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Abstract

Similarity judgments provide a well-established method for ac-
cessing mental representations, with applications in psychol-
ogy, neuroscience and machine learning. However, collecting
similarity judgments can be prohibitively expensive for natu-
ralistic datasets as the number of comparisons grows quadrati-
cally in the number of stimuli. One way to tackle this problem
is to construct approximation procedures that rely on more ac-
cessible proxies for predicting similarity. Here we leverage
recent advances in language models and online recruitment,
proposing an efficient domain-general procedure for predicting
human similarity judgments based on text descriptions. Intu-
itively, similar stimuli are likely to evoke similar descriptions,
allowing us to use description similarity to predict pairwise
similarity judgments. Crucially, the number of descriptions
required grows only linearly with the number of stimuli, dras-
tically reducing the amount of data required. We test this pro-
cedure on six datasets of naturalistic images and show that our
models outperform previous approaches based on visual infor-
mation.
Keywords: similarity, perception, language models, represen-
tations

Introduction
Mental representations serve as a substrate for a variety of
cognitive tasks such as decision-making, communication and
memory (Anderson, 1990). Understanding the structure of
those representation is a core problem in cognitive science
and is the subject of a large corpus of work in the psycho-
logical literature (Shepard, 1980, 1987; Ghirlanda & Enquist,
2003; Battleday, Peterson, & Griffiths, 2020; Peterson, Ab-
bott, & Griffiths, 2018; Jha, Peterson, & Griffiths, 2020;
Caplette & Turk-Browne, 2022; Hebart, Zheng, Pereira, &
Baker, 2020).

One important example of this research is the development
of the multi-dimensional scaling method (MDS) for uncover-
ing the structure of mental representations based on similarity
judgments (Shepard, 1980). Given a set of N stimuli, MDS
begins by collecting pairwise similarity judgments and aggre-
gating them into a N×N matrix. Then, an iterative procedure
finds an embedding that maps the stimuli into points in a psy-
chological space such that their distance mirrors their simi-
larity. Applying MDS to different datasets revealed highly in-
terpretable organization of the stimuli (Shepard, 1980, 1987).
Aside from psychology, similarity judgments play an impor-
tant role in other disciplines such as neuroscience, e.g., in the
method of representational similarity analysis (Kriegeskorte,
Mur, & Bandettini, 2008), as well as in machine learning,

e.g., as a way to regularize latent spaces so that they align
with human representations and perception (Esling, Bitton, et
al., 2018).

Despite the success of these approaches, the quadratic in-
crease of the number of pairwise comparisons as a function
of the number of stimuli poses a serious limitation on their
scalability. Indeed, even a relatively small dataset that con-
tains ∼ 102 stimuli would require ∼ 104 judgments for con-
structing the full similarity matrix. This limitation calls for
alternative procedures that allow for efficient approximation
of human similarity judgments. Previous studies have pro-
posed such a method in the visual modality by harnessing
the latent representations from convolutional neural networks
(CNNs) (Peterson et al., 2018; Jha et al., 2020). Such an
approach, however, is domain-specific and could potentially
miss important semantic dimensions that weigh on people’s
judgments.

To reduce this burden, we leverage the deep relationship
between conceptual structure and language (Murphy, 2002)
to use linguistic descriptions as a proxy for human seman-
tic representations. Intuitively, stimuli that are judged to be
highly similar are likely to evoke similar descriptions, allow-
ing us to use description similarity to predict pairwise sim-
ilarity judgments. This approach offers two key advantages
over prior work: first, it is scalable. While pairwise similar-
ity comparisons scale quadratically with the number of stim-
uli (Shepard, 1980), text descriptions scale linearly. Second,
it is domain-general: unlike CNN representations (Peterson
et al., 2018), which are limited to visual stimuli, our proce-
dure could be applied to any domain.

Finally, we note that our approach leverages two distinct
and important advances. First, text descriptions can be easily
crowd-sourced via online recruitment platforms such as Ama-
zon Mechanical Turk (AMT; https://www.mturk.com/)
and are part of the common practice in modern machine
learning pipelines (Parekh, Baldridge, Cer, Waters, & Yang,
2020). Second, modern language models (Speer, Chin, &
Havasi, 2017; Devlin, Chang, Lee, & Toutanova, 2018) pro-
vide rich latent representations of text. It is therefore natu-
ral to ask: how far can we go in predicting human similarity
judgments based on language alone?

We explore this question on a collection of six datasets
of naturalistic images for which the ground-truth similarity
matrices are known (Peterson et al., 2018). Our exploration
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proceeds in three stages. In Study 1, we construct similar-
ity estimates by applying a state-of-the-art word embedding
model known as ConceptNet NumberBatch (CNNB) (Speer
et al., 2017) to pre-existing semantic labels for the dataset im-
ages. In Study 2, we generalize this approach by constructing
similarity estimates based on BERT, a widely-used large lan-
guage model (Devlin et al., 2018), applied to free text descrip-
tions that we crowd-source on AMT. Finally, we combine the
concept-level representation of CNNB with the fine-grained
textual representation of BERT and generate a joint predictor
of similarity judgments. In the process, we benchmark our
models’ predictive accuracy against the CNN-based approach
of Peterson et al. (2018).

General Methodology
Our general pipeline consists of collecting or using pre-
existing linguistic descriptors for the individual stimuli and
then using an embedding model to compute a proxy for pair-
wise similarity (Figure 1).

Predicting Human Similarity
Given a set of stimuli and their linguistic descriptors (se-
mantic labels or free-text descriptions) as well as a suitable
embedding scheme (e.g., a word embedding model) we used
cosine similarity between the vectors representing two stim-
uli as the metric for calculating their similarity (i.e., the dot
product of the two embedding vectors divided by the product
of their norms). Peterson et al. (2018) showed that predict-
ing human similarity using CNN representations can be sub-
stantially enhanced by linearly transforming those representa-
tions. Mathematically, this corresponds to substituting the dot
product zT

1 z2 with zT
1 Wz2 where W is a suitable diagonal ma-

trix and z1 and z2 are the embedding vectors. Moreover, Pe-
terson et al. showed that such a transformation can be found
using ridge regression with L2 normalization. We apply this
approach to our linguistic representations, using the Python
library scikit-learn’s RidgeRegression and RidgeCV imple-
mentations. To avoid overfitting and simulate generalization
in practice, we performed 6-fold cross-validation over images
which ensured that no images from the training set are present
in the validation set. This ensures that even when combining
BERT and CNNB representations, where the number of fea-
tures increases, overfitting is still avoided. To facilitate com-
parison with previous work we quantified performance by
computing Pearson R2 scores (variance explained) (Peterson
et al., 2018; Jha et al., 2020).

Stimuli
The six image datasets used in this paper were taken from
Peterson et al. (2018). The datasets were organized based on
six broad categories, namely, animals, fruits, vegetables, au-
tomobiles, furniture and various objects, each comprising 120
unique images. For all categories except animals, the datasets
included semantic labels for each of the individual images. In
the case of animals, we manually labeled the images. Sample
images and labels appear in Figure 2.

Please describe the 
content of the image.

Wooden bookshelf composed of 
multiple open cubes.

Dark brown wooden shelves storage 
with nine cubicles.

A unique bookshelf that is slanted with many 
books sitting sideways.

Bookshelf with falling shelves that are ready for 
all your reading needs.

<bookshelf_02.png>

<bookshelf_10.png>

Language Model
Similarity Prediction
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Figure 1: Schematic of the similarity prediction procedure
based on text descriptions.

Predicting Human Similarity
Based on Semantic Labels

To initiate our investigation we first considered using the pre-
existing semantic labels for the images in our datasets, as they
served as concise summaries of the content of the images. We
evaluated two representations for predicting human similarity
judgments based on these labels, namely, a one-hot represen-
tation and a word embedding representation.

One-hot Label Representation
The first approach served as a baseline and consisted of us-
ing the semantic labels as class labels with a “one-hot” rep-
resentation, namely, a vector of the form (0, . . . ,0,1,0, . . . ,0)
where the 1 indicates which semantic label is associated with
the image. This representation implies that images with the
same semantic label are maximally similar whereas images
with different semantic labels are maximally dissimilar.

Surprisingly, this simple representation possessed non-
trivial predictive power, as indicated by its average raw R2

score of 0.31 across the datasets shown in Table 1.
Applying a further linear transformation resulted in a small

boost in performance scores (R2 = 0.40). The sparsity of
one-hot representations potentially makes linear transforma-
tion ineffective. To remedy this, we applied label smoothing
to all the one-hot vectors. If ~v is the one-hot vector, then
~vsmooth = (1− ε)~v+ ε

k−1 (1−~v) where ε is the smoothing pa-
rameter (we use a value of 0.8) and k is the number of classes
(which is equal to the length of the vector). Smoothing does
not change the relative structure of the resulting matrix but
allows linear transformation to be successfully applied to the
new vectors.

Finding positive but not strong correlations is not surpris-
ing as the one-hot representation misses fine-grained similar-



Eagle Gorilla Blackberry

Ottoman Human Body Car

Beetroot Elevator End Table

Figure 2: Sample images and their semantic labels.

ity between related (though not identical) semantic labels. In-
deed, although a tiger and a leopard are distinct animals, they
nevertheless share some intuitive semantic similarity being
members of the cat family; likewise for a chair and a recliner,
or a strawberry and a blackberry. This can be seen in the ab-
sence of off-diagonal structure in the predicted similarity ma-
trix (Figure 3). Nevertheless, this preliminary study serves
as an initial evidence for the fact that people’s judgments are
indeed driven by semantic similarity.

Word-embedding Representation

To capture the structure of similarity between different se-
mantic labels we replaced the one-hot representation with
the latent representation of a state-of-art word embed-
ding model known as ConceptNet NumberBatch (CNNB).
CNNB is pre-trained on the ConceptNet knowledge graph
(https://conceptnet.io/) which is targeted at capturing
intuitive commonsense conceptual relations.

CNNB contains embeddings not only for single words
but also concepts consisting of several words. To make
use of these, labels consisting of multiple words needed to
have spaces replaced by underscores (e.g. ‘red onion’ be-
comes ‘red onion’). In addition, while the CNNB dictio-
nary is quite large, there are certain words or concepts that
it does not contain. In some of these cases, labels con-
sisting of multiple words whose joint form was not found
in CNNB had to be separated into individual words and
their joint embedding estimated by their normalized sum
(e.g. CNNB(animal body) ≈ CNNB(animal)+CNNB(body)√

2
). In

other cases, labels had to be replaced by a synonym or the
closest matching concept available in CNNB (e.g. ‘tatsoi’
was replaced by ‘spoon mustard’).

The use of CNNB representations resulted in a substantial
performance boost over one-hot representations, as reflected
in an R2 score of 0.71 for the transformed representations.
The predicted similarity matrix is shown in Figure 3 and it
is clear that a substantial part of the off-diagonal structure is
recovered. Similar to the CNN models used by Peterson et al.
(2018), the linear transformation fine-tunes the broad repre-
sentations of the model to the specific task at hand. To ensure
that the linear transformation is not overfitting the similar-
ity matrices, we performed 6-fold cross-validation as men-
tioned above and computed a control cross-validated (CCV)
R2 score on held-out images. These scores remained high
(R2 = 0.63), outperforming the CNN model of Peterson et al.
(2018) (Figure 4) on all datasets (except Animals, where it
scored lower by a small margin). This implies that CNNB
representations generalize better to new data. We also note
that the dimensionality of the latent space of CNNB (d = 300)
is much lower than that of the CNN (d = 4096) reducing the
number of possible parameters to optimize over and hence the
risk of overfitting.

Predicting Human Similarity
Based on Free Text Descriptions

Concise semantic labels (and corresponding embeddings) are
not always available for stimuli of interest. A more general
approach would rely on free-text descriptions, which can be
easily crowd-sourced online. Such data, however, requires
a different kind of representations capable of flexibly encod-
ing entire sentences (as opposed to aggregating representa-
tions of individual words which could lose important within-
sentence structure). To that end, we used the latent represen-
tations of BERT (Devlin et al., 2018), a popular large-scale
language model based on bidirectional transformers, to em-
bed free-text descriptions for each of the individual images
which we crowd-sourced on AMT. The data collection pro-
cedure as well as example text descriptions are shown in Fig-
ure 1.

Experimental Methods
The recruitment and experimental pipeline were automated
using PsyNet (Harrison et al., 2020), a framework for ex-
perimental design which builds on top of the Dallinger plat-
form (https://github.com/Dallinger/Dallinger) for
recruitment automation. Overall, 328 US participants com-
pleted the study and they were paid $12 per hour. Upon com-
pleting a consent form participants had to take a standardized
LexTALE English proficiency test (Lemhöfer & Broersma,
2012) to ensure caption quality. Participants that failed to
pass the pre-screening test were excluded from the study.
Next, participants received the following instructions: “In this
experiment we are studying how people describe images. You
will be presented with different images and your task will be
to describe their content. In doing so, please keep in mind
the following instructions, 1) describe all the important parts
of the image, 2) do not start the sentences with “There is”
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Figure 3: Full similarity matrices for the “animals” and “furniture” datasets for human participants (left), with corresponding
predictions based on class labels, CNNB and BERT representations.

or “There are”, 3) do not describe unimportant details, 4) you
are not allowed to copy and paste descriptions, 5) descriptions
should contain at least 5 words, 6) descriptions should contain
at least 4 unique words. Note: no prior expertise is required
to complete this task, just describe what you intuitively think
is important as accurately as possible.” Participants were then
presented with nine random images from the dataset to help
give them a sense of the images they were about to describe.

In each trial of the main experiment participants saw one
of the images along with the following prompt “Please de-
scribe the content of the following image” (semantic labels
were never provided). They then provided their description
in a free text response box, subject to the constraints listed
above. Each participant provided up to 30 text descriptions
with each image receiving 15 text descriptions on average. To
ensure that participants did not provide repetitive responses
we computed the average Levenshtein edit distance between
their current response and all previous responses. Participants
for whom the average distance was close to zero (< 0.2) after
5 trials were excluded from the study. Any remaining ran-
dom or very poor quality strings were excluded in a post-
processing stage.

Computing BERT Embeddings
We used a pre-trained BERT-base-uncased model with a
standard tokenization scheme, accessed via the HuggingFace
library (Wolf et al., 2020). For each text description, we first
passed the tokens through the BERT model, then took the av-
erage embedding across all tokens (e.g. mean-bag-of-words)
at each layer. We then averaged the embeddings at each layer

across all descriptions for a given image. Empirically, we
computed similarity scores based on layers 0 through 12 and
picked the best performing layer in each case. In order to
combine the BERT and CNNB representations, we first nor-
malized both sets of embeddings by their respective means
and standard deviations, and then concatenated the BERT and
CNNB embeddings to get a single vector for each image.

BERT CNN CNNB CNNB+BERT
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Figure 4: Average CCV R2 score for the main four models
considered (shown in bold in Table 1).
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Figure 5: Two-dimensional MDS embedding of the joint CNNB-BERT similarity predictions.

Results
We used the embeddings to produce similarity estimates as
before. We found that while the raw representations of
BERT did not constitute a strong predictor, the linearly re-
weighted BERT representations (d = 768) demonstrated gen-
eralization performance comparable to the CNN-based model
(d = 4096) of Peterson et al. (2018) (Figure 4), though not as
high as CNNB. One possible explanation for this difference
is that CNNB predictors used single concise labels per im-
age whereas for BERT we averaged representations of multi-
ple descriptions which could capture different aspects of the
image (Parekh et al., 2020). A more sophisticated approach
could learn to pool embeddings from different descriptions
efficiently; however for the purpose of the current work we
chose to focus on simple linear transformations.

As a last step, we constructed a combined predictor that
stacked CNNB and BERT representations to capture broad
concept-level knowledge as well as fine-grained descriptions.
The combined model resulted in the best aggregated perfor-
mance, improving further on the CNNB model (Figure 4).

To appreciate the semantic content of the predicted similar-
ity matrices, we computed a two-dimensional MDS represen-
tation of the images. These representations were computed
using the scikit-learn library with a maximum iteration limit
of 10,000 and a convergence tolerance of 1e-100. First met-
ric MDS was applied to get an initial embedding, then four
iterations of non-metric MDS were applied and the best solu-

tion was picked. The results are shown in Figure 5, and reveal
a rich and interpretable semantic organization of the stimuli
capturing a variety of semantic dimensions such as natural
and functional classes as well as color gradients.

Discussion
We proposed a highly efficient and domain-general procedure
for predicting human similarity judgments based on text de-
scriptions with linear (as opposed to quadratic) complexity.
We tested our approach on six datasets of naturalistic images,
finding evidence for its validity as well as outperforming pre-
vious models that rely on CNNs. These results suggest that
human similarity judgments are indeed grounded in semantic
understanding and language. Beyond the immediate potential
for scaling up studies of similarity, our work also provides
a new perspective on the representational similarity between
BERT and humans (Lake & Murphy, 2021): when tested on
naturalistic datasets with freely generated text descriptions,
we find that BERT successfully captures a substantial part of
the structure of human similarity judgments.

This work represents an initial step towards a broader in-
vestigation of similarity in naturalistic domains. First, our
approach offers the possibility of predicting human similarity
in other domains such as audio and video. Second, it could
be used to explore differences between perceptual similarity
(based on raw judgments) and semantic similarity (based on
text descriptions). This discrepancy may vary by domain or



Table 1: R2 scores for the different prediction models and datasets.

Model Methodology Animals Automobiles Fruits Vegetables Furniture Various 〈R2〉
Labels Raw 0.23 0.69 0.20 0.24 0.34 0.19 0.31
CNNB Raw 0.51 0.64 0.17 0.17 0.31 0.29 0.35
BERT Raw 0.22 0.30 0.09 0.13 0.25 0.36 0.23
CNN* Raw 0.58 0.51 0.27 0.19 0.37 0.27 0.37
Labels LT-Train 0.29 0.71 0.26 0.27 0.38 0.48 0.40
CNNB LT-Train 0.85 0.86 0.53 0.60 0.67 0.72 0.71
BERT LT-Train 0.79 0.75 0.55 0.64 0.61 0.80 0.69
CNN* LT-Train 0.84 0.79 0.53 0.67 0.72 0.52 0.68
CNNB LT-CCV 0.72 0.86 0.38 0.43 0.63 0.73 0.63
BERT LT-CCV 0.52 0.53 0.23 0.40 0.47 0.62 0.46
CNNB + BERT LT-CCV 0.74 0.85 0.44 0.54 0.64 0.76 0.66
CNN* LT-CCV 0.74 0.58 0.36 0.35 0.35 0.54 0.49

Note: “Raw” corresponds to raw representations, “LT-Train” corresponds to linearly transformed representations
evaluated on training set, and “LT-CCV” corresponds to linearly transformed representations evaluated on held-out
images. 〈R2〉 is the average R2 across all datasets. * indicates values reproduced from Peterson et al. (2018).

expertise. For example, in the musical domain, experts (e.g.,
trained musicians) may provide rich descriptions of stimuli
(e.g., musical chords) while novices may lack an appropriate
vocabulary, yielding a bigger gap between perception and se-
mantics for the second group. A fine-grained study of this gap
as a function of expertise could be informative about the tra-
jectories of semantic development. Third, a systematic study
could, for example, use CNN and CNNB representations as
a way of isolating perceptual and semantic contributions to a
human similarity judgment. Of particular interest are cases of
maximal discrepancy whereby humans align with one of the
predictors but not the other. Figure 6 shows examples of such
pairs. These seem to suggest that people tend to focus on low-
level perceptual features when the objects of comparison are
unfamiliar, whereas they would neglect these for familiar ob-
jects. A future study could explore this hypothesis in greater
detail.

In addition to psychological applications, our paradigm
may allow for advances in machine learning. Enriching ma-
chine learning datasets with similarity judgments and behav-
ioral data more generally can endow artificial models with
a variety of useful properties, such as robustness against ad-
versarial attacks and human alignment (Peterson, Battleday,
Griffiths, & Russakovsky, 2019). Collecting similarity judg-
ments over all pairs is infeasible for such datasets due to the
large number of stimuli. Nevertheless, in many real-life appli-
cations similarity matrices tend to be sparse, i.e., only a small
subset of comparisons would yield non-vanishing similarity
(Parekh et al., 2020). An efficient enrichment pipeline, there-
fore, must exploit this sparsity and our procedure is a promis-
ing candidate for guiding such methods by predicting which
pairs are likely to be informative a priori. Second, for more
domain-specific applications, a followup study could lever-
age recent advances in multi-modal transformer representa-
tions to construct better similarity metrics by incorporating

both visual and semantic cues. We hope to engage with all of
these avenues in future research.

Celtuce Seaweed CNN CNNB Human

0.0

0.5

Bear Chimpanzee CNN CNNB Human

0.0

0.5

Bed Bed CNN CNNB Human

0

1

Figure 6: Examples of image pairs that generated large dis-
crepancies between CNN and CNNB model predictions and
their relation to human similarity scores.
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