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Abstract
Humans spontaneously perceive a continuous stream of
experience as discrete events. It has been hypothesized
that this ability is supported by latent cause inference
(LCI). We implemented this hypothesis using latent cause
network (LCNet), a neural network model of LCI. LCNet
interacts with a Bayesian LCI mechanism that activates
a unique context vector for each inferred latent cause
(LC). LCNet can also recall episodic memories of previ-
ously inferred LCs to avoid performing LCI all the time.
These mechanisms make LCNet more neurally plausible
and efficient than existing models. Across three simula-
tions, we found that LCNet could 1) extract shared struc-
ture across LCs while avoiding catastrophic interference,
2) capture human data on curriculum effects on schema
learning, and 3) infer the underlying event structure when
processing naturalistic videos of daily activities. Our
work provides a neurally plausible computational model
that can operate in both laboratory experiment settings
and naturalistic settings, opening up the possibility of
providing a unified model of event cognition.

Keywords: event cognition; latent cause inference; episodic
memory; neural network models; continual learning

Humans spontaneously perceive a continuous stream of
experience as discrete events (Kurby & Zacks, 2008; Zacks &
Tversky, 2001; Radvansky & Zacks, 2017). This seems effort-
less for humans, but it is challenging for standard neural net-
work models. When viewing each event as a task, event per-
ception can be viewed as a continual learning problem (Parisi,
Kemker, Part, Kanan, & Wermter, 2019; Flesch, Saxe, & Sum-
merfield, 2023) with a blocked curriculum, where both the on-
going task identity and the number of tasks are unknown.

The Structured Event Memory (SEM) model
In the human brain, it has been hypothesized that the pro-
cess of grouping observations into events is supported by la-
tent cause inference (LCI) (Gershman, Norman, & Niv, 2015;
Franklin, Norman, Ranganath, Zacks, & Gershman, 2020;
Niv, 2019; Shin & DuBrow, 2020) – recently, the Structured
Event Memory (SEM) model has been proposed to explain
how humans assign observations to latent causes (LCs) to
facilitate learning, prediction, memory, and generalization in
a context-dependent manner (Franklin et al., 2020). SEM
uses a Bayesian non-parametric mechanism to perform LCI
and uses separate neural networks to represent different LCs.
Given the current observation xt , SEM runs LCI to either 1)
assign xt to an existing LC and use the corresponding net-
work to process xt , or 2) create a new LC for xt by generating
a new network to process xt . Such fully-separated represen-
tations can convert a continual learning problem into multi-
ple single-task problems, circumventing the catastrophic in-
terference that would otherwise occur with blocked learning
(French, 1999; McClelland, McNaughton, & O’Reilly, 1995;
McCloskey & Cohen, 1989). SEM can explain a wide range
of human data, such as how event structure affects memory

reconstruction, and a variant of SEM (“SEM 2.0”; Bezdek,
Nguyen, Gershman, et al., 2022) has recently been used to
simulate data on how humans segment naturalistic videos of
daily events (Bezdek, Nguyen, Hall, et al., 2022). However,
using fully-separated representations is neurally implausible,
and it impedes SEM’s ability to extract the shared structure
across LCs, since a given observation is only used to train one
network. Additionally, SEM performs LCI all the time, which is
also implausible due to the heavy computational demands.

A more neurally plausible model of LCI

Inference To address these limitations, we propose the La-
tent Cause Network (LCNet), a more biologically plausible
neural network model of LCI. LCNet uses the same network
to process all observations, and it uses different context vec-
tors to achieve task/context-sensitivity (Figure 1A, G, Q), akin
to the classic connectionist idea of context representation
(Cohen, Dunbar, & McClelland, 1990; Rougier, Noelle, Braver,
Cohen, & O’Reilly, 2005). Given the current observation xt ,
it still performs LCI using the same Bayesian non-parametric
mechanism. If LCI assigns xt to an existing LC, the corre-
sponding context vector is fed to the hidden layer of the net-
work, or if LCI creates a new LC for xt , a new context vector
is generated. Importantly, context vectors are simply random
vectors sampled from a Gaussian distribution. Since high di-
mensional random vectors are approximately orthogonal, they
can reduce catastrophic interference across LCs.

Episodic memory LCNet has an episodic memory (EM)
mechanism that retrieves previously inferred LCs instead of
performing LCI on each time step. Concretely, EM is imple-
mented as a lookup table with a narrow generalization gra-
dient (McClelland, 2013; McClelland et al., 1995; O’Reilly &
Norman, 2002; Norman & O’Reilly, 2003; Norman, Detre, &
Polyn, 2008). Every time LCNet performs a full LCI, EM en-
codes the current observation and the inferred LC in its buffer.
Later, given an observation xt , if LCNet can retrieve an LC pre-
viously associated with xt , it uses the retrieved LC instead of
performing full inference (Figure 1G, Q). We found that having
EM makes LCNet much more computationally efficient.

Function learning with shared structure

In Simulation 1, we compare the performance of a feedfor-
ward LCNet (Figure 1A), a feedforward version of SEM, and
a regular feedforward network on learning four polynomial re-
gression tasks. Given the input and a context-indicative signal
(CIS) specifying which function is currently active, the model
had to produce the corresponding output. Learning was fully
blocked, and all models learned one function for every epoch.
Unbeknownst to the model, each function (Figure 1C) is a sum
of a component that is shared across all functions and an
idiosyncratic component (Figure 1B). After learning, an LCI-
lesioned LCNet reconstructs the shared component (Figure
1D), suggesting that the shared structure is encoded in the
network weights (blue pathway in Figure 1A). We observed
strong catastrophic interference for the regular network, al-
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Figure 1: A) Model architecture for Simulation 1. B) The target functions that the model had to learn. Each function is a sum
of a shared term and an idiosyncratic term shown in panel C. D) An LCI-lesioned LCNet reconstructs the shared component,
even though the shared component was never directly observed. E) Learning curves for each polynomial plotted separately over
epochs – the model was only trained on the i-th polynomial at epoch i. F) Learning curves for each polynomial plotted separately
over the number of samples. G) Model architecture for Simulation 2. H) The state-transition graph used in Beukers et al. (2023).
I and J) human behavioral data in the blocked (I) vs. interleaved (J) conditions. K and L) model behavioral data in the blocked
(K) vs. interleaved (L) conditions. M and N) the purity of the inferred LCs of the model relative to the ground truth in the blocked
(M) vs. interleaved (N) conditions. O and P) the same as panel M and panel N, except that the memory module of the model
was lesioned. Q) Model architecture for Simulation 3. R) The hierarchical structure of the META dataset (Bezdek, Nguyen, Hall,
et al., 2022). S) Each frame in the META video recordings is compressed as a 30D feature vector. T) The LCs inferred by the
model and the ground truth event labels shared a significant level of mutual information.

most no interference for LCNet, and no interference for SEM
(Figure 1E). Moreover, learning one function sped up new
learning for both the regular network and LCNet but not SEM
(Figure 1F). These results show that LCNet can extract shared
structure and reuse it when learning new, related tasks while
avoiding catastrophic interference.

Curriculum effect on schema learning
In Simulation 2, LCNet (Figure 1G) was trained on a context-
dependent sequential prediction task (Figure 1H). Given the
current state, the model had to predict the upcoming state.
Unbeknownst to the model/human, the first observation is
context-indicative and determines the transition structure of
the event graph (Figure 1H). Empirical results show that hu-
mans learned much better under the blocked curriculum (Fig-
ure 1I) than the interleaved curriculum (Figure 1J; Beukers et
al., 2023). LCNet qualitatively replicated this pattern (Figure
1K vs. 1L) as LCI was much more accurate in the blocked
condition (Figure 1M vs. 1N), quantified by cluster purity. Im-
portantly, although LCI was more accurate when full inference

was performed all the time (Figure 1O vs. Figure 1M), LCNet
with EM saved 94% of LCI while still being able to capture
human data.

Scene prediction on naturalistic video stimuli
In Simulation 3, we test LCNet (Figure 1Q) on naturalistic
video recordings of daily activities (Figure 1R, 1S) (Bezdek,
Nguyen, Hall, et al., 2022). Since this dataset was gener-
ated in a controlled manner, the ground truth event labels
are known (Figure 1R). We found that LCs inferred by LCNet
share a significant amount of mutual information with the event
label (Figure 1T) even though 35% of LCI was saved by us-
ing EM. Being able to process naturalistic data demonstrates
the generality of our framework. In the future, we will test
LCNet’s ability to predict human event segmentation (compar-
ing its performance to SEM 2.0; Bezdek, Nguyen, Gershman,
et al., 2022), and we will use uncertainty to guide when to
perform LCI (as in the CCN 2023 submission by Nguyen et
al.). The model also generates time series predictions of when
episodic retrieval happens, which we will test via human fMRI.
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