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Abstract

Inductive biases are a key component of human
intelligence, allowing people to acquire, rep-
resent, and use abstract knowledge. Although
meta-learning has emerged as an approach to
endowing neural networks with inductive bi-
ases, agents trained via meta-learning can use
very different strategies compared to humans.
We show that co-training these agents on pre-
dicting human-generated natural language task
descriptions guides them toward human-like in-
ductive biases that more appropriately capture
the structure of the task distribution as humans
see it. We further show that the level of abstrac-
tion at which humans write these descriptions
influences the size of the effect. This work
provides a foundation for investigating how to
collect task descriptions at the appropriate level
of abstraction to leverage for approximating
human-like learning of structured representa-
tions in neural networks.

1 Introduction

Human learners are guided by strong inductive
biases towards abstract knowledge (Tenenbaum
et al., 2011; Griffiths et al., 2010); these biases
present one of the most salient differences between
humans and neural network-based learners (Lake
et al., 2017). One emerging approach to bestowing
human-like inductive biases on neural networks is
meta-learning (Griffiths et al., 2019; Hospedales
et al., 2020). In meta-learning paradigms, an agent
is trained not just on a single task but on a dis-
tribution of tasks, with the aim of acquiring the
underlying abstractions that these tasks have in
common. However, since neural networks are not
easily interpretable, it can be difficult to tell if the
resulting neural networks actually acquired this
abstract knowledge, or whether they have simply
learned statistical artifacts correlated with abstract
rules. Recently, Kumar et al. (2021) found that
neural agents are biased towards learning the latter.
Specifically, through the use of a task distribution

generated from an abstract compositional grammar
and a corresponding control task distribution with
closely matched statistics, they found agents do bet-
ter in the control task distribution whereas humans
do better in the abstract task distribution, demon-
strating a difference in inductive biases between
humans and agents.

What explains such differences? One possi-
bility is that human biases toward abstract struc-
ture are related to our language abilities (Spelke,
2003; Lupyan and Bergen, 2016). Indeed, recent
work in machine learning has revealed how neural
network representations can be shaped and struc-
tured through natural language supervision (An-
dreas et al., 2018; Luketina et al., 2019; Wong et al.,
2021; Narasimhan et al., 2018; Mu et al., 2020).

In this work, we show that guiding meta-
reinforcement learning agents with natural lan-
guage descriptions not only increases performance
on abstract task distributions, but also results in
more human-like behavior: it decreases perfor-
mance on control task distributions where humans
perform poorly. Further, while much of language-
guided RL work focuses on synthetic descriptions,
we investigate different kinds of human-generated
descriptions. We collect human descriptions at
different levels of abstraction and find that guid-
ance with more abstract descriptions lead to more
human-like inductive biases in agents.

Our approach is to first extend and replicate the
results of Kumar et al. (2021). Specifically, instead
of developing an abstract task distribution using
handwritten rules as in Kumar et al. (2021), we di-
rectly project human priors into a task distribution
(see Fig 1B). We then test a meta-RL agent’s ability
to acquire this task distribution’s emergent abstract
priors by building a control task distribution using
the same approach as Kumar et al. (2021) (see Fig
1C). We replicated the double dissociation effect
seen in Kumar et al. (2021) (see Fig 1E) and then
further show that we can guide the agent towards
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Figure 1: Meta-RL task paradigm. (A) In the tile-revealing task, an agent sequentially reveals tiles to uncover
a picture on a 2D grid. We elicit (B) human priors and (C) control priors over the task distribution using Gibbs
sampling (Geman and Geman, 1984). (D) Samples from human and control distributions. (E) Performance of
(independent) humans and machine-learning agents on the tile-revealing task with human and control boards.
Performance is based on number of blue tiles revealed (lower is better; see Appendix for details). Error bars are
95% confidence intervals.

learning a human-like inductive bias through the
use of natural language co-supervision.

2 Methods

Tile-revealing task. We employ the tile-
revealing task paradigm developed in Kumar et al.
(2021) (see Fig. 1A). The observation is a 4 × 4
grid of tiles that are initially white except for one
red tile. Actions – clicking on white tiles – reveal
those tiles to be either red or blue. The episode
ends when the agent reveals all the red tiles. There
is a reward for each red tile revealed, and a penalty
for each blue tile revealed. The goal therefore is
to reveal all the red tiles while revealing as few
blue tiles as possible. One “board” with a fixed
configuration of red tiles defines a single task. A
distribution over tasks is defined by specifying a
distribution over different 4 × 4 grids of red and
blue tiles (boards).

Eliciting human priors with Gibbs sampling.
In order to elicit human inductive biases, we use
a technique called Gibbs Sampling with People
(GSP; Harrison et al., 2020, see Fig. 1B). We ini-
tialize a random 4× 4 grid with red and blue tiles,
mask out a tile, and ask a human participant to
predict the color of the masked-out tile. We then
change that tile to match the human’s prediction
and present the updated grid to another participant,
masking out a different tile. This sequence of de-
cisions implements a Markov chain; the stationary
distribution of this chain is the implicit prior distri-
bution people hold over 4× 4 grid colorings (Har-
rison et al., 2020), There are several recognizable
abstract concepts that emerged within the resulting

grids, such as lines, squares, and continuous shapes
(see Fig. 1D).

Constructing a control distribution. We cre-
ated a control distribution, following Kumar et al.
2021, that matches the statistics of the GSP boards
but uses a different underlying generative process
(i.e. not produced by human decisions, see Fig. 1C).
Specifically, we train a fully connected neural net-
work to encode the conditional distributions of the
GSP boards: we mask out a random tile in each
board, and train the network to predict its value
given the other tiles (similar to masked language
models; (Devlin et al., 2018)). We then sampled
boards from the network’s learned conditionals
with Gibbs sampling. This is the same process
we used to generate the GSP boards, but using the
trained neural network to generate the conditional
distributions instead of human samples. We are
therefore sampling from the distribution the net-
work places over 4 × 4 grids (combining its own
inductive bias and the data from the GSP boards).
We refer to this distribution as a “control” distribu-
tion, which is comprised of tasks that are generated
with different underlying generative processes but
share certain statistical properties.

Collecting natural-language descriptions. We
hypothesized that linguistic descriptions of the GSP
boards may help guide the agent’s inductive bias
towards more human-like abstractions. To test this
hypothesis, we collected natural-language descrip-
tions of 500 GSP boards from a naive group of
participants. There were three types of descrip-
tions collected: two that were human-generated
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Figure 2: Types of Text Descriptions Obtained for
GSP Boards We obtained three types of descriptions
for 500 of the GSP boards: high-level, low-level, and
synthetic low-level. The first two were collected directly
from humans using different types of prompts that em-
phasized succinctness and detail respectively. The third
was generated from a handmade template that verbalizes
the location of red tiles. When showing participants the
boards, we converted blue tiles to white tiles in order
to have them focus their description on the red tiles’
locations.

under different prompts and one that was synthet-
ically generated using a template (see Fig. 2 and
Appendix for exact wording of prompts). High-
level descriptions were collected from humans who
were given a prompt that encouraged succinctness
in descriptions. Low-level descriptions were col-
lected from humans who were given a prompt that
encouraged being verbose and detailed. Synthetic
low-level descriptions are not human generated and
were obtained by using a hand-written template that
verbalizes the location of all the red tiles.

Grounding agents with descriptions. We train
a commonly used RNN-based meta-reinforcement
learning agent (Wang et al., 2018; Duan et al.,
2016) using Proximal Policy Optimization (PPO;
Schulman et al. (2017)). See Fig. 3 and Appendix
for more details.

In order to guide the agent to learn a human-like
inductive bias, we introduce a language ground-
ing term to the loss function: loss = LPPO(θ) +
clangL

lang(ψ̂θ, ψ). Here LPPO(θ) is the original
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Figure 3: Grounding architecture. A CNN encoder ob-
serves the board state and passes it onto an LSTM policy
network conditioned on the previous timestep’s action
and reward. We have the agent concurrently predict
the BERT embedding of the corresponding language
description using the encoder.

PPO loss function, clang is a hyperparameter co-
efficient that weights the language loss Llang, ψ
is the language attribute, and ψ̂θ is the agent’s
prediction of the language attribute. Optimizing for
an auxiliary language task jointly with the original
task has previously been found to shape the latent
representations used in the original task (Mu et al.,
2020; Lampinen et al., 2021).

In our study, ψ is the BERT embedding of the
uncovered board’s corresponding language descrip-
tion, obtained using the SentenceTransformer pack-
age (https://www.sbert.net/, based on
Reimers and Gurevych (2019)). ψ̂θ is generated
using a small network (two layer MLP) on top of
the board encoding shared with the RL task (see
Figure 3). Llang is the MSE between the predicted
and actual BERT embedding of the language de-
scription.

3 Results

We trained all agents on the GSP boards (see Ap-
pendix for details) and evaluated them on held-out
GSP and control boards. We then compared this
held-out test performance against human perfor-
mance on these test boards (see Fig. 1E). Perfor-
mance is based on the number of blue tiles revealed
in the episode, z-scored by the performance of a
nearest neighbor heuristic, so lower is better (see
Appendix). Results are shown in Fig. 4. First, ex-
amining the performance of human participants and
non-linguistic agents, we observe the same double
dissociation results found by Kumar et al. (2021):
humans perform better in the abstract task distribu-
tion and agents perform better in the control task



distribution. Next, we examine agents that were
co-trained with a language loss Llang on three dif-
ferent kinds of language data: low-level, high-level,
and synthetic low-level (see Fig. 2 for examples
of the different kinds of language data). As a final
baseline, we also considered an autoencoder agent
trained to predict the underlying board state (i.e.,
which tiles are red or blue) rather than the board’s
corresponding language attribute.
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Figure 4: Language-Grounded Agent Experiment
Results Performance of various agents on held-out tasks
for each task distribution using agents co-trained with
the language objective. As in Fig. 1, performance is
evaluated by z-scoring the number of blue tiles revealed
(lower is better) relative to a nearest neighbor heuristic.
Error bars are 95% confidence intervals.

We set out to test whether grounding in human-
generated natural language descriptions will result
in our meta-RL agent producing more human-like
performance. We know humans perform better on
GSP boards than control boards (Fig. 1), while
generic agents do the opposite. An agent perform-
ing better on the GSP boards and worse on the
control boards therefore indicates more human-like
behavior.

We see that grounding on human-generated
descriptions leads to a human-like inductive bias
(low and high bars of Fig. 4). Each of them perform
better at the GSP boards than the control boards,
just like humans do. In contrast, although the au-
toencoder agent (which does not use language) is
substantially better on the GSP boards than the
original agent, the autoencoder grounding loss also
boosts its performance on the control boards, which
indicates that its boost in performance relative to

the original agent is not from acquiring a human-
like inductive bias (but could be an interesting in-
ductive bias in and of itself). We also find that
grounding in synthetic text does not seem to
lead to acquiring human-like inductive biases ei-
ther, since the agent using synthetic low-level text
closely matches the autoencoder and does better in
the control distribution than the GSP distribution.

We also find that the level of abstraction at
which humans write their description influences
the agent’s acquired inductive bias, as indicated
by the differences in performance among low and
high-level grounded agents. In all descriptions
(even in low-level ones), humans write about ab-
stract concepts (e.g. “squares,” “boxes,” “clusters,”
etc). These abstract concepts are most present in
high-level descriptions as they let humans to be
as succinct in their descriptions as possible. The
agent co-trained to predict these high-level descrip-
tion may therefore distill these abstract concepts
very strongly into the representations it learns. This
could explain why the high-level agent has a “super-
human“ inductive bias toward abstraction, where it
does best on the GSP boards (relative to all other
agents and even humans) and the worst on the con-
trol boards (worse than humans, and even worse
than the nearest neighbour heuristic).

4 Conclusion

In this work, we show how meta-reinforcement
learning agents can be guided to have human-like
inductive biases towards abstraction. To set this up,
we used the task paradigm of Kumar et al. (2021)
with a task distribution that directly embeds hu-
man priors through people using Gibbs Sampling
with People (Fig. 1B). We used the procedure in-
troduced in Kumar et al. (2021) to build a control
task distribution (see Fig. 1D) to help benchmark
for acquiring human-like inductive biases. Our
results show that having the agent predict human-
generated language descriptions while doing the
task during training can guide the agent towards
learning human-like inductive biases (Figure 4).
We also manipulated the level of abstraction at
which humans write their descriptions (Fig. 2) and
showed that this can affect how well the learner
acquires an inductive bias more consistent with hu-
man behavior. This lays the groundwork for future
research in learning human-like abstract represen-
tations to move toward closing the gap between
human and machine intelligence.
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A Building an Abstract Task Distribution
using Gibbs Sampling with People

To generate a task distribution of boards directly
from humans we used Gibbs Sampling with People
(GSP; Harrison et al. 2020, and a similar task for
binary sequences in Griffiths et al. 2018). GSP
samples internal prior distributions by putting hu-
mans “in the loop” of a Gibbs sampler. In our case,
the stimulus space consisted of the space of 4× 4
boards, and each of the 16 stimulus dimensions cor-
responded to the binary color of each tile, namely,
red or blue. One of these dimensions was masked
out (i.e. “greyed”) for the prediction task. Each
GSP trial consisted of a prediction task of predict-
ing what color the single masked square is in the
grid conditional on the colors of all other squares
on the grid. Once a decision is made, the result-
ing stimulus is passed on to a new participant who
repeats the task with another masked square and
so on. A sample is generated once a full sweep
through the all sixteen squares is completed, sim-
ilar to the standard procedure of Gibbs sampling.
In each trial, participants were presented with a
board with one of its tiles covered (indicated by a
white tile) as well as the following prompt “what
should be the underlying color of the covered white
tile such that the board is described by a very sim-
ple rule?” (Fig. 4A). They then delivered their
answer by clicking on a button that corresponded
to their color of choice. Overall, we ran 100 GSP
chains in parallel for 15 sweeps each (24000 total
possible unique boards), and chains were initial-
ized with randomly sampled boards. The order in
which tiles were masked out within each sweep
was also randomized across chains to avoid poten-
tial biases. When sampling from this distribution,
the probability of each board is based on how fre-
quent it occurred during the GSP sampling process.
We used the 500 most probable boards to collect
language descriptions.

Participants were recruited on Amazon Mechan-
ical Turk (AMT) and a total of 272 participants

completed the study. To ensure that participants
did not suffer from any color perception deficien-
cies, we ran the Ishihara color blindness test (Clark,
1924) as a pre-screening task. This also helped in
screening out automated scripts (“bots”) that mas-
querade as participants (Chmielewski and Kucker,
2020).

B Generating the Control Task
Distribution

The same protocol in Kumar et al. 2021 was used.
We trained a fully connected neural network (3
layers, 16 units each) to learn the conditional distri-
bution of each tile given all other tiles on the GSP
boards. These conditional distributions contain all
the relevant statistical information about the boards.
The network was given a board generated with an
abstract rule that had a random tile masked out and
trained to reproduce the entire board including the
randomly masked tile. The loss was the binary
cross-entropy between each of the predicted and
actual masked tiles, summed over all tiles. The net-
work was trained on samples from the GSP boards,
and achieved an accuracy of above 99%.

We used these conditional distributions to gener-
ate samples from the distribution of boards learned
using Gibbs sampling. We started with a grid in
which each tile is randomly set to red or blue with
probability 0.5. We then masked out one tile at a
time and ran the grid through the network to ex-
tract the probability of the missing tile being red or
blue from the trained conditional model. We then
assign the color of this tile by sampling from this
binomial probability. We repeated this by masking
each tile in the 4 × 4 grid (in a random order) to
complete a single Gibbs sweep, and repeated this
whole Gibbs sweep 20 times to generate a single
sample. We generate 25 such independent samples
from the control distribution as held-out test data
for the meta-learning agent and sample from this
distribution during training (while holding out the
test set).

C Testing Humans on Abstract and
Control Tasks

We crowdsourced human performance on our task
using Prolific (http://www.prolific.co)
for a compensation of $2.25 (averaging $13.55
per hour). Participants were shown the 4× 4 grid
on their web browser and used mouse-clicks to re-
veal tiles. Each participant was randomly assigned



to either the GSP or control boards. Each partic-
ipant was evaluated on the same test set of grids
used to evaluate the models (24 grids from their as-
signed task distribution in randomized order). Note
that a key difference between the human partici-
pants and model agents was that the humans did
not receive direct training on any of the task distri-
butions. Since participants had to reveal all red tiles
to move on to the next grid, they were implicitly
incentivized to be efficient (clicking as few blue
tiles as possible) in order to finish the task quickly.
We found that this was adequate to get good per-
formance. A reward structure similar to that given
to agents was displayed as the number of points
accrued, but did not translate to monetary reward.
There were 50 participants in each condition (GSP
and control), so 100 participants in total. This was
the same protocol used in Kumar et al. 2021.

D Training Meta-Reinforcement
Learning Agents on the Grid Task

Following previous work in meta-reinforcement
learning (Wang et al., 2018), we use an LSTM
meta-learner that takes the full board as input,
passes it through a convolutional layer and feeds
that, along with the previous action and reward,
to 120 LSTM units. The agent had 16 possible
actions corresponding to choosing a tile (on the
4 × 4 board) to reveal. The reward function was:
+1 for revealing red tiles, -1 for blue tiles, +5 for
the last red tile, and -2 for choosing an already re-
vealed tile. The agent was trained using Proximal
Policy Optimization (PPO; Schulman et al. 2017
using the Stable Baselines package Raffin et al.
2019) for one million episodes. We performed a
hyperparameter sweep separately for the agents
without the grounding loss (i.e. original agents)
and with the grounding loss, since we have to tune
the new clang weight on the grounding loss jointly.
We performed a hyperparameter sweep for: batch
size, n_steps (number of steps to run in an environ-
ment update), gamma, learning rate, learning rate
schedule (constant or linear), clip range, number of
epochs, the λ for Generalized Advantage Estimate
(GAE λ), max grad norm, activation function, value
loss coefficient, entropy coefficient, and grounding
loss coefficient for agents with the grounding loss.
The hyperparameter sweep was done by sampling
from the space of hyperparameter using the Tree-
Structured Parzen Estimator (Bergstra et al., 2011).
We evaluated 200 samples of hyperparameters from

the space for all agents. Both grounding and non-
grounding agents used the same hyperparameter
spaces to sweep over. We initially did a separate hy-
perparameter sweep for different grounding agents,
but we found in initial experiments that they all
reached similar hyperparameter values and train-
ing reward after the search. Hyperparameters were
evaluated by training on 100,000 episodes and look-
ing at the training reward. The environments used
during test time (Fig. 4) were completely held-out
during this process.

E Performance Evaluation on the Task

Doing well on the task is indicated by the ability to
reveal all red tiles on a grid while revealing as little
blue tiles as possible. So, we measure performance
by counting the number of blue tiles revealed in the
episode. Since different boards will have different
number of red tiles/have varying levels of difficulty,
we controlled for task difficulty/length by measur-
ing the performance relative to a “nearest neighbor”
heuristic. The nearest neighbor heuristic randomly
selects covered tiles that are adjacent to currently
uncovered red tiles (or any covered tile if such a
tile does not exist). For each board, we ran this
heuristic on the board 1000 times to generate a dis-
tribution of performances (i.e., number of blue tiles
revealed) and z-scored the human/agent’s number
of blue tiles revealed according to this distribution.
A z-score of below 0 means that the human/agent
did better than the mean performance of the nearest
neighbor heuristic, and the specific value of the
z-score reflects how many standard deviations the
human/agent did better than the mean performance
of the nearest neighbor heuristic.

F Natural Language Descriptions of the
GSP Boards

We took 500 of the highest probability GSP
boards and broke them up into sets of 25. We
then randomly assigned participants on Prolific
(http://www.prolific.co) to these sets of
25 boards. Around 10 participants did each set of
the boards given the low level prompt and around
10 participants did each of the board given the high
level prompt. As a result, each participant wrote
descriptions for 25 boards and each board has ap-
proximately 20 descriptions, with about half being
from the low level prompt and half being from the
high level prompt.

The low-level prompt was: “Your goal is to de-



scribe this pattern of red squares in words. Be as
detailed as possible. Someone should be able to
reproduce the entire board given your description.
You may be rewarded based on how detailed your
description is.” and the high-level prompt was “Be
as general as possible in your description. Your de-
scription should use as few words as possible and
focus on the pattern of red squares as a whole and
not individual squares. You may be rewarded based
on how concise your description is.” We converted
the blue tiles to white when showing the boards
to the participants so that they would focus their
descriptions on the red tiles.

Synthetic low level descriptions were non-
human generated and used the template. The tem-
plate goes through the location of every tile and
says “The reds are in: Xth column and Yth row,...,”
for every red tile location.

G Hyperparameter Values

The following table contains the hyperparameters
used.

Agent No Grounding Loss Grounding Loss
batch_size 16 256
n_steps 2048 8
gamma 0.9 0.9
learning_rate 0.000516501 0.000376021
lr_schedule linear linear
ent_coef 1.3907E-05 1.45674E-06
clip_range 0.3 0.3
n_epochs 10 5
gae_lambda 0.8 0.95
max_grad_norm 2 0.6
vf_coef 0.000914363 0.016291309
activation_fn relu tanh
grounding_coef 0 0.494866282

H Training Curves of Agents

Figure 5: Training Reward Curves for All Agents


