it.
If shown a string of textual descriptions, then they are asked
to reproduce a board that most accurately illustrates the tex-
tual description. The new board or text will serve as the stim-
ulus for the next iteration in the chain. Here too participants
completed up to 10 trials and were allowed to participate in a
given chain once.

Machine Experiments
To study machine priors, we use GPT-4 vision (Achiam et al.,
2023), a Large Language Model (LLM) with multimodal ca-
pabilities. We implement the serial reproduction chains with
GPT-4 to be as close to the human experiments as possible.
Just like the human experiments, we ran 100 unimodal and
multimodal chains of 10 iterations.

Unimodal Serial Reproduction: To implement unimodal
serial reproduction in GPT-4, we present it an image of a 7×
7 binary grid and ask it to produce the grid in matrix form,
with 1 corresponding to red tiles and 0 corresponding to white
tiles. We then use the matrix GPT-4 produced for the next
iteration’s input.

Multimodal Serial Reproduction: In multimodal serial
reproduction, GPT-4 can be shown either a stimulus board,
or a string of textual description. If shown a board, then it is
asked to provide an accurate textual description of the board.
If shown a textual description, then it is asked to reproduce a

board that most accurately illustrates the textual description.
The new board or text will serve as the stimulus for the next
iteration in the chain. We used the same prompt given to hu-
man participants.

Measures of Board Complexity
The process of human abstraction aims to compress com-
plex stimuli or inputs to simpler representations that enable
generalization (Giunchiglia & Walsh, 1992; Kumar et al.,
2022). Therefore, measuring the compressibility of the stim-
uli that emerge from the serial reproduction chains can be in-
formative of the underlying abstract priors that generate them.
There are many measures of board complexity, so we uti-
lize three measures from the work of Nath, Brändle, Schulz,
Dayan, and Brielmann (2023), which are specifically tailored
to binary grid stimuli:

1. Kolmogorov Complexity (KC): a measure formalized
through algorithmic information theory, defined as the
length of the shortest computer program that can produce
the desired stimulus. The exact computation is intractable,
so most empirical methods estimate an upper bound. Nath
et al. (2023) use the Block Decomposition Method (Zenil
et al., 2018), which breaks the grid stimulus into 4 × 4
blocks and uses theoretically defined complexity measures
of each binary 4×4 block.

2. Shannon Entropy: a measure of the information con-
tent/complexity (Shannon, 1948) of the grids using its dis-
tribution of red and white tiles: −(P(red) log2 P(red) +
P(white) log2 P(white))



3. Local Spatial Complexity (LSC): the mean information
gain of tiles having the same color or different colors
in their adjacent tiles. This takes into account the lo-
cal probabilistic spatial distribution of tiles. It is defined
as − 1

8 ∑
8
d=1 ∑

1
s1=0 ∑

1
s2=0 P(s1,s2)d log2 P(s1|s2) where s1

and s2 are adjacent tiles whose spatial relation is defined
through d. There are eight possible values for d corre-
sponding to the four cardinal directions as well as four di-
agonals.

Each of these measures provide a slightly different window
into the complexity of a board. For example, Kolmogorov
Complexity is the only measure taking into account the al-
gorithimic complexity of the board (e.g. algorithms to gen-
erate the patterns). Shannon Entropy formally measures the
information-theoretic content based on the distribution of tile
colors, but does not take into account spatial information.
Local Spatial Complexity is an information theory measure
more sensitive to spatial information because it looks at the
local distribution of a tile’s nearest neighbors.

Results
Qualitative Board Distribution
Fig. 3 shows the most frequent boards across the four condi-
tions. Because there is more variance across different human
participants’ responses than GPT-4 responses, the largest fre-
quencies of GPT-4 are typically higher than humans. The
most frequent human multimodal boards seem to be patterns
that are most easily identifiable by language, e.g., checker-
board, square shapes, and stripes (the checkerboard pattern,
in particular, seems to only show up in multimodal chains for
both humans and GPT-4) whereas unimodal boards are pat-
terns that are harder to describe in language. However, in the
case of GPT-4, both unimodal and multimodal patterns are
more easily describable through language.
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Figure 3: Most Frequent Boards Across Conditions. Num-
bers indicate the frequency of the board below it.
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Figure 4: Mean Chain Velocity We computed mean instan-
taneous velocity of each chain by computing the hamming
distance traveled between boards of consecutive timesteps.
Error bars denote 95% confidence intervals across chains.

Chain Dynamics
Fig. 4 shows the mean distance traveled between consecu-
tive timesteps in each of the four types of serial reproduction
chains. This can be thought of as a measure of instantaneous
velocity since it measures distance traveled within consecu-
tive timesteps (dt = 1).

We see that multimodal chains have significantly higher
velocity than unimodal chains in both conditions (human:
t(198) = 4.05, p < 0.0001; GPT-4: t(198) = −7.01, p <
0.0001). Since the chief difference between these condi-
tions is the addition of language as a bottleneck between
state transitions in the chain, this shows that transmitting
through language further accelerates the sampling of the ab-
straction space more. GPT-4 has significantly higher chain
velocity than humans in both conditions (unimodal: t(198) =
6.97, p< 0.0001; GPT-4: t(198)= 10.87, p< 0.0001), which
may suggest that GPT-4, by default, relies more on language
representations than humans do.

Board Complexity Analyses
We looked at the distribution of complexities across hu-
man and machine chains for different conditions (Fig. 5A).
Qualitatively, running a multimodal serial reproduction chain
seems to have a bigger effect on mean board complexity for
humans than for GPT-4 (signified by the red line having a
larger slope than the blue line). To statistically evaluate this,
for each complexity measure, we ran a two-way ANOVA with
subject (human or GPT-4) and modality (unimodal and mul-
timodal) as factors that account for the mean complexity of
the boards (Table 1).

We find all two-way interaction effects between the subject
(human vs. GPT-4) vs. modality (unimodal vs. multimodal)
to be consistent in direction and statistically significant. As
seen in Fig. 5A, this effect is driven by a tendency for there to
be a greater difference between human unimodal and mul-
timodal board complexity than GPT-4 unimodal vs. multi-
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Figure 5: Transmitting through language has a larger effect on humans than GPT-4 (A). 95% confidence intervals for
complexity measures across humans and GPT-4 for both types of chains. GPT-4 boards typically have higher complexity. Mul-
timodal serial reproduction typically reduces complexity, and this reduction is more pronounced in humans than GPT-4. (B).
Decoding (R2) performance for predicting board complexity from the corresponding language description’s sentence embed-
dings. Higher performance suggests that the complexity of the boards can be represented in language. Decoding performance
increases from unimodal to multimodal chains and GPT-4 boards have higher decoding performance than human boards.

Table 1: Two-way ANOVAs for Board Complexity

Measure Effect F p
KC Modality 6.99 0.009
KC Subject 65.39 <0.001
KC Interaction 4.08 0.044
Entropy Modality 65.94 <0.001
Entropy Subject 43.68 <0.001
Entropy Interaction 8.09 0.005
LSC Modality 151.49 <0.001
LSC Subject 24.09 <0.001
LSC Interaction 14.63 <0.001

modal board complexity. We also found significant one-way
effects of subject. The direction of this effect was consistent
in all measures — GPT-4 tends to have a higher mean board
complexity than humans. In addition, we also find significant
one-way effects of modality (unimodal vs. multimodal), sug-
gesting that additionally transmitting through language de-
creases board complexity.

Since the chief difference between the modality conditions
(unimodal vs. multimodal) is explicit transmission through a
language description, the fact that these conditions have a sig-
nificantly larger effect on humans than GPT-4 may suggest
that GPT-4 relies more on language-compatible representa-
tions than humans, leading to a lesser effect when explicitly
forcing it to transmit through a language bottleneck. Equiva-
lently, this may suggest that humans’ abstract vision and lan-
guage priors have less overlap than GPT-4’s vision and lan-
guage priors.

Decoding Board Complexity from Language
We now employ an analysis to see if the complex-
ity within each of these boards measured in Fig. 5A is
the kind of complexity that can be represented in lan-
guage (Fig. 5B). To do this, we obtained pretrained LLM
sentence embeddings of each board’s corresponding lan-
guage description using the SentenceTransformers package
(https://www.sbert.net/, based on Reimers & Gurevych,
2019). The pretrained model we used was Microsoft’s MP-
Net (Song, Tan, Qin, Lu, & Liu, 2020). The SentenceTrans-
formers model maps text into a 768 dimensional dense se-
mantically meaningful vector space. Reimers and Gurevych
(2019) do this by using a contrastive objective on a dataset
of semantically-paired text where embeddings from the same
pair are pushed closer and embeddings from different pairs
are pushed further apart.

In multimodal boards, we use the language description that
was obtained by a participant (or GPT-4) who viewed the
board and wrote the description (see Fig. 1). In unimodal
boards, we repeated this process post-hoc after the chains
were completed by showing a separate set of participants (or
GPT-4) each unimodal board and asked them to write a lan-
guage description (using the same prompt as the participants
who wrote descriptions in the multimodal chain condition).

We then take these embeddings and train a Ridge Regres-
sion model to predict board complexities from its correspond-
ing sentence embedding (Fig. 5B). We use five-fold cross val-
idation and report mean prediction accuracy (R2) on the held-
out test set across all five folds. The regularization parameter
is tuned using a nested five-fold cross validation procedure
within the training set (so, for each outer fold, the regulariza-
tion parameter is tuned before the test set is ever seen). Qual-



Table 2: Two-way ANOVAs for Language Decoding

Measure Effect F p
KC Modality 19.28 0.005
KC Subject 225.70 <0.001
KC Interaction 65.67 <0.001
Entropy Modality 11.14 0.004
Entropy Subject 10.24 0.006
Entropy Interaction 1.12 0.31
LSC Modality 35.75 <0.001
LSC Subject 8.84 0.009
LSC Interaction 1.45 0.25

itatively, we see that there is a general upward trend (more
pronounced in humans than GPT-4) in decoding performance
from unimodal to multimodal boards. To quantify this effect,
we repeated the two-way ANOVA analyses employed in the
last section, with subject (human vs. GPT-4) and modality
(unimodal vs. multimodal) as factors that influence the de-
coding performance of the Ridge Regression model. Results
are shown in Table 2.

The one-way effect of subject (human vs. GPT-4) was sig-
nificant across all three measures and was consistent in direc-
tion — GPT-4 decoding performance is higher. Additionally,
the one-way effect of modality (unimodal vs. multimodal)
was also significant across all three measures, showing that
multimodal boards have higher decoding performance than
unimodal boards. The interaction (subject + modality) effect
was only significant in one measure, Kolmogorov Complex-
ity.

These results suggest two main findings. First, decod-
ing performance of complexity from language embeddings
is generally higher in multimodal chains than in unimodal
chains. This suggests that the complexity of the multimodal
boards, compared to unimodal boards, is more the kind of
complexity that can be accounted for by language represen-
tations. Second, GPT-4 generally has a higher decoding per-
formance than humans. Although the complexity of GPT-4
boards are generally higher than those of humans (see previ-
ous section and Fig. 5A), this complexity is the kind of com-
plexity that is decodable by language representations.

Discussion
In this work, we explored abstractions in humans and GPT-4
using a framework involving serial reproduction within a sim-
ple yet rich stimulus space of binary grid boards (Fig. 1). Pre-
viously, serial reproduction has been used to elicit human pri-
ors (e.g., Langlois et al., 2021). Humans often share abstrac-
tions of their sensory experience with each other through lan-
guage (Tessler & Goodman, 2019). However, the abstractions
humans build of the world can be represented through mul-
tiple modalities (Hawkins, Sano, Goodman, & Fan, 2023),
and serial reproduction and similar iterative methods typi-
cally only employ a single modality. This paper presents

a novel multimodal serial reproduction paradigm, in which
people alternate between transmitting through both vision and
language. This provides a way to determine the extent to
which priors are shared across modalities.

We ran both unimodal and multimodal serial reproduc-
tion chains for both humans and GPT-4 (Fig. 2). Qualita-
tively, for humans, we found that multimodal chain samples
seem much easier to describe in language (Fig. 3). Quanti-
tatively, we found evidence that the addition of transmission
through language leads to the emergence of more compress-
ible (and, therefore, more abstract) stimuli in the stationary
distribution (Fig. 5A). Additionally, language representations
are more predictive of the complexity of human multimodal
boards than that of unimodal boards (Fig. 5B), suggesting
that, in humans, a purely unimodal paradigm does not tap
into abstractions that can be shared with language as much
as a multimodal paradigm. In contrast, GPT-4 unimodal and
multimodal boards both qualitatively seem easy to describe in
language (Fig. 3). Quantitatively, the change in complexity
across unimodal and multimodal boards is significantly less
in GPT-4 than the corresponding change in humans (Fig. 5A).
Language representations are more predictive of GPT-4 board
complexities than human representations (Fig. 5B).

This evidence suggests that GPT-4 abstract visual repre-
sentations are much closer to linguistic representations than
those of humans. This may have resulted from the train-
ing paradigm for GPT-4. Although the information on how
GPT-4 was trained is not fully public, many similar vision-
language models are trained on large amounts of text data
and jointly match images with their language descriptions
during training(Radford et al., 2021), leading to a tight cou-
pling between vision and language representations. The fact
that human unimodal and multimodal boards have a signifi-
cantly greater difference than those of GPT-4 (Figs. 3 and 5)
suggests that humans, in contrast, have more dissociable rep-
resentations between vision and language. This may be be-
cause the human visual system was first evolutionarily refined
to support embodied sensation and movement within the en-
vironment (Cisek, 2019) before communicating sensory ex-
perience to other humans through language.

One limitation of this work is that we use a fairly con-
strained domain of two-dimensional binary grids. It is possi-
ble results could differ on more realistic visual inputs for hu-
mans as well as GPT-4’s. Our multimodal serial reproduction
framework can easily be extended to more realistic-looking
visual domains, potentially using drawing to transmit images
from language (Mukherjee et al., 2023). Likewise, our chains
were relatively short, and longer chains could be useful as
a control for the initial effect of mixing. This can be easily
addressed by deploying larger online experiments.

It is also possible to extend our work to run hybrid serial
reproduction chains with both humans and machines. This
could help us see what concepts arise from joint shared ab-
stractions between humans and machines, which will become



increasingly relevant as AI systems become further incorpo-
rated into our daily lives (Brinkmann et al., 2023).
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Appendix
GPT4v Prompts
The prompt for the unimodal reproduction chains was:

This image is a 7x7 grid represented as an image of red
and white tiles. Red corresponds to 1 and white corre-
sponds to 0. Please print the grid represented as a 2-d
matrix of 1s (red) and 0s (white). Be as accurate as pos-
sible. Only respond with the matrix such that the output
can be accepted by np.loadtxt. No quotation marks.

The prompt for the language multimodal reproduction
chain step was:

The image presented here is a 7x7 grid of red and white
tiles. Please write a description of the grid such that a
person reading the description should be able to recon-
struct the board. In doing so, please keep in mind the
following instructions:

Describe all important details relevant for reconstruc-
tion. Try to use simple instructions.

Descriptions should contain at least 5 words.

Descriptions should contain at least 4 unique words.

The prompt for the vision multimodal reproduction chain
step was:

You are going to be given a description of a 7x7 grid of
red and white tiles. Please print the grid being described
represented as a 2-d matrix of 1s (red) and 0s (white).
Red corresponds to 1 and white corresponds to 0. Be as
accurate as possible. Only respond with the matrix such
that the output can be accepted by np.loadtxt. No quota-
tion marks. Here is the description: <insert description
from language step >


