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The widespread adoption of large language models (LLMs) makes it important
to recognize their strengths and limitations. We argue that to develop a holistic
understanding of these systems, we must consider the problem that they were trained
to solve: next-word prediction over Internet text. By recognizing the pressures that
this task exerts, we can make predictions about the strategies that LLMs will adopt,
allowing us to reason about when they will succeed or fail. Using this approach—which
we call the teleological approach—we identify three factors that we hypothesize will
influence LLM accuracy: the probability of the task to be performed, the probability of
the target output, and the probability of the provided input. To test our predictions,
we evaluate five LLMs (GPT-3.5, GPT-4, Claude 3, Llama 3, and Gemini 1.0) on
11 tasks, and we find robust evidence that LLMs are influenced by probability in
the hypothesized ways. Many of the experiments reveal surprising failure modes. For
instance, GPT-4’s accuracy at decoding a simple cipher is 51% when the output is a
high-probability sentence but only 13% when it is low-probability, even though this
task is a deterministic one for which probability should not matter. These results show
that AI practitioners should be careful about using LLMs in low-probability situations.
More broadly, we conclude that we should not evaluate LLMs as if they are humans
but should instead treat them as a distinct type of system—one that has been shaped
by its own particular set of pressures.

cognitive science | artificial intelligence | large language models

Large language models (LLMs), such as ChatGPT (1), Claude (2), and Llama (3), receive
a piece of text as input and generate additional text as output. Virtually any task can
be framed in the form of linguistic queries, so LLMs could be applied to virtually any
task—from summarizing text to generating computer code. This flexibility is exciting: it
led one recent paper to argue that LLMs display “sparks of artificial general intelligence”
(4). However, it also hinders us from understanding LLMs holistically. Since we can only
run a finite number of tests, how can we understand a system whose potential scope is
infinite? Answering this question requires some method for deciding which tests will be
most informative about the general strengths and weaknesses of LLMs.

One popular way to select evaluations is to use a human-centric approach: test for
the properties that are viewed as most important for characterizing human cognition.
For instance, GPT-4 was evaluated on the SAT and other real-world exams (1), and
many LLMs have been evaluated on tests from cognitive psychology (5), such as tests
of analogical reasoning (6). Other analyses have compared the internal representations
of LLMs to representations from linguistics (7) and neuroscience (8). Human-inspired
analyses are valuable because they allow AI to benefit from the wealth of nuanced tests
that have been developed in cognitive science. However, human-centric approaches also
have an important limitation: LLMs are not humans, so the tests that might be most
informative about them may differ from the tests that are most informative about humans
(9). In particular, a human-centric approach runs the risk of highlighting the strengths of
these models—their overlap with human abilities—without revealing their idiosyncratic
weaknesses (Fig. 1). How can we approach the problem of understanding a new type of
intelligence, evaluating it on its own terms?

We argue for another approach that has been very productive in cognitive science:
understanding intelligent systems by understanding the sorts of problems that they devel-
oped to solve (10–13). This approach—which we refer to as the teleological approach—is
complementary to the perspectives discussed above because it focuses on the system’s
goals and environment, rather than its representations and processing mechanisms.
The crucial question to ask, then, is what problem(s) do LLMs need to solve, and
how do these pressures influence them? We focus on perhaps the most salient
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Fig. 1. Humans and LLMs have some shared properties and some prop-
erties that differ. If we analyze LLMs using tests designed for humans, we
risk identifying only the shared properties, missing the properties that are
unique to LLMs (the dotted region of the diagram). We argue that to identify
the properties in the dotted region, we must approach LLMs on their own
terms by considering the problem that they were trained to solve: next-word
prediction over Internet text.

pressure that defines any machine learning system, namely the
task that it was trained to perform. For the LLMs that have been
the focus of recent attention in AI, this task is autoregression—
next-word prediction (14, 15)—performed over Internet text.
(Many LLMs are further optimized for additional objectives,
but we focus on next-word prediction because it comprises the
bulk of training; see below for discussion.) We argue that a full
understanding of LLMs should be strongly informed by the fact
that next-word prediction is their primary training objective. We
therefore hypothesize that, even when they are asked to perform
tasks that seem very different from next-word prediction—e.g.,
solving math problems—their performance on such tasks is
highly influenced by the autoregressive substrate from which
all of their abilities emerge.

A mismatch between the problem that a system developed
to solve and the task that it is given can have significant
consequences. Just as the human drive to obtain sweet and
fatty foods can be maladaptive in a world where those foods
are easily available, the autoregressive tendencies of LLMs can
cause problems when they are given a task that is not next-
word prediction. In this paper, we exhibit what might seem like
surprising failures of LLMs on tasks that are straightforward for
humans to perform, such as using simple ciphers, constructing
acronyms, calculating linear functions, and counting; see Fig. 2.
These failures can be understood in terms of a conflict between
next-word prediction and the task at hand. Being able to reason
about when LLMs will fail at a task is critical as these systems
become more widely deployed.

Based on an analysis of the problem that LLMs are trained to
solve (statistical next-word prediction), we make three predictions
about how LLMs will be influenced by their origin in this task—
the embers of autoregression that appear in these systems even as
they might show sparks of artificial general intelligence. These
predictions are listed in Table 1. For example, we predict that,
even when the task is a deterministic one that does not depend on
probability, LLMs will achieve higher accuracy when the answer
is high-probability than when it is low-probability. In the next
section, we discuss these hypotheses in more detail.

We then test these hypotheses through an extensive set of
experiments. Since our goal is to identify sources of difficulty
for LLMs, our experiments need to take place in settings where
LLMs make at least some errors. To create such settings, we use
an adversarial strategy that follows straightforwardly from our
hypotheses: we use tasks that push LLMs into low-probability
situations where we expect they will perform poorly. For instance,
one task we use is decoding simple ciphers, since text written in
a cipher is a low-probability subspace of the broader space of

possible types of text. Table 2 gives the full list of tasks that we
use. As long as models indeed have a nonnegligible error rate
on these tasks, we can investigate which factors cause this error
rate to increase or decrease—focusing on the factors that we have
hypothesized will have an effect.

Using this strategy, we find robust evidence for the effects
described in Table 1: as task probability or example probability
varies, LLM accuracy can indeed vary substantially in the ways
that we have hypothesized. Overall, our findings illustrate how we
can understand LLMs more clearly if we recognize the pressures
that have shaped them.

Background: LLMs

LLMs are trained to take in the start of a piece of text and then
predict what word will come next.* The LLM’s prediction takes
the form of a probability distribution, specifying for each word
in the vocabulary the LLM’s predicted probability that this word
will be the next one. For example, given the input I wrote a __,
an LLM should assign a high probability to letter or book but a
low probability to waffle or the. In almost all contexts, there are
multiple possibilities for what could appear next, so this task is
probabilistic rather than deterministic.

The way that an LLM comes to perform next-word prediction
is by learning from data. The LLM is defined by a large number
of numerical parameters, which govern how it maps an input
to a predicted probability distribution. These parameters are
initialized randomly and are updated based on data: The LLM
is shown many passages of text, and for each position in each
passage, it predicts what words are likely to appear in that
position. The LLM is then shown the word that actually did
appear, and its parameters are adjusted such that, if it were
shown the same input again, it would assign a higher probability
to the correct word than it previously did. As the training
proceeds, the LLM’s text-predicting abilities become stronger.
A trained LLM can be used to generate text (such as a chatbot
response) by giving it an input and then sampling a word from
the probability distribution that it generates. To produce text
longer than one word, the process is iterated, using the LLM’s
previously produced word(s) as part of the input when predicting
each successive word.

LLM training data are typically scraped from the Internet,
resulting in a diverse range of types of text. A powerful
consequence of this diversity is that learning to perform next-
word prediction gives the LLM experience with a wide range
of tasks, including many that might seem very different from
next-word prediction (15). For example, an LLM can learn to
summarize through experience with predicting what comes after
In summary, and it can learn arithmetic via inputs like 17 + 34
= __. In this way, a single LLM can learn to perform many tasks
that historically would have required multiple specialized systems.
Therefore, next-word prediction is a major factor contributing
to the power of LLMs—but, as we will see below, it also leads to
some important shortcomings.

A Teleological Approach to Understanding
LLMs

To understand an information-processing system such as an
LLM, the approach we argue for is to characterize the problem

*We use the term word loosely. More precisely, LLMs predict what token will come next,
where tokens are units of text that often correspond to whole words but sometimes are
smaller pieces.
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Fig. 2. GPT-4 struggles on some seemingly simple tasks such as counting, article swapping, shift ciphers, and linear functions. In the counting and article
swapping examples, GPT-4 fails in the cases where the correct output is a low-probability piece of text (for the counting example, we refer to 29 as low-probability
because it occurs much less frequently in natural corpora than 30 does). In the shift cipher and linear function examples, GPT-4 performs well on the task
variants that are common in Internet text but poorly on the variants that are rare (note that the shift cipher with a shift of 13 is over 100 times more common
in Internet text than the shift cipher with a shift of 12; and the linear function f (x) = (9/5)x+ 32 is common because it is the Celsius-to-Fahrenheit conversion,
while the other linear function has no special significance). The GPT-4 predictions were obtained using gpt-4-0613 on the OpenAI API; other model versions
(e.g., the online chat interface) may give different predictions.

that the system solves and to then use this characterization as
a source of hypotheses about the system’s capacities and biases.
We refer to this as the teleological approach because it focuses
on the system’s goal (telos in Greek) (e.g., ref. 16). Teleological
explanation is a common strategy in making sense of biological
systems, manifest in computational-level (10) and rational (12)
analysis in cognitive science and adaptationist explanations in
evolutionary biology (17, 18) and evolutionary psychology (12).
Just as teleological explanations can be incomplete or misleading
in these settings (19, 20), we do not anticipate that all properties
of LLMs can be understood via their goals. However, we believe
that this is a useful lens through which to study these systems
and generate predictions about their behavior. In the rest of this
section, we describe more clearly the goals that LLMs are trained
to accomplish. We then use this analysis to generate hypotheses
about LLM behavior.

What Problem Do LLMs Solve? Anderson (12) argued that the
problem solved by a cognitive system can be characterized by
three factors: the system’s goal, the environment in which the
system pursues this goal, and the computational limitations that
constrain the system. For a machine learning system, those factors
correspond to the following aspects of a model:

1. Training task: What goal is the system trained to accomplish?
2. Training distribution: What types of examples is the system

trained on?
3. Model architecture: What computational tools does the sys-

tem have access to?

For standard LLMs, the training task is next-word prediction,
the training distribution is a distribution over Internet text,
and the model architecture is a neural network (specifically, a
Transformer: 21). Thus, the problem that an LLM must solve is
the following: How to perform next-word prediction on samples

of Internet text, given the mechanisms available in a neural
network.

Note that many recent LLMs are not solely trained on next-
word prediction but also go through a training phase based on
instruction tuning (22), which aims to align model behavior with
human preferences. In this paper, we only analyze next-word
prediction, leaving instruction tuning for future work. We start
with next-word prediction because, during LLM training, the
next-word prediction phase is much longer than the instruction
tuning phase. We therefore conjecture that next-word prediction
plays a greater role in shaping LLMs than instruction tuning
does, making next-word prediction a reasonable initial focus for
the goal of understanding LLMs. Note also that some LLMs (e.g.,
some recent versions of GPT-4) are augmented with components
that go beyond pure text, such as image-processing abilities or
code-execution modules. In this paper, we only consider LLMs
that process text sequences, though the teleological perspective
could be applied to augmented LLMs in future work; see the
Discussion.

Importantly, the tasks for which LLMs are used often differ
from the problem they were trained to solve. For example, even
though they were trained for next-word prediction, LLMs are
sometimes asked to develop Python code. Why does this dis-
crepancy matter? When a system is adapted for one purpose but
co-opted for a different one, the original purpose may influence
the system’s nature in ways that would not make sense if only the
new purpose were considered. As an example from biology, the
basic mammalian body plan evolved for a life on four legs, but
humans recently evolved to instead walk on two legs. Biologists
have argued that the friction between our quadrupedal roots
and our bipedal lifestyle contributes to several musculoskeletal
ailments that are common in humans (23). For instance, having
our spines be perpendicular to the ground rather than parallel
with it causes strains that make humans susceptible to lower back
pain (24). We anticipate that the goals, training distribution, and
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Table 1. Effects on the performance of language models that are attributable to the fact that they are statistical
next-word prediction systems
Property Description Example

Sensitivity to output probability Even when the task is deterministic, LLMs achieve higher accuracy
when the correct answer is high-probability text than when it is
low-probability text.

When asked to reverse a sequence of words, GPT-4 gets 97%
accuracy when the answer is a high-probability sentence yet
53% accuracy when the output is low probability.

Sensitivity to input probability Even when the task is deterministic, LLMs sometimes achieve
higher accuracy when the input text is high-probability than
when it is low-probability, but input probability is less influential
than output probability.

When asked to encode sentences in a simple cipher (rot-13),
GPT-4 gets 21% accuracy when the input is a high-probability
sentence yet 11% accuracy when the input is low-probability.

Sensitivity to task frequency Even when there is no difference in the complexity of the tasks,
LLMs perform better on tasks that are frequent than ones that
are rare.

When asked to translate English sentences into Pig Latin, GPT-4
gets 42% accuracy when using the most common variant of Pig
Latin but only 23% accuracy when using a rare variant.

model architecture used in LLMs create opportunities for such
mismatches.

Hypothesized Embers of Autoregression. Do LLMs face any-
thing analogous to humans’ back pain—any quirks attributable
to a mismatch between what they “adapted” to do and what
they are used for? To answer this question, we must consider
the types of solutions that would arise from the pressures that
shape LLMs. First, the fact that LLMs are neural networks makes
them statistical systems. The other two factors—the task of next-
word prediction and the training distribution of Internet text—
dictate which statistics they are sensitive to: the statistics of word
sequences in Internet text. Building on this analysis, we make
three predictions (listed in Table 1) about ways in which LLM
performance is influenced by frequency and probability. A crucial
aspect of these predictions is the first clause of each one. For
instance, it is clear that probability is important for next-word
prediction, but we are predicting that probability will influence
LLMs even in tasks that are not inherently probabilistic, such as
reversing a list. In later sections, we develop these hypotheses in
more detail and provide extensive evidence supporting them.

What We Are Not Arguing. We are arguing that certain types of
tasks and examples will be harder for LLMs than others. We do
not claim that LLMs are incapable of handling these tasks and
examples. That is, our predictions are of the form “for LLMs, X
is harder than Y” rather than “LLMs can’t do X.”

This distinction is important for explaining how we set up
our experiments. For most experiments, we test LLMs using
basic prompting (i.e., simply asking them to provide an answer
to a query), even though LLM accuracy can be substantially
increased via more sophisticated inference techniques such as
chain-of-thought prompting (25, 26) or the tree-of-thoughts
framework (27). Our decision to use basic prompting would
be problematic if we were claiming that LLMs cannot perform
our tasks: such claims would be true only if LLMs fail under all
prompting approaches, so investigations of such claims should
use the strongest possible prompting approach. However, since
this is not the type of claim we are making, it is not necessary to
use the strongest available prompting paradigms. Instead, because
our claims are comparative (“for LLMs, X is harder than Y”), what
is important is ensuring that the two conditions (X and Y) are
evaluated in the same way as each other. Since any prompting
approach could work for this purpose, we chose the approach
that is the fastest and most straightforward to run, namely basic
prompting—though see Discussion for experiments with other
prompting techniques.

In addition, we are not claiming that researchers have
ignored the autoregressive origins of LLMs. Indeed, in the
“Sparks of artificial general intelligence” paper (4), Section 8 is

titled “Limitations of autoregressive architecture highlighted by
GPT-4,” and it considers failures of planning in arithmetic
and text generation that result from only predicting the next
word in a sequence. What we are claiming is that this aspect of
LLMs has been neglected in constructing effective evaluations of
their capacities. As highlighted in Fig. 1, much of the literature
evaluating LLMs has started with tasks that are viewed as
important indicators of human abilities and then assessed how
well LLMs can do them. By instead starting with tasks that we
anticipate will be challenging for systems that are focused on
next-word prediction, we get a more balanced view of what kinds
of tasks are easy or hard for these systems.

Motivating Our Predictions: A Bayesian
Analysis

In Table 1, we listed several hypotheses about factors that cause
difficulty for LLMs. Here, we show how we arrived at these
hypotheses by analyzing the problem that LLMs need to solve.
To make this discussion more concrete, we will provide brief
examples from one particular domain, namely shift ciphers
(defined below). Later in the paper, we will further test our
predictions with an additional ten tasks.

Running Example: Shift Ciphers. In a shift cipher, a message is
encoded by shifting each letter forward in the alphabet a certain
number of positions. For example, with a shift of 1, How are you?
becomes Ipx bsf zpv? because the letter after h is i, the letter after
o is p, etc. One particularly prominent case is rot-13 (short for
“rotate by 13”), the cipher with a shift of 13 positions. Rot-13
is popular online as a spoiler-free way to share information. For
example, in some puzzle-solving forums, members write hints in
rot-13 so that those who want to solve the puzzle without help
will not read the hint inadvertently.

A Bayesian Analysis. LLMs are statistical systems. We therefore
expect that their predictions will be influenced by probability,
even in deterministic situations where probability should be
irrelevant. To motivate this hypothesis more formally, we first
frame the LLM’s task as finding the most probable output given
some input, where the input is the start of a word sequence,
and the output is the sequence’s continuation. In other words,
the LLM should find the output that maximizes P(output|input)
(the probability of the output given the input). By Bayes’ rule, this
problem is equivalent to maximizing P(input|output)P(output).
Therefore, as long as there are multiple outputs for which
P(input|output) is nonzero, the LLM’s predictions will be
influenced by the unconditional probability of the output,
P(output): among the candidates that yield a nonzero value for
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Fig. 3. When processing shift ciphers, LLMs are highly sensitive to probability, even though shift ciphers are deterministic. Top Left: Effect of output probability.
When decoding text written in the rot-13 cipher, both models score better when the answer is high-probability than when it is low-probability. Top Middle: Effect
of input probability. As predicted, input probability does not show as strong an effect as output probability. Top Right: Effect of task probability. Both models
score better on a frequently occurring shift cipher (rot-13) than on a rare one (rot-12). All error intervals show one SE. Bottom: Examples for output and input
probability; see Fig. 2 for task probability examples.

P(input|output), LLMs will be biased toward selecting ones with
a high P(output).

The argument made so far only covers nondeterministic
situations, when there are multiple outputs that yield a nonzero
P(input|output). Now consider deterministic settings, where
there is only one output that could go with a given input;
rot-13 is one such setting. In principle, P(output) should not
matter in such cases because the likelihood, P(input|output),
fully determines the output on its own: this value is nonzero
for the correct output and zero for all others. In practice,
however, an LLM’s likelihood estimates are unlikely to be perfect,
meaning that there will in fact be multiple candidate outputs that
yield a nonzero likelihood. With multiple output candidates in
consideration, P(output) will affect the model’s predictions in
practice, even if in theory it should be irrelevant. This analysis
points toward several hypotheses about LLM behavior, which we
discuss in the next few paragraphs.

Sensitivity to Output Probability. The most straightforward
consequence of our analysis is the prediction that LLMs will
be biased toward producing outputs that are high-probability
word sequences, meaning that they will perform better when the
correct output is indeed high-probability than when it is not.
The results in Fig. 3 (Top Left) support this prediction: for both
GPT-3.5 and GPT-4, accuracy increased as the log probability of
the correct output was increased, supporting the hypothesis that
these systems are influenced by the unconditional probability of
potential outputs.

Sensitivity to Input Probability and Task Probability. Under our
analysis, the factor that causes LLMs to favor high-probability
outputs is noise in the LLM’s estimate of the likelihood. We
therefore hypothesize that LLMs will be particularly error-prone
in situations where their likelihood estimates are particularly

noisy. We identify two such situations: when task probability
is low and when input probability is low.

Task probability is the probability that a task will be illustrated
in a random sample of text. This probability determines how
many examples of the task will appear during an LLM’s training.
When the task probability is low, the LLM’s likelihood estimates
will be noisy because it will not have had enough experience with
the task to produce precise estimates of task-relevant statistics,
leading to poorer overall performance.

This prediction is borne out for shift ciphers. As mentioned
above, rot-13 is a commonly used shift cipher. In contrast, rot-
12—which uses a shift of 12 rather than 13—is no more complex
than rot-13 but is used rarely. We found that GPT-3.5 and GPT-
4 performed much better at decoding messages written in rot-13
than rot-12 (Fig. 3, Top Right), supporting the conclusion that
LLMs are sensitive to task probability.

Another factor that we expect will reduce the quality of
likelihood estimates is the probability of individual examples:
a trained LLM will have had less experience with low-probability
strings than high-probability ones. Therefore, the information
that the model captures may be less robust for low-probability
strings than high-probability strings. Information learned during
pretraining is important for both processing the input and
producing the output. We have already hypothesized that LLMs
will be sensitive to output probability; this argument adds
the additional hypothesis that they will be sensitive to input
probability. Fig. 3 (Top Middle) shows that GPT-4 achieves
higher accuracy when the input is high-probability than when it
is low-probability, illustrating that LLMs can indeed be sensitive
to input probability. GPT-3.5 shows no significant effect of input
probability. In the next subsection, we describe why LLMs may
show less sensitivity to input probability than output probability
or task probability.

We have identified these effects as consequences of autoregres-
sion, but autoregression is not the only objective that we would
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expect to produce these effects. Sensitivity to word sequence
probability would likely arise in any system that models text
distributions, and sensitivity to task probability would likely
arise in any system that uses statistical learning. We focus on
autoregression because it is central to current LLMs, but future
work could use the teleological perspective to investigate whether
other objectives also yield these effects.

Strength of Hypothesized Effects. We have hypothesized that
LLMs will be sensitive to the probability of both the input and
the target output. Though these effects sound similar, we have
predicted them for two different reasons. Input probability was
predicted to matter only when the task depends on information
about the input that models mainly learn through experience with
that specific input (i.e., when the model’s ability to estimate the
likelihood, P(input|output), does not generalize to novel inputs).
We expect that such situations only arise occasionally, such that
a model’s dependence on input probability may not manifest
itself routinely. In contrast, output probability was predicted to
matter not only in the same situations where input probability
matters but also in an additional context: whenever the model
has any uncertainty about what the output is (in which case the
model will use the prior probability of the output to help resolve
its uncertainty). We expect that this situation is common since
neural networks rarely produce probabilities that are precisely
equal to one. We therefore expect that output probability will be
more broadly influential than input probability.

Another relationship between our hypotheses is that task
probability and input probability were hypothesized to matter for
similar reasons: both influence the training data in ways that will
affect the level of noise in the LLM’s learned likelihood estimates.
However, we predict that task probability will lead to such
effects more reliably than input probability: we expect that LLMs
will often be able to generalize to novel inputs (because neural
networks usually perform well on new examples that are similar
to ones they have seen), such that low input probability will not
always hamper LLM performance. In contrast, novel tasks require
a higher-order type of generalization that is more challenging for
neural networks, so we predict that task probability will routinely
have an effect.

In sum, we have predicted that output probability and
task probability will be more broadly influential than input
probability. An initial piece of evidence for this hypothesis is
the fact that, in Fig. 3, output probability and task probability
have a substantial effect, whereas input probability shows only a
minor effect and only in one model.

Overview of Experiments

In the next several sections, we test the hypotheses developed
above by analyzing LLM performance on a wider range of tasks.
We evaluated five models: GPT-4 (1), GPT-3.5 (1), Claude 3
(2), Llama 3 (3), and Gemini 1.0 (28). GPT-4 is the state-of-the-
art in many areas and is the focus of the “sparks of AGI” paper
(4) that our work connects to. GPT-3.5 is similar to GPT-4 but
smaller, enabling us to investigate the effects of model scale. The
remaining models are other prominent LLMs. We accessed all
models through APIs and used a temperature of 0.0; see Materials
and Methods for more details. We also ran preliminary tests with
the smaller-scale models OLMo (29) and Llama 2 (3), but their
scores were too low to yield meaningful trends, with accuracies
of 0% on most tasks.

The tasks that we tested these models on are described in
Table 2. We chose these tasks for two reasons. First, as described

Table 2. The tasks that we used to evaluate LLMs
Task Description Example

Article swapping Swap each article (a, an,
or the) with the
preceding word.

In box the I saw key a.→
In the box I saw a key.

Reversal Reverse a sequence of
words.

everyone! morning,
Good→ Good
morning, everyone!

Counting Count the words or
letters in a list.

lively news exhibit steep
→ 4

Acronyms Join the first letters of the
words in a list.

view inch show into tray
→ VISIT

Linear function Apply the function
f (x) = (9/5)x + 32.

328→ 622.4

Multiplication Multiply two three-digit
numbers.

351 times 373→ 130923

Sorting Sort a list of words in
alphabetical order.

into, trek, game, magic→
game, into, magic, trek

Keyboard cipher Replace each letter with
the one to the right of it
on a keyboard.

Hello world!→ Jraap
eptaf!

Shift cipher Decode by shifting each
letter 13 positions
backward in the
alphabet.

Fgnl urer!→ Stay here!

Pig Latin Move the first consonant
cluster of each word to
the end and add −ay.

frogs aren’t noisy.→
ogsfray aren’tay
oisynay.

Birthdays Return the birth date of a
provided public figure.

Jeremy Lin→ August 23,
1988

To keep this table manageably sized, some of the examples are not from the datasets
that we used to evaluate LLMs but are instead shorter examples of the tasks that those
datasets target.

in the introduction, we selected tasks that push models into low-
probability situations so that models will have a nonnegligible
error rate—a requirement for our goal of observing what causes
the error rate to increase or decrease. Second, most of these
tasks can be solved with a simple, deterministic algorithm that is
invariant to various changes to the task. For example, consider
a shift cipher that moves each letter n positions forward in the
alphabet. The most straightforward way to decode this cipher is
to shift each letter back n positions—an algorithm that succeeds
regardless of the value of n and the identity of the words
being processed. Thus, if a person demonstrated that they could
decipher one message written in rot-13, we might assume that
they knew this algorithm and could therefore perform equally
well on any other shift cipher or on any other inputs. However, we
have hypothesized that LLMs are not invariant to such properties:
we expect their performance to vary based on which task variant
is used and which inputs are used. The tasks described in the
table allow us to test these predictions. Following the “sparks of
AGI” paper (4), we do not tune models on these tasks but rather
describe the task in the prompt; see Materials and Methods.

Many of our tasks involve character-level manipulations
of words. This factor might seem unfair to LLMs because
they operate over subword tokens (30) rather than characters.
However, we gave all models a spelling test (SI Appendix,
section L) and found that they robustly encode the spelling of
their tokens, making it reasonable to test them on tasks that
involve character-level manipulations; see also refs. 31 and 32.

Sensitivity to Output Probability

We have hypothesized that LLMs will perform better when
the correct answer is a high-probability string than when it
is a low-probability string, even in deterministic situations
where the answer could be determined without considering
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probability. Here, we test this hypothesis by evaluating models
on sets of examples that vary in the probability of their outputs
(probabilities were estimated using GPT-2 (15); see SI Appendix,
section J). For example, for shift ciphers, we evaluate accuracy
on three sets of examples corresponding to messages that, when
deciphered, are high-, medium-, or low-probability sequences of
words; see (1) below for examples:

(1) a. High-probability: Are they now building a bridge of
their own?

b. Medium-probability: Are dogs yet climbing a jungle
of their own?

c. Low-probability: Are their jungle of dogs a yet
climbing own?

Fig. 4 shows the results. Output probability had a statistically
significant effect on accuracy (P < 0.05) in all cases except
Gemini 1.0 decoding shift ciphers (its accuracy was 0% across
conditions) and Claude 3 forming acronyms (P = 0.38). Many
cases showed large effect sizes; e.g., GPT-4’s article-swapping
accuracy ranged from 0.02 on the set of low-probability examples
to 0.83 for high-probability examples.

Analysis of Shift Cipher Errors. As a more targeted analysis of
output probability effects, we gave models messages encoded with
a shift of 13 where the correct answer was created by manually
changing one word in a high-probability sentence to a new word
that was still grammatical but was now low-probability. In such
cases, models often “regularized” the output by producing the
high-probability sentence that was similar to the correct answer,
rather than the correct answer; indeed, GPT-3.5 and GPT-4
produced the regularized version more often than the correct one
(see SI Appendix, Fig. S23, for quantitative results), as in the
following GPT-4 response:

(2) a. Correct output: Because of this, their names were
chanted for security reasons.

b. GPT-4 output: Because of this, their names were
changed for security reasons.

This tendency to push the output toward a higher-probability
sentence further supports the conclusion that LLMs are biased
toward high-probability outputs.

Counting. As a final investigation of output probability, we
evaluated models on counting how many words are in a list. Fig. 5
plots LLM accuracy as a function of the number being counted
to. LLMs often show spikes in accuracy for the numbers that
are most frequent in corpora, namely multiples of 10. Further,
for all models except Llama 3, accuracy has a higher Spearman
correlation with the frequency of the number being counted to
than with its magnitude (e.g., the correlation coefficients have an

Fig. 4. The effect of output probability on model accuracy across five tasks.
The intervals around the lines show one SE.

Fig. 5. Model performance on counting a list of words, as a function of the
length of the list. The intervals around the lines show one SE.

absolute value of 0.84 vs. 0.70 for GPT-4, and 0.85 vs. 0.66 for
Claude 3), providing additional evidence for the importance of
frequency.

Summary of Output Probability Effects. We have shown that
the performance of the LLMs we tested is heavily influenced
by the probability of the target output, even though the tasks
being investigated were not inherently probabilistic. These results
support our hypothesis that LLMs are sensitive to the probability
of the sequences they must produce.

Sensitivity to Input Probability

We have hypothesized that LLMs will sometimes perform worse
when the input is low probability than when it is high probability.
However, we have also hypothesized that the influence of
input probability will be less pervasive than the influence of
output probability: we predicted that LLMs would use output
probability whenever they have some uncertainty about the
output—a condition that we expect holds frequently—whereas
we predicted that input probability would only matter when an
LLM’s ability to process an input is highly dependent on prior
experience with that specific input—a condition that we expect
to hold less often under the view that, for many tasks, neural
networks are not restricted to handling only the inputs they have
seen but can also generalize across inputs.

Consistent with these predictions, we found that, for most of
the tasks we investigated, input probability had little or no effect
on accuracy (Fig. 6); see SI Appendix, section E.4 for additional
discussion of the asymmetry between input probability and
output probability. There was, however, one task—the birthday
task—where input probability had a large effect (P < 10−15

for all models). In this task, a model is given the name of a
public figure and is asked to return that person’s birthday. For
this task, the answer cannot be deduced from the input alone, so
the only way it can be produced is if the model has encountered
it during training. This task therefore has the properties that we
have hypothesized would lead to input probability sensitivity; the
fact that models indeed display this sensitivity therefore supports
our analysis.

Additional situations where input probability has a large effect
can be found in prior work studying LLM performance on
arithmetic (33) and factual recall (34, 35). Overall, we conclude
that, under the right conditions, LLM performance can indeed
be meaningfully affected by input probability.

Sensitivity to Task Probability

We have hypothesized that LLMs will perform better on tasks
that are frequently illustrated in Internet text than tasks that
occur more rarely—even when the rare task is no more complex
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Fig. 6. The effect of input probability on model accuracy across five tasks.
The intervals around the lines show one SE.

than the common one. In this section, we test this hypothesis
by evaluating models on common and rare variants of several
tasks (we use corpus analyses to estimate task frequency; see SI
Appendix, section K). Fig. 9 summarizes the results.

Shift Ciphers. There are 25 possible shift ciphers, corresponding
to the 25 unique shifts that can be applied within the alphabet.
These different shifts are not all used with the same frequency.
Based on an analysis of the C4 corpus (36), we found that the
three most common shift levels are rot-1, rot-3, and rot-13 (Fig. 7,
Top). Rot-1 is common because it is the smallest shift, so it is a
natural choice for illustrating the concept of a shift cipher. Rot-3
is common because Julius Caesar famously used this cipher (37),
creating a precedent that has influenced many others to adopt a
shift of 3 as well (e.g., refs. 38 and 39). Finally, as mentioned
above, rot-13 is common because there is a convention of using
it in online forums.

If LLMs are indeed sensitive to task probability, we would
expect them to perform better on shifts of 1, 3, and 13 than on
other shifts. To test this prediction, we evaluated the models on
decoding text written with each shift from 1 to 25. The results
are striking (Fig. 7, Bottom): all models except Gemini 1.0 show
a spike in accuracy at 13, which is by far the most common
shift. GPT-4 scores 0.50 or above on the three highest-frequency
shifts, but its accuracy is less than 0.03 for all other shifts. Claude
3 differs from the other models in that it performs well on some
rare shifts, suggesting that it has a more generalizable decoding

Fig. 7. Analysis of shift ciphers with shift levels varying from 1 to 25. Top:
Number of occurrences of each shift level in the C4 corpus. Bottom: Accuracy
on decoding shift ciphers with various shifts. Most models display a spike in
accuracy at a shift of 13, which the top plot shows to be the most common
shift level.

strategy than other models, but it still also shows a spike in
performance at 13. These results therefore follow the prediction
that LLMs would perform better on commonly used shifts than
rarely used ones.

To test the significance of these task effects, we compared
rot-13 to rot-12 (as examples of a common and rare variant,
respectively). We only considered GPT-3.5, GPT-4, and Claude
3, as the other models scored near 0% on all shift ciphers.
All three of these models had a statistically significantly better
performance on decoding rot-13 than rot-12 (P < 0.01). We
also evaluated these models on encoding; in this case, GPT-4 and
Claude 3 still performed significantly better on rot-13 than rot-12
(P < 0.01), but for GPT-3.5, there was no significant difference,
likely due to floor effects (GPT-3.5’s encoding accuracy was close
to 0.0 for both shifts; see Fig. 9).

Analysis of Shift Cipher Errors. For shift levels with a low
accuracy (e.g., shifts other than 1, 3, or 13 for GPT-4), the
incorrect answers that models produce are often recognizable
sayings or quotations. For instance, in one rot-10 case, GPT-4
erroneously produced a quote from Shakespeare (3-b). Clearly
something is rot-10 in the state of Denmark:

(3) a. Correct answer: As a doctor of humanities, he was
a university professor, founded a university and
a newspaper, and won awards in journalism and
literature.

b. GPT-4 output: To be or not to be, that is the
question, whether tis nobler in the mind to suffer
the slings and arrows of outrageous fortune.

This tendency to produce famous quotations in contexts where
accuracy is low is consistent with our Bayesian analysis: when
an LLM is highly uncertain about the task, we expect that
its likelihood estimates would be close to uniform, so that its
predictions would effectively be sampled from its prior—a process
that would be likely to produce high-probability sentences such
as famous quotations.

Pig Latin. Pig Latin is a secret “language” based on English. To
convert an English sentence into Pig Latin, the first consonant
cluster of each word is moved to the end of the word and then
-ay is added to the end of the word. We compared Pig Latin to
a system that we made up called Boar Etruscan that instead uses
-uv as the letter pair that is added at the end. For instance, the
English word main would become ainmay in Pig Latin or ainmuv
in Boar Etruscan.

We tested LLMs on both encoding sentences into these fake
languages and decoding sentences from these fake languages.
The results are in Fig. 9, in which Pig Latin is the “common”
variant and Boar Etruscan is the “rare” one. For encoding, GPT-
3.5, GPT-4, and Claude 3 performed much better on Pig Latin
than Boar Etruscan, a difference that was statistically significant
(P < 0.01); the other models showed no significant difference,
likely due to floor effects (their accuracy was near 0% for both
variants). For decoding, all five models scored better on Pig Latin
than Boar Etruscan, but the difference was significant only for
GPT-4 and Llama 3 (P < 0.05).

In addition to this binary comparison of attested vs. unattested,
Pig Latin also provides an opportunity for a finer-grained
comparison because there are several variants of Pig Latin that
have varying levels of commonness (40). All the major variants
handle consonant-initial words the same (by moving the initial
consonant cluster to the end and adding -ay, such as turning frog
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to ogfray), but they differ for vowel-initial words: all the variants
add some fixed syllable at the end of vowel-initial words, but the
identity of that syllable varies. We identified all mentions of Pig
Latin in the Pile dataset (41), as a proxy for the training data of
GPT models and found 68 cases where the added syllable was
-way, 46 where it was -ay, 26 where it was -yay, and 8 where
it was -hay; we found similar proportions in the C4 dataset
(36). We tested LLMs on these four variants, plus a fifth one
where the added syllable was -say (which has 0 occurrences in
C4 and the Pile). As an example of how these variants differ
for vowel-initial words, the word and could become andway,
anday, andyay, andhay, or andsay, depending on the variant
used.

We found that (particularly for encoding) model performance
patterns with the corpus frequency of the Pig Latin variant
(Fig. 8). The effect of variant was significant for encoding
(P < 0.01) for all models except Llama 3 (P = 0.19), but
for decoding, it was significant only for Claude 3 (P < 0.01)
and Gemini 1.0 (P < 0.01). Variant frequency might matter
less for decoding than encoding because models may find it
easier to remove an unfamiliar ending (what must be done when
decoding a rare variant) than to produce an unfamiliar ending
(what must be done when encoding a rare variant). This finding
is striking because all five of these variants are very similar: they
treat most words identically because they differ only for vowel-
initial words; and even in these cases, they differ from each other
only in a single letter. Nonetheless, these differences are enough
to yield markedly differing performance along the lines we
predicted.

Acronyms. People frequently join together the first letter of each
word in a sequence of words, but it is rare to join the second letter
of each word. We therefore use first-letter acronym formation
as a common task (e.g., producing RESPOND from revolve
edifice scrappy panicky outlast negated drizzle) and second-letter
acronym formation as a rare task (e.g., producing RESPOND
from prequel leaping ascetic splurge policed invader edifice). For
all five models, performance was much higher on first-letter
acronyms than second-letter ones (Fig. 9), and the effect was
statistically significant (P < 10−4).

Linear Functions. We compared two tasks where models had to
apply a linear function to a number. As a common function, we
used f (x) = (9/5)x + 32; this function occurs frequently in
natural text because it is the function that converts temperatures
from Celsius to Fahrenheit, so text written for multinational
audiences often includes nearby pairs of numbers illustrating both
x and f (x). As a rare function, we used f (x) = (7/5)x + 31,
which has no special significance and thus does not show up
often in natural text. GPT-3.5, GPT-4, and Claude 3 scored

Fig. 8. Accuracy on Pig Latin variants when encoding (Left) or decoding
(Right), as a function of the variant’s frequency. The shaded intervals show
one SE.
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Fig. 9. Comparing performance on common vs. rare versions of tasks. For
shift ciphers, the common variant that we illustrate is rot-13, and the rare
variant is rot-12. For Pig Latin, the common variant is Pig Latin, and the
rare variant is Boar Etruscan (see text). For acronyms, the common variant
is acronyms formed from the first letters of words, while the rare variant
is acronyms formed from the second letters of words. The common linear
function is f (x) = (9/5)x+32 (which is the Celsius-to-Fahrenheit conversion),
and the rare linear function is f (x) = (7/5)x + 31. The common version of
sorting is sorting in alphabetical order, while the rare variant uses reverse
alphabetical order. Error bars show one SE.

reasonably well for the common function yet poorly for the rarer
one (Fig. 9), a difference that was statistically significant for all
three models (P < 0.01). Llama 3 performed slightly better on
the common function than the rare one, but this difference was
not significant (P = 0.22), and Gemini 1.0 performed poorly
on both functions.

Sorting. We gave models a list of words and told them to sort
it into either alphabetical or reverse alphabetical order. Based on
an analysis of the C4 corpus, we estimate that alphabetical order
is 150 times more common than reverse alphabetical order in
Internet text. Paralleling this frequency difference, all five LLMs
perform better on alphabetical order than reverse alphabetical
order (Fig. 9; P < 10−5 for all models).

Summary of Task Probability Effects. Across seven pairs of tasks,
models performed substantially better on common task variants
than rare ones. Contemporaneous work by Wu et al. (42) drew
similar conclusions: they found that LLMs performed better on
the default version of a task (e.g., executing Python code under
the true assumption that Python uses 0-based indexing) than on
a counterfactual version of the task (e.g., falsely assuming that
Python uses 1-based indexing). We view our work as highlighting
a general phenomenon of which Wu et al.’s conclusion is a special
case: We show that LLMs are sensitive to task probability, a
factor that encompasses the default-vs.-counterfactual situations
that Wu et al. study but also includes other cases where there
is no default, such as linear functions. As part of our more
direct focus on probability, we used corpus analyses to measure
task frequency for several of our experiments, a type of analysis
that was not used in Wu et al.’s work. Overall, because our
work and Wu et al.’s use nonoverlapping sets of tasks and draw
compatible conclusions, we view these two papers as mutually
reinforcing.
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Discussion

Our experiments highlight two scenarios where AI practitioners
should be careful about using LLMs. First, we have shown that
LLMs perform worse on rare tasks than on common ones, so
we should be cautious about applying them to tasks that are rare
in pretraining data. Second, we have shown that LLMs perform
worse on examples with low-probability answers than ones with
high-probability answers, so we should be careful about using
LLMs in situations where they might need to produce low-
probability text. Overcoming these limitations is an important
target for future work in AI. SI Appendix, section C also describes
several other properties of LLMs that relate to the problem
they were trained to solve, including sensitivity to wording,
difficulty on tasks that depend on meaning (43–46), and limited
compositionality and systematicity (47–51).

Our experiments were inspired by a teleological analysis—
an analysis aimed at understanding a system by understanding
the problems that it was trained to solve. Our results therefore
demonstrate the usefulness of the teleological approach as a way
to illuminate important properties of a model.

Understanding a New Type of Intelligence. A range of proposals
have been made regarding how to think about LLMs (e.g., refs.
52–54). To understand the benefits of the teleological approach,
it is helpful to compare it to a more prevalent approach that
we call desideratum-focused evaluation, in which the evaluator
tests for properties that they wish for models to have, such as
the ability to perform certain tasks (e.g., refs. 55 and 56) or
the avoidance of a particular type of error (e.g., refs. 57 and
58). Crucially, this approach is model-agnostic: what we want
from a model is not driven by that model’s nature. Therefore,
the desideratum-driven approach runs the risk of missing model-
specific properties that one would not think to check for based on
a generic characterization of the desired behavior. For example,
desideratum-focused tests for rot-13 would be likely to miss
models’ sensitivity to answer probability because probability is
not part of how humans usually discuss this task. In contrast, the
teleological approach starts with an analysis of the model and is
therefore well-suited for capturing the ways in which a model’s
behavior is influenced by its nature.

An additional benefit of the teleological approach is that it
reveals unifying principles behind why systems do what they
do (10–13). Such explanatory principles are useful because they
enable us to make general predictions about the sorts of scenarios
that models are likely to handle well or poorly.

To be clear, we are not arguing against testing for desiderata—
doing so answers important questions about whether models
are doing what we want. Rather, we are arguing that such testing
should be informed by a teleological analysis because this analysis
can reveal nonobvious ways that models are likely to deviate from
the desired behavior.

Comparing Models to Humans. We have argued that, to under-
stand LLMs, we should approach them on their own terms rather
than evaluating them in the same ways that we test humans. But
what if your goal is to compare LLMs to humans? Even in that
case, we argue that the teleological perspective is important; much
as it should inform testing for desiderata, it should also inform
comparisons to humans. Specifically, we argue that human-
likeness can be better assessed by the two-step process in (5)
than the direct process in (4):

(4) Suboptimal approach for investigating human-likeness:
Ask “is this model like a human?”

(5) Better approach for investigating human-likeness:
a. First, use teleologically motivated experiments to

characterize the model in its own terms.
b. Then, ask “in what ways is this characterization like

a human and unlike a human?”

The direct approach in (4) is suboptimal because the natural
way to pursue this path is to evaluate models by using tests
developed for humans. Such an evaluation may overestimate
similarities to humans because, for many tasks, there is only one
way to be correct yet many ways to be incorrect. Thus, to the
extent that models are accurate, they will likely be accurate in
human-like ways; and to the extent that they make mistakes, a
test that is designed for humans may only highlight the sorts
of mistakes that humans are liable to make, omitting potential
failure modes that are unique to models. The teleological
approach in (5) mitigates this risk by evaluating models in a
way that is less biased by our view of human cognition.

We have focused on the first step of (5). Without a fair
comparison (59–63) that evaluates humans in the same settings,
we cannot make strong claims about whether the properties listed
in Table 1 make LLMs qualitatively unlike humans. Prior work
has shown that some of these properties are present in humans to
some extent; e.g., in at least some cases, humans perform better
on a task they were trained on than on a similar but new task
(64, 65), and a human’s ease of processing a sentence is influenced
by that sentence’s probability (66–68)—mirroring the effects of
task probability and example probability that we have observed
in LLMs. Nonetheless, we suspect that humans are less sensitive
to these factors than LLMs, in part because of the diversity of
the tasks that humans must perform; that is, although next-word
prediction likely plays a role in human cognition (8, 69, 70),
humans are also faced with many other tasks. In particular,
we expect that humans are better than LLMs at using abstract
algorithms that can be equally well applied across task variants
(e.g., across different shifts in a shift cipher); humans can use such
strategies by leveraging working memory and explicit reasoning,
mechanisms that may be less available to LLMs than to humans
(71). If this view is accurate, humans would not show such stark
differences across tasks as those we have found for LLMs.

Evaluating Models Fairly: Prompts and Scaling. All of our
experiments have used basic prompting, in which models are
simply given a query. For many of our tasks, it is likely that
performance could be improved by more advanced prompting
techniques; e.g., Wei et al.’s chain-of-thought approach (26)
substantially improved performance on last-letter concatenation,
which is similar to our acronym task. However, it would not
invalidate our conclusions if there are conditions in which LLM
performance is greater than what we have observed. We do not
claim to be highlighting fundamental incapabilities of LLMs but
rather are claiming that some tasks and examples are harder for
LLMs than others. Therefore, the existence of any setting that
yields the predicted performance differences supports our claims,
even if other settings exist where LLM performance is at ceiling
for both conditions being compared.

As a first step toward investigating other prompting tech-
niques, we used chain-of-thought prompting and step-by-step
prompting to evaluate GPT-4 on shift ciphers. We found that
these methods can indeed substantially increase performance,
but the basic trends that we have identified (sensitivity to task
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frequency and output probability) still hold, just with higher
overall levels of accuracy; see SI Appendix, section D.

A similar conclusion applies to increasing model size. Across
almost all tasks, we have observed that GPT-4 substantially
outperforms GPT-3.5, showing that increased model scale can
provide large benefits on the tasks we have studied. However,
GPT-4 still displayed the same qualitative trends as GPT-
3.5 (sensitivity to task probability and example probability).
Therefore, like prompting techniques, it appears that scaling
may improve overall performance but may not fully overcome
the ways in which models are influenced by their nature.

We also investigated the effects of few-shot learning, a popular
technique for improving LLM performance in which the LLM
is given several examples of correct input–output pairs before
it is given the input that it must translate to an output. We
found that LLMs that underwent few-shot learning continued
to be influenced by task frequency and example probability (SI
Appendix, section B). We also found that LLM performance was
influenced by the nature of the examples that were provided:
in some cases, LLMs benefitted more from examples that
were similar to the one it had to process than examples that
were not. These results support the teleological perspective by
suggesting that LLMs are influenced by pressures that arise
at all stages of their training: we observed effects attributable
to the initial training stage of next-word prediction as well as
effects attributable to the task-specific examples used in few-shot
learning. In this paper, we have focused on one stage of training—
the next-word prediction stage—but future work could further
investigate other stages such as instruction tuning.

One approach that is likely to perform well on our tasks is
to enable LLMs to execute computer programs, since computer
code is well suited for handling structured tasks such as those
we have focused on (72). Indeed, a recent version of GPT-
4 has been augmented with the ability to execute code, and
we have anecdotally found that when it utilizes this feature,
it can perform much better on our tasks. The fact that LLMs
augmented with code execution can score well on our tasks does
not invalidate the claims of our paper, because we do not claim
that our tasks are impossible for AI. Rather, our point is that we
can understand AI systems by reasoning about their nature. The
fact that a code-executing system can handle our tasks well—
and the fact that augmenting with code execution seems to be
necessary—supports our main argument: on our tasks, we expect
a next-word prediction system to perform poorly, while we expect
Python code to perform well.

Our results have focused on ways in which the teleological
perspective illuminates shortcomings of LLMs, but being critical
of LLMs is not our goal. Instead, our goal is to promote a
perspective that accurately captures the properties of LLMs, both
positive properties and negative ones. Though in many cases this
perspective has led us to point out model weaknesses, in some
ways, it makes LLMs more impressive than they would otherwise
seem. Once we fully recognize that LLMs are statistical next-word
prediction systems, it becomes remarkable that they can perform
rot-13 or acronym formation at all, even if they do not perform
these tasks perfectly.

Conclusion. Recent paper titles have made many statements
about what language models are:

• “Language Models are Unsupervised Multitask Learners” (15)
• “Language Models are Few-Shot Learners” (73)

• “Language Models are General-Purpose Interfaces” (74)
• “Language Models are Multilingual Chain-of-Thought Rea-

soners” (75)
• “Language Models are Open Knowledge Graphs” (76)

We should absolutely recognize these advanced properties.
Nonetheless, we should also remember a simpler fact: Lan-
guage models are...language models! That is, they are statistical
next-word prediction systems. This fact has some important
consequences: For instance, as we have shown, language models
have greater difficulty with infrequent tasks than frequent ones,
even when comparing two tasks that seem equally complex to a
human; and they have greater difficulty on examples with low-
probability answers than high-probability ones, even when the
task is deterministic. Both of these properties—as well as the
others discussed above—can be attributed to the way that LLM
training focuses on the statistics of word sequences. In sum, to
understand what language models are, we must understand what
we have trained them to be.

Materials and Methods

Models. We used the most recent time-stamped model versions that were
availablewhenwerantheexperiments:gpt-3.5-turbo-0613,gpt-4-0613,claude-
3-opus-20240229, gemini-1.0-pro-001, and llama-3-70b-chat-hf. We accessed
them through the OpenAI API for the GPT models, the Claude API for Claude 3,
the Gemini API for Gemini 1.0, and the together.ai API for Llama 3. We used a
temperature of 0.0; see SI Appendix, section H.7 for discussion.

Stimuli. For sentence-based tasks, the high-probability stimuli were sentences
from Global Voices, a news service that shares its content under a permissive
license that allows sharing and modification. Medium-probability sentences
were created by taking the high-probability sentences and using RoBERTa (77)
to replace some of the words with others that had a low probability in that
context (but were still grammatical). Low-probability sentences were created by
shuffling the words of the medium-probability examples, except that the first
and last words were left in place.

For tasks based on words, the words were drawn from the CMU Pronounc-
ing Dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict). The acronym
inputs were lists of 7 words, the sorting input lists varied in length from 10
to 20, and the counting input lists varied from length 1 to 100. For linear
functions, inputs were sampled uniformly from the integers from 0 to 999. For
multiplication, each input number was sampled uniformly from the integers
from 100 to 999. For the birthday task, public figures and their birthdays were
obtained from the WikiBio dataset (78).

The inputs to models included a prompt describing the task to be performed,
with an example provided for tasks where an example would help to avoid
ambiguity (namely, article swapping, reversal, the keyboard cipher, shift
ciphers, and Pig Latin). The sample size was 1,000 for each condition in the
acronym task, 30 for each number in the counting task, and 100 for each
condition in all other tasks. All stimuli are available on the project GitHub
(see below).

Statistical Tests. To determine the statistical significance of differences in
task variants or example probability, we used logistic regressions where the
response variable was 1 if the model produced the correct answer or 0 other-
wise. The predictors generally included input probability, output probability,
input length, and output length, as well as task variant for conditions where
we compared task variants; the predictors other than the one of interest were
included to check whether the factors of interest had a significant effect even
when potential confounding factors were taken into account. Some predictors
were excluded when they were not relevant. See SI Appendix, section I for details
of all significance tests.
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Data, Materials, and Software Availability. All of our materials are
publicly available on GitHub (https://github.com/tommccoy1/embers-of-
autoregression) (79) with a time-stamped release on Zenodo (https://zenodo.
org/records/13763259) (80).
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