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Abstract

Language research has come to rely heavily on large-scale, web-based datasets. These datasets can
present significant methodological challenges, requiring researchers to make a number of decisions
about how they are collected, represented, and analyzed. These decisions often concern long-standing
challenges in corpus-based language research, including determining what counts as a word, deciding
which words should be analyzed, and matching sets of words across languages. We illustrate these
challenges by revisiting “Word lengths are optimized for efficient communication” (Piantadosi, Tily, &
Gibson, 2011), which found that word lengths in 11 languages are more strongly correlated with their
average predictability (or average information content) than their frequency. Using what we argue to
be best practices for large-scale corpus analyses, we find significantly attenuated support for this result
and demonstrate that a stronger relationship obtains between word frequency and length for a majority
of the languages in the sample. We consider the implications of the results for language research more
broadly and provide several recommendations to researchers regarding best practices.

Keywords: Corpus linguistics; Noisy channel communication; Linguistic universals; Information the-
ory; Compression; Uniform information density; n-Gram models

1. Introduction

The increasing importance of web-mediated communication in everyday life has produced
a wealth of naturalistic data capable of shedding light on longstanding questions in language
research. These new datasets include wide-coverage web scrapes of written material (Baroni,
Bernardini, Ferraresi, & Zanchetta, 2009; Davies & Fuchs, 2015), as well as more targeted
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datasets focusing on specific formats and document types; for example, movie subtitles
(Brysbaert, New, & Keuleers, 2012; Tiedemann, 2012), encyclopedia articles (Denoyer &
Gallinari, 2006), news articles (Chelba et al., 2013), and web forums (Zhang, Culbertson,
& Paritosh, 2017). The scale of these datasets is particularly useful for language research, in
that many linguistic phenomena of interest are vanishingly rare, and making robust inferences
about such phenomena requires large samples (Tomasello & Stahl, 2004). These web-based
datasets also provide researchers with access to a larger and more typologically diverse set
of languages, in principle ideal for evaluating claims about linguistic universals (Bochkarev,
Solovyev, & Wichmann, 2014; Mahowald, Dautriche, Gibson, & Piantadosi, 2018; Petersen,
Tenenbaum, Havlin, Stanley, & Perc, 2012; Piantadosi et al., 2011). Further, these datasets
have played a critical role in training recent language model architectures that require larger
scale inputs than traditional linguistic corpora can provide (Devlin, Chang, Lee, & Toutanova,
2019; Lewis et al., 2020).

However, the use of these large-scale web-based datasets for corpus analysis and lan-
guage model training may introduce previously unknown or underappreciated challenges.
First, the construction of these corpora often depends heavily on automated processing; for
example, automatic language identification to separate scraped web pages into different lin-
guistic subcorpora. These preprocessing steps may include many nontrivial (and potentially
underdocumented) design decisions that have implications for downstream research. Differ-
ent decisions—including reasonable ones—in data analysis may lead to substantively differ-
ent results (Silberzahn et al., 2018).

Second, the true generative process for these datasets is generally unknown, and the result-
ing datasets may include a large proportion of content that was not produced by people, but
rather by bots or other automated methods. While responsible research with these datasets
entails conducting many tests1 to validate assumptions regarding the nature of datasets, the
scale of these datasets means that such checks cannot be exhaustive. As such, it is imperative
that researchers carefully consider the integrity and appropriateness of a linguistic dataset for
the research questions at hand.

In the current work, we revisit a well-known result regarding the relationship between com-
municative efficiency and the observed pattern of word lengths in natural languages presented
in Piantadosi et al. (2011). We find that the results obtained in that paper depend on a num-
ber of analytical choices, including the choice of text encoding, the inclusion of strings that
are not conventional word forms in the relevant language communities, and the use of rank-
ordered word frequency to select the set of word types in the order in which correlations are
computed. We propose and motivate three specific best practices relevant to the target work:
maintaining the appropriate text encoding throughout the analysis, conducting the analysis
on the subset of words in each language that are found in a large dictionary, and choosing
words from a matched set of semantic concepts to minimize the potentially spurious effect
of typological variation among languages. Rather than low-level points regarding implemen-
tation, we demonstrate that these three points speak to long-standing, basic challenges in
language research: deciding how to represent words for computational analyses, defining
what constitutes a valid word, and selecting an appropriate sample of words. The scale of
new datasets does not resolve these challenges; rather, they remain steadfastly relevant. We
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Table 1
Overview of challenges and best practices in working with large-scale, web-based, and multilingual linguistic
corpora

Challenge Best Practice Caveats Sections

Identifying conventional
words in a language
community

Filter by a natural language
dictionary; e.g., Aspell

May exclude some proper
nouns; depends on quality
of dictionary (especially
for inflected forms)

2.1 and 5.2.1

Representing words Maintain UTF-8 (or UTF-16)
throughout preprocessing
and analysis

None 2.2 and 5.2.2

Selecting a matched set of
words across languages

Use a matched set of words
like the Intercontinental
Dictionary Series (Key &
Comrie, 2015)

Selects for higher frequency,
shorter words

2.3 and 5.2.3

All of the above (and many
more)

Evaluate the robustness of the
result over a range of
reasonable preprocessing
and analysis choices

None 5.2.4

additionally emphasize the importance of multiverse analysis (Steegen, Tuerlinckx, Gelman,
& Vanpaemel, 2016), where researchers test their hypotheses across the combinatorial space
of possible analytical decisions.

In conducting a reproduction and extension of Piantadosi et al. (2011) using these best
practices for working with web-based language data, we find substantially attenuated support
for their finding that word lengths are more strongly correlated with in-context information
content than with word frequency. This result clarifies the burden of proof required for claims
regarding cross-linguistic correlational designs. By highlighting best practices in using web-
based corpora and their consequences for the analysis (Table 1), we bring attention to several
general problems in the emerging use of web-based corpora in language research, as well as
corpus-based methods more generally.

2. Case study: Word lengths and predictability

The complex relationship between the structural regularities of languages and the cog-
nitive processes supporting their use remains an active area of investigation in cognitive
science, linguistics, psychology, and allied fields. Along with learnability, efficiency—the
minimization of effort on the part of the speaker and listener to successfully transmit a
message—has been posited to be one of the major pressures that determines the regularities
observed across natural languages (Ferrer-i-Cancho et al., 2013; Gibson, Bergen, & Pianta-
dosi, 2013; Gibson et al., 2019; Ferrer-i-Cancho, 2018; Menzerath, 1954; Zipf, 1949). Under
this view, commonalities across the world’s languages may not be attributed to a shared,
language-specific genetic endowment (e.g., a language acquisition device like that proposed
by Chomsky, 1965), but rather reflect “stable design solutions” that are likely to emerge
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through the process of language evolution to better serve the communicative function of
language (Evans & Levinson, 2009).

One such commonality that has been attributed to communicative efficiency is the robust
relationship between word length and word frequency: across the world’s languages, frequent
words tend to be short. Though already well established by the end of the 19th century (von
der Gabelentz, 1891), the relationship is now most widely known from the work of Zipf
(1935), and it has been attributed to him as “Zipf’s Law of Abbreviation” or “Zipf’s Law of
Brevity.”2 Zipf posited that this relationship of length and frequency emerges from speakers’
proclivity to minimize total articulatory effort using the shortest form with those words that
are used most often, following what he called the Principle of Least Effort (Zipf, 1949).
Subsequent work has rigorously evaluated the robustness of the Law of Abbreviation in
humans (Bentz & Ferrer-i-Cancho, 2016), documented its emergence in iterative experimen-
tal designs where participants alter miniature artificial languages (Kanwal, Smith, Culbertson,
& Kirby, 2017), and established its mathematical foundation based on information theory and
recent extensions (Ferrer-i-Cancho et al., 2013; Ferrer-i-Cancho, Bentz, & Seguin, 2020).
Another line of research demonstrates that Zipf’s law of abbreviation extends, to varying
degrees, to the communication systems of other nonhuman primates (Heesen, Hobaiter,
Ferrer-i-Cancho, & Semple, 2019; Huang, Ma, Ma, Garber, & Fan, 2020; Gustison, Semple,
Ferrer-i-Cancho, & Bergman, 2016).

While Zipf proposed a speaker-driven explanation for the relationship between word
frequency and length, subsequent work has posited a greater role for the listener in shaping
language properties, especially in light of an increasing appreciation of the role of prediction
in language comprehension (e.g., Altmann & Kamide, 1999; Levy, 2008). Information
theory provides a way to characterize speech in terms of an idealized noisy channel, where
a message is encoded by a speaker, sent over a channel which may introduce errors, and
decoded by a listener (Shannon, 1948); further, this framework provides a formal basis
for quantifying a message’s information content as a function of its probability under the
listener’s expectations. This allows for a principled characterization of maximal efficiency
as the optimal use of channel capacity, or transmitting the maximum amount of information
per unit time while maintaining a given probability of transmission error (though see Ferrer-
i-Cancho, 2017, for a critique of this formalization). To maximize communicative efficiency,
speakers should systematically vary their productions (e.g., word choice or speech rate) to
achieve an information profile that maximizes channel capacity while taking into account
the expectations of the listener. First articulated by Fenk and Fenk (1980), this basic logic
holds for two proposals, known as entropy rate constancy (Aylett & Turk, 2004; Genzel &
Charniak, 2002) and uniform information density (UID, Levy & Jaeger 2007. An alternative
proposal offers that this systematic variation may emerge from more general principles of
compression (e.g., Ferrer-i-Cancho et al., 2013), and that more specific optimization accounts
are not necessary (Ferrer-i-Cancho, 2017).

Systematic variation maximizing communicative efficiency could arise from intentional
lexical selection by speakers, who could choose a shorter word form whenever a word is
more predictable from context; for example, rhino versus rhinoceros. Indeed, Mahowald,
Fedorenko, Piantadosi, and Gibson (2013) found exactly such a preference in a web-based
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behavioral study where participants were prompted to provide a continuation for given high-
or low-predictability contexts. In time, a shorter word form may come to be the dominant one
in the language (e.g., autobus is now almost entirely eclipsed by bus in most English dialects).
Alternatively, words may undergo more subtle phonetic processes, in terms of duration (Sey-
farth, 2014) or fidelity to articulatory targets (degree of phonetic reduction). In either case,
the acoustic form of a word may vary as a function of listener’s expectations in the contexts
in which it appears, above and beyond language-wide word frequency statistics.

Piantadosi et al. (2011) tested the hypothesis that listener-oriented efficiency influences
lexical forms by examining whether word lengths are better predicted by average in-context
predictability than by word frequency. As a measure of predictability, they computed average
Shannon information content (or context-conditional surprisal) across the contexts in which
a word appears, and comparing that with word frequency. For consistent scaling, they opera-
tionalized frequency as the negative log probability of each word without reference to condi-
tioning context, or unigram surprisal (see “Methods” of the current work for further details).
They conducted this analysis using web-scale corpora from 11 European languages and found
that average information content exhibits a stronger rank correlation with word lengths than
unigram surprisal with word lengths across the languages in the sample.

This result has attracted criticism on its theoretical merits. Ferrer-i-Cancho and del Prado
Martín (2011) demonstrated that the same result could emerge under a random typing
model, and thus it did not constitute strong evidence of communicative optimization in
which listeners use the preceding context (though see Piantadosi, Tily, & Gibson, 2013, for
several counterarguments). Further, the cost function for optimization is not explicitly stated
(compare with, e.g., Ferrer-i-Cancho, Bentz, & Seguin, 2020). In the present work, we open a
separate line of critique, that several of the methodological choices in Piantadosi et al. (2011)
limit the generality and robustness of its conclusions. In conducting a reproduction and exten-
sion of the main study from that work, we find substantially attenuated support for the claim
that word lengths are more strongly correlated with average information content than with
frequency.

We begin by investigating three specific methodological choices made by Piantadosi et al.
(2011) and their implications: the lexical status of “words” in the analysis (Section 2.1), the
treatment of character encoding (Section 2.2), and the role of morphological variation on
the composition of the word list under analysis (Section 2.3). In the first two sections, we test
these methodological choices independently, keeping all other aspects of the analysis constant
(the critique raised by Section 2.3 rests on theory rather than an empirical demonstration). We
then present Methods, Results, and Discussion for a newly conducted analysis in which we
cumulatively apply the proposed methodological improvements.

2.1. Items in analysis: Words or strings?

A classic problem in corpus-based language research is distinguishing linguistic from non-
linguistic material. Piantadosi et al. (2011) took an inclusive approach, analyzing the relation-
ship between word predictability and word length among the 25,000 most frequent strings in
each language in the Google 1T datasets that appear one or more times in the OPUS corpus
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Table 2
A random sample of “word” types in the analysis from Piantadosi et al. (2011) that are not found in the Aspell
dictionary corresponding to the nominal language of the dataset

Czech muhu iuventus terezo vitali zdn farmaceutik cvm latine mauser ujeme beggin johne nikolase
lidmila mooney hakuna kreditka carnevale hansi homeo

Dutch uurs klotejaar neuman heee jame roodlicht delige kzal ern euhm plaatsers hej jaah twas tif
gdc ehhh ehh tnx haw

English itat ordinator semitism cest montel eet svensk roget ppb xn stang tep nge ance rrr ahh hahaha
hmmm eam hoh

French djamena ouaip rebonjour waouh ahhh ndt deposez antioche pauley riverdance lls pfffff andro
ahh naire iwa adios argh pof alembert

German hallihallo jaaaa hler nunja siert tigen lasset tive duane nagut achja iich rapie denkste bengt
anm uhh pssst genaugenommen nder

Italian goditela konishi iume piutttosto poiizia ehmm signorinella dipartenza tinkertoy hiruta niene
larkspur problemo matrimony amram moiti iotta kittle paico oscorp

Polish ehm kapler ciany jaaaa nienajlepiej rbit fredzia taaaak taaaa danke yep sadzac upi sasz
pomyslcie tce archie niw tyros mumin

Spanish racias rankeado iah demotores cest mins erlich lbs although bles khz holaaa tante ghz mph
ufff prentice btu however nidad

Portuguese metai groupo caezinhos khz lidade tenny lsm tante eev wez clack aquanaut oberst mins btus
reconciliacao braddock lft descon although

Romanian fives keeling bodin vampira georgette raisin rupeee wigs dba minimizeaza factiunea grasule
resultate sottotitoli encounters however tortoise soren notitele inches

Swedish ningar nepp nyliga tjaa podnapisi tionen derna terna snyggve prenum pyjamaser mln gaeliska
ooops etruskiska ligen raken neeej jupp ivoir

(Tiedemann, 2012). The authors motivated this inclusion criterion as appropriate for evalu-
ating the correspondence between string length and predictability in context across a broad
range of different kinds of linguistic materials, including speech, book contents, and web page
contents. However, as a consequence of forgoing additional filtering steps on an extremely
noisy web scrape, a relatively high proportion of strings in their analysis are of questionable
linguistic status with respect to the nominal language of the dataset. This includes the pos-
sible inclusion of extensive linguistic content from languages other than the target language,
especially English in the other datasets. While language contact and exchange, including the
gradual process of loanword adaptation, are standard processes of language evolution (Ken-
stowicz, 2007), we argue that the Google 1T dataset—web scrapes where the source language
was identified by a relatively unsophisticated machine learning method—and OPUS—crowd-
generated movie subtitles—allow for high levels of data pollution. Moreover, these words
may have distinctive profiles in terms of their length, frequency, and average information
content, such that their inclusion may drive the obtained results.

Here we use a dictionary-based filter to identify the set of words under analysis.3 While this
approach may erroneously exclude some words from informal registers (e.g., rebonjour and
waouh in French in Table 2), it should identify a set of core conventionalized word forms
among which the relationship between average information content, word frequency, and
word length can be evaluated. According to the theoretical proposal outlined in Piantadosi
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Fig. 1. A significant proportion of the word types in Piantadosi et al. (2011) are not found in the relevant language’s
dictionary. English word types are especially common in the datasets that are nominally representative of other
languages.

et al. (2011), a stronger relationship between average information content and word length
should also hold among this set of word types.

To investigate the composition of the words analyzed in Piantadosi et al. (2011), we use
Aspell dictionaries to sort strings into in dictionary, out of dictionary, and English categories
(for the English dataset, word types were sorted only into the first two categories). Aspell is
a UNIX command line utility for spell checking that supports language-specific dictionary-
and rule-based spell checking; in that it serves as the shared spell-checking backend for many
computer applications, the vocabularies are up to date and extremely large by comparison to
traditional dictionaries. Because it implements rule-based grammars, Aspell can also evalu-
ate words with complex affixal morphology. We use the following coding procedure: Strings
found in the relevant dictionary are marked as “In Dictionary.” Strings in a language’s dic-
tionary that are also present in English are marked as “In Dictionary”; for example, Spanish
pan (bread). Strings that do not appear in a specific language’s dictionary, but do appear in
English, are marked as “From English.” Strings appearing in neither the specific language
dictionary nor the English dictionary are marked as “Not in Dictionary.”

Assigning the strings in the original word lists used by Piantadosi et al. (2011) to these
three categories reveals that a substantial proportion of strings are not among the commonly
accepted word types in the relevant languages (Fig. 1). For the Czech, French, Portuguese,
Spanish, and Swedish items used by Piantadosi et al. (2011), more than 10% of words are
found in an English dictionary, but not in the dictionary of the nominal language. Examples
of such items, sorted by frequency in the corpus, are presented in Table 2. While loanwords are
expected for samples of most languages, these rates are significantly higher than those found
for Google Books 2012, where the same analysis yielded rates of English-only types from
0% to 3% of word types in non-English datasets. A second issue is that a high proportion
of strings in the analysis are found in neither the relevant language-specific dictionary nor
English. These types include a high proportion of mispellings, low-frequency proper nouns,
acronyms, emoji, and HTML tags which were not removed by the preprocessing procedure
in Piantadosi et al. (2011).
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Fig. 2. Piantadosi et al. (2011) found higher global correlations between word length and in-context predictability
(average information content) as measured by mean trigram surprisal (blue bars in panel 1) than between word
length and frequency (treated as unigram surprisal), red bars in panel 1). The pattern is substantially weakened or
reversed within each of three subgroups of word types: those that are found in the relevant dictionary (panel 2),
those not found in a dictionary (panel 3), and those found in English (panel 4).

Admitting these two categories of strings into the analysis could have minimal effects on
the overall results if their members behave in a relatively similar fashion to words widely
accepted as belonging to the language. However, an analysis of the proposed relationship
(information content vs. length) within each of these categories shows that this is not the case.
We find that the correlations computed over the in-dictionary subsets across languages (Fig. 2,
column 2) do not reproduce the global pattern for each language found in (Piantadosi et al.,
2011) (column 1). While a stronger correlation between length and in-context information
content obtains for within-dictionary types for Dutch, English, French, and Portuguese, we
find the opposite preference among the remainder of the languages. Out-of-dictionary types
show no strong preference (column 3), and types from English (for non-English datasets)
show a stronger relationship between frequency and word length (column 4).

Using this tripartite categorization, we can investigate how the somewhat unintuitive cor-
relations in Fig. 2 emerge from the three subsets across the languages in the sample. This
analysis suggests that the key result in Piantadosi et al. (2011) reflects instances of Simpson’s
paradox, where correlations in the aggregate dataset obscure correlations among important
subgroups in the sample (Blyth, 1972). Global correlations (i.e., correlations computed over
word types in all three categories) are high between mean in-context information content
and word length, and low between word frequency and word length. Global correlations are
high in the first case because out-of-dictionary strings and words from English are on average
shorter than in-dictionary words, and have lower average information content (red and green
density plots in Fig. 3, right), while in-dictionary words are longer and have higher average
information content (blue density plots in Fig. 3, right). The positions of these three different
categories make for a strong global correlation, but much weaker per-category correlations as
observed in Fig. 2.

In the second case of Simpson’s paradox, the strength of the relationship between unigram
surprisal and word length is depressed by the inclusion of all three categories. Word types
from English have a similar distribution of frequency (and thus negative log probability) to
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Fig. 3. Density plots depict the relationship between word length and unigram surprisal (negative log probability, a
transformation of normalized frequency) and average information content (mean negative log probability under a
trigram model). Words are stratified into three categories: those in each language’s Aspell dictionary (blue), those
in a spelling dictionary for English (red), and those not in either (green). Marginal boxplots show the median,
interquartile range (IQR), and 1.5 × IQR for each of the groups. Densities are normalized per category. This
analysis suggests that English and out-of-dictionary words may have different profiles than in-dictionary words,
and that the higher correlation between average information content and word length is in large part driven by their
inclusion in a case of Simpson’s paradox.

in-dictionary words, and those not found in either dictionary tend to have a higher negative log
probability than those from the language (Fig. 3, left). This disguises a stronger correlation
between unigram surprisal and word length among in-dictionary types.

Said otherwise, for many of the language in the analysis, words from English and those
found in neither dictionary—short and highly predictable, yet relatively infrequent—deflate
the correlation between frequency and character length, and inflate the correlation between
information content and character length. Taken together, these analyses suggest that the
obtained correlations in Piantadosi et al. (2011) are highly dependent on the choice of strings
in the analysis, and that in-context information content is no more predictive than frequency
of word length when the correlation is evaluated on words found in the dictionary for the
relevant language.

2.2. Text encoding: UTF-8 versus ASCII

A second standard problem in computational analyses of language is choosing how to
represent words, or how to reflect the orthographic conventions of a community in the
distinctions between words. The representation of words as strings on modern computing
systems requires the specification of a “character encoding” standard, which maps binary
sequences (interpretable as numerical code units) to human-readable on-screen character rep-
resentations, well-known examples of which include ASCII and UTF-8. Piantadosi et al.
(2011) converted word tokens from the Google 1T datasets (Brants & Franz, 2006, 2009)
to closest ASCII equivalents. For English, this is an inconsequential data processing choice:
almost all English words can be encoded losslessly using ASCII character representations
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Fig. 4. Correlation between average information content estimates computed from ASCII and UTF-8 encoded
datasets for the English language (left) and Czech (right). Red indicates the line of identity y = x, expected if
ASCII encoding has no effect on computed information content estimates. Cyan indicates the best linear fit for
the language. The right panel shows the distribution of the difference in the two datasets. The subplot shows the
distribution of the differences for the two languages. This analysis suggests that converting UTF-8 strings to closest
ASCII equivalents introduces significant variance and may obfuscate underlying relationships in some languages,
like Czech.

(i.e., representing them with the letters a–z), and operations with ASCII representations are
significantly faster—often an order of magnitude so—than those with UTF-8 encoded text
(e.g., ö, ô, ò, ȯ, ø). But while this mundane data processing choice has minimal implications
for English, it is highly consequential in languages that use non-ASCII orthography, espe-
cially diacritical marks. Psycholinguistic research suggests that accented letters have separate
representation in languages where the phonology of accented letters diverges from that of
unaccented letters (Chetail & Boursain, 2019; Perea, Fernández-López, & Marcet, 2020).
Converting UTF-8 to ASCII may thus merge multiple distinct forms, for example, Spanish si
(approximately English “if”) and sí (“yes”), in effect collapsing the statistical profiles of mul-
tiple word forms. This may have complex effects on both frequency and average information
content estimates. An analysis of average information content estimated from UTF-8 encoded
datasets versus ASCII-encoded datasets reveals that this data processing step is indeed conse-
quential for some languages (see “Methods” for additional details). While the two measures
are almost perfectly correlated in English (R2 = .994 in the 25,000 most frequent words;
Fig. 4, left), languages that use a broader inventory of characters in their orthography have
substantially more unexplained variance across words (e.g., Czech, R2 = .464; see Fig. 4,
center). Further, an examination of the distribution of the differences in average information
content estimates in Czech (Fig. 4, right) shows a significant rightward skew, indicating that
many words are found to have inflated average information content estimates when computed
from the ASCII-encoded dataset.
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2.3. Confounds from typological variation

A third common challenge in corpus-based language research is selecting an appropriate
sample of words for analysis. This can be particularly challenging when words, constructions,
or syntactic structures must be compared across languages. Of particular interest here, lan-
guages vary in their richness of their morphological processes, or the ways in which word
forms can be constructed from units smaller than the word. Among the languages present in
the sample in Piantadosi et al. (2011), there is substantial variation in various dimensions of
morphological complexity. This includes the degree of inflectional synthesis of verb forms
(Bickel & Nichols, 2005), propensity for pronominal forms to attach to verb forms (e.g.,
pronominal clitics in Spanish), and the richness of case-marking systems for nouns, which
range from two cases in English (Quirk et al., 1985) to 6+ cases in Polish (Bielec, 1998).
This variation can have substantial consequences for the composition of the set of word types
under analysis. For example, whereas the English 1T dataset has six inflections of the lemma
sell (e.g., sell, sells, sold, selling, seller, sellers), Spanish, a language with much richer tense
system for verbs and pronominal clitics, has 22 in the top 25,000 most frequent words; for
example véndemelo, or you (informal) sell (imperative) me it (masculine). Depending on what
parts of speech have high morphological complexity, large differences may emerge in the
composition of the word list under analysis across languages: Spanish may have a prepon-
derance of verb forms from a few verbs with high lemma frequency, while a language with
extensive nominal case marking would have more of the word list coming from nouns with
high lemma frequencies (e.g., Russian, per Wade 1992). Again, it is unclear what bias may
be introduced by this sort of variation in the list of word types under analysis: The impli-
cations may vary by language and interact in complex ways with the two issues above (text
encoding and the choice of the set of word types under analysis). We introduce a method
below to address this problem by selecting items from a list of semantically matched con-
cepts across languages.

3. Methods

The current work follows the basic methodology of Piantadosi et al. (2011) in (a) select-
ing a set of word forms to analyze in each language; (b) computing word lengths from
orthographic representations, and unigram surprisal and average information content for
each of these words; and (c) computing the correlation between these two measures for each
language in the sample. However, we make three substantively different methodological
choices than the preceding work, as motivated above: limiting the set of strings under
analysis to those conventionally accepted as belonging to the language’s lexicon, enforcing
UTF-8 text encoding throughout, and computing the correlation over a matched sample of
lexical concepts rather than the highest frequency tokens in the sample. We also extend these
analyses to an additional cross-linguistic dataset that has since been made available: Google
Books 2012 (Michel et al., 2011). As the product of scanned books, Google Books may be
subject to lower levels of data pollution than the internet-derived Google 1T corpus.
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3.1. Datasets for frequency and information content estimates

We obtained Google Web 1T datasets from the Linguistic Data Consortium (Brants
& Franz, 2006, 2009), the Google Books 2012 datasets from storage.googleapis.com/
books/ngrams/books/datasetsv2.html (Michel et al., 2011), and OPUS (2013) from open-
subtitles.org (Tiedemann, 2012). We discard all n-grams consisting only of punctuation and
remove punctuation appearing in other (non-punctuation) words, with the exception of apos-
trophes. Following Piantadosi et al. (2011) we make the simplifying assumption that the
tokenized orthographic forms correspond to psychologically “real” words in the lexicon of
speakers; while the lexical status of orthographic words is an active area of investigation
(e.g., German compound nouns, Lorenz & Zwitserlood, 2016), it holds for the vast majority
of word forms in the analysis. We convert all characters to lowercase using the relevant POSIX
locale. In the case of Google Books 2012, records from earlier than 1,800 are discarded, in
light of a higher error rate in optical character recognition among these older documents.
Counts are stored using ZS, a specialized file format for efficient retrieval of n-gram counts
(http://github.com/njsmith/zs/).

3.2. Estimating in-context information content

Following Piantadosi et al. (2011), we first analyze a word list constructed from the 25,000
most frequent words in each dataset, filtered by the tokens present in the OPUS subtitle
corpus.4 For each word type w, we compute a measure of frequency, negative log proba-
bility (unigram surprisal). We also compute a measure of average in-context predictability,
or average information content, as the negative log trigram probability weighted by context
frequency, − 1

N

∑N
i=1 log P(W = w|C = ci), where ci is the context for the ith occurrence of

w and N is the frequency of word w in the dataset. Consistent with Piantadosi et al. (2011),
we do not employ a smoothing scheme for the n-gram models.

We then analyze a second set of 25,000 word types for each language, maintaining the
OPUS filter while additionally limiting to in-dictionary word types. We limit to the word
types recognized by the UNIX utility Aspell for locale correpsonding to each dataset.5 U.S.
English and European Portuguese are used for English and Portuguese, respectively. This
step removes proper nouns including person and place names, acronyms, and loanwords from
other languages.

3.3. Matching word list composition across languages

Here, we propose a control that limits the number of word forms per each lemma in the
analysis. To do this, we conduct the analysis over a subset of word forms from each language
intended to match semantic content to the degree possible. Specifically, we use elicited labels
for a matched set of concepts from the Intercontinental Dictionary Series (IDS, Key & Com-
rie, 2015). Similar to Swadesh lists (Swadesh, 1971), IDS datasets contain sets of synonyms
matched on conceptual content across a broad sample of languages. Unlike Swadesh lists,
IDS datasets include a larger set of approximately 1,300 concepts, of which a subset (800–
1,200) are present in a given language. The IDS datasets contain the unmarked form of the
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concept; for example, the singular in the case of an English count noun, or the infinitive in
the case of a Spanish verb. Conducting the analysis on the IDS subset thus results in a more
similar set of lemmas in the analysis, while reducing the effect of morphological complexity
on the composition of the word list. Additionally, it permits the treatment of concept as a
factor in modeling.

3.4. Code availability

Information content estimates and analyses presented here are available in a repository
on the Open Science Foundation osf.io/np2bs. Lexical information content estimates were
calculated with the ngrawk2 library, github.com/smeylan/ngrawk2

4. Results

4.1. Maintaining character encoding

We first reproduce the analysis from Piantadosi et al. (2011), but recompute the frequencies
and average information content estimates over UTF-8 representations. We use the same fil-
tering rule of including only word forms that appear at least once in the OPUS subtitle corpus
(i.e., not using a dictionary-based filter). In addition to the Google 1T dataset used by Pianta-
dosi et al. (2011), we also evaluate the correlation among datasets in Google Books 2012.
Even with this minimal data processing manipulation, we find attenuated support for the pat-
tern of results found by Piantadosi et al. (2011) (Fig. 5). Among the Google 1T languages,
the difference in correlations for Romanian fails to reach significance, and Czech and Polish
demonstrate a statistically significant higher correlation between frequency and word length
than between average information content and word length. In Google Books 2012, Hebrew
shows a stronger correlation between frequency and word length, while Spanish shows no sig-
nificant difference. While the above languages diverge from the previously obtained results,
English, French, German, and several other languages demonstrate robustly higher correla-
tions for average information content and length, consistent with Piantadosi et al. (2011).

4.2. Analyzing word types in dictionaries

Using UTF-8 encodings adopted in the previous section, we next investigate the conse-
quences of enforcing a stronger constraint on words entering the analysis. The enforcement
of this stronger constraint on the word types under analysis results in a substantive change in
the pattern of results (Fig. 6). We again emphasize that the theoretical arguments in Pianta-
dosi et al. (2011) (p. 3526) imply that there should be a stronger relationship between word
length and predictability than word length and frequency among this subset of words. If the
correlation emerges from qualitatively different behaviors among different types of strings
(in-dicationary vs. out-of-dictionary), then the theory must be amended to account for this
fact. Among the 11 languages from the Google 1T corpora, only two (English and French)
show significantly higher correlations for in-context predictability and word length than
frequency and word length. Only 2 of the 11 1T languages, English and French, show the

 15516709, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.12983 by Princeton U

niversity, W
iley O

nline L
ibrary on [09/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 26 S. C. Meylan, T. L. Griffiths / Cognitive Science 45 (2021)

Fig. 5. Language-wide Spearman’s rank correlation coefficients between average information content and word
length (gray) and frequency (normalized and negative log-transformed) and word length (yellow) for the 25,000
most frequent word types in each language. Word types are limited to only those present in the respective OPUS
dataset for each language (compare with Fig. 6, where the analysis is restricted to word types in the relevant
dictionary). Gray error bars indicate 95% bootstrapped confidence intervals. Black horizontal lines indicate the
partial correlation (with the other predictor residualized out), again with 95% bootstrapped confidence intervals.
Asterisks above the graph indicate whether the difference is statistically significantly different from zero, while
those below refer to the partial correlations; red indicates a result inconsistent with Piantadosi et al. (2011). Black
circles at the bottom indicate the relative size of the corpus used to estimate frequency and average information
content. Parentheticals on the x-axis indicate the number of word tokens in the sample.

pattern found by Piantadosi et al. (2011). Five of 11 languages (Czech, Dutch, Polish,
Spanish, and Swedish) show the opposite pattern, with a significantly higher correlation for
frequency and word length. Neither predictor is significantly stronger among three remaining
languages (German, Italian, and Portuguese).

4.3. Addressing confounds from typological variation

In the third analysis, we limit the set of types under consideration to those in the Interna-
tional Dictionary Series. This limits the number of word types in the analysis associated with
any one lemma, in that morphologically unmarked forms are elicited to construct the dictio-
nary entry for each language. Matching semantic content to the items in the IDS means that
the identity of each concept can be used as a control variable. We include average information
content and frequency estimates from OPUS for this analysis because the words included on
the IDS word lists are sufficiently high frequency that data sparsity is less problematic, such
that smaller datasets such as those in OPUS may provide relatively accurate average infor-
mation content estimates. For each dataset (OPUS, Google 1T, and Google Books 2012) we
compare two mixed-effects regression models that predict word length, one using frequency
(again operationalized as unigram surprisal) and the other in-context predictability (again
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S. C. Meylan, T. L. Griffiths / Cognitive Science 45 (2021) 15 of 26

Fig. 6. Language-wide Spearman’s rank correlation coefficients between average information content and word
length (green) and frequency and word length (red) for the 25,000 most frequent word types in each language.
Word types are limited to those present in the respective dictionary and OPUS dataset for each language. Plotting
conventions are the same as in Fig. 5.

operationalized as average information content under a trigram model). Unigram surprisal,
average information content, and word length were all Z-scored within each language. Lan-
guage and concept were both treated as random intercepts. This corresponds to the intuition
that different concepts have different average word lengths across languages, and that some
languages may tend toward longer orthographic representations than others.

Does frequency or in-context predictability better predict the pattern of word lengths
seen across languages for this matched set? We compare two models. In Model 1, average
information content of IDS words in each language is treated as the sole fixed effect. In
Model 2, unigram surprisal of IDS words in each language is treated as the sole fixed effect.
Both models are fit with maximum likelihood estimation (vs. restricted maximum likelihood
estimation) because they differ in fixed effects. Across the three datasets, Model 2 demon-
strates a better fit according to model log likelihood, AIC and BIC (Akaike’s Information Cri-
terion and Bayesian Information Criterion, respectively; Table 3). In each case, an ANOVA
reveals this difference to be significant, in favor of the model using negative log frequency as
the better predictor of word length in characters. This suggests that log word frequency is the
better predictor of word length among the word forms used for this matched set of concepts
and referents.

5. Discussion

Large-scale web-based linguistic corpora introduce new methodological challenges. We
investigate the implications of methodological choices made in a prominent recent work
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Table 3
Comparison of mixed-effects models predicting word length for word types in the Intercontinental Dictionary
Series (IDS) in three datasets

OPUS Google 1T Google Books 2012

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Fixed effects
Average information content 0.251 0.202 0.248

(0.008) (0.007) (.012)
Negative log probability 0.395 0.392 0.348

(0.009) (0.009) (.014)
Intercept 0.021 −0.001 0.033 −0.002 0.004 −0.014

(0.018) (0.018) (0.019) (0.018) (0.021) (0.021)
Random effects
No. of concepts 1,303 1,303 1,302 1,302 1,292 1,288
Concepts standard deviation 0.605 0.590 0.625 0.605 0.643 0.657
No. of languages 12 12 11 11 5 5
Languages standard deviation < 10−10 10−10 < 10−10 < 10−10 < 10−10 < 10−10

Model fits
Log-likelihood −23,878 −23,411 −20,914 −20,379 −9,976 −9,879
AIC 47,766 46,833 41,876 40,806 19,962 19,768
BIC 47,805 46,872 41,837 40,768 19,996 19,803.0

Note: Average information content (average trigram surprisal under a trigram model), unigram surprisal (nega-
tive log probability) , and word length are each Z-scored within each language. Concepts (entries in the IDS) and
languages are treated as random effects. Bold values indicate model with best fit for each dataset.

regarding the relationship between communicative pressures and the properties of natural lan-
guage lexica, (Piantadosi et al., 2011). After implementing a set of methodological improve-
ments, we find that the results are robust in some languages (e.g., English in Google Books
and Google 1T), but we fail to find clear cross-linguistic evidence of a stronger correlation
between in-context predictability and word length than word frequency and word length. In
that these methodological choices—inclusion criteria for linguistic material, treatment of text
encoding, and composition of the word list under analysis—are common to many large-scale,
cross-linguistic corpus analyses, we encourage researchers to take heed regardless of the
implications for research on communicative efficiency, a point that we take on after con-
sidering the specific implications of our results.

5.1. Implications for research on communicative efficiency

In the current work, we fail to reproduce the systematically higher correlations between
in-context predictability and word length than frequency and word length, as obtained by
Piantadosi et al. (2011). Subsequent experimental and corpus work has provided some
convergent evidence for the theoretical proposal in Piantadosi et al. (2011) concerning
communicative efficiency and language structure, namely a preference for shorter referring
expressions when supported by context (Mahowald et al., 2013) as well as shorter acoustic
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durations (Seyfarth, 2014) when a word is more contextually predictable. We leave it to
future work to adjudicate between these theoretical viewpoints and to refine theories of
listener-oriented language optimization to account for this discrepancy.

One possibility for the difference between the results reported here and those from Pianta-
dosi et al. (2011) is that the pattern remains robust for the language with the largest corpora
(English), but that average information content estimates are biased in the smaller corpora.
While the Google 1T dataset contains a nominal trillion tokens of English, the Western Euro-
pean languages datasets sum to one trillion (i.e., 100B tokens per each of 10 languages). This
quantity is further reduced in preprocessing, once web page content has been filtered out.
These datasets also have minimum token counts necessary for inclusion in the dataset; for
example, a trigram is included if it is seen more than 40 times in the raw data.

While several billion appears to be a relatively large number of tokens, it may nonethe-
less fail to overcome the fact that language is composed, in large part, of exceedingly rare
events, and that characterizing information content requires accurately characterizing behav-
ior that is only very rarely observed. This problem is exacerbated by the difficulty of applying
smoothing methods to such large count-based corpora. Words with frequency rank 25,000—
the lower limit of frequency among those analyzed in Piantadosi et al. (2011)—are still seen
in a relatively small number of contexts in many of the datasets.

We thus conducted a series of analyses on the Google 1T datasets to test the hypothesis
that average information content estimates may be less reliable—more biased—in the smaller
datasets. We use a binomial sampling method (see Appendix) to estimate average information
content for 100 randomly sampled words, using a Swedish Google 1T-sized subsample of the
English Google 1T counts. We chose the size of the Swedish corpus for this analysis because
it has the smallest token count among the Google 1T languages after filtering. Recomput-
ing average information content on 100 words from English from a 6% subsample of the 1T
dataset reveals a an extremely high correlation (R2 > .99; Fig. 7). This suggests that the dif-
ference in sizes between English 1T and the other European languages, though roughly 10×
(some variability depends on preprocessing), may have a minimal effect on average informa-
tion content estimates.

The conclusion that average information content estimates in the much smaller Swedish
dataset are minimally biased with respect to an English-sized dataset requires testing a key
assumption: that the relationship between sample size and bias is the same between languages.
This assumption is, at best, suspect given the ways in which language structure, as charac-
terized by n-grams, may vary across languages. For example, while languages can generally
be characterized in terms of a prototypical word order, the degree to which they deviate from
this order may vary, with several languages showing a stronger proclivity for free word order,
especially when grammatical role is redundantly marked with a case system. A language with
less strict adherence to dominant word order will ceteris paribus demonstrate higher entropy
for simple sequence based models such as n-grams.

To test how bias in average information content varies as a function of sample size across
languages, we again use binomial sampling (Appendix). First, we sample contexts and con-
tinuations representative of a 16 billion word corpus for each of 100 words in each language,
reflecting uniform spacing between frequency rank 1 and 25,000. We then estimate average
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Fig. 7. Bias in average information content from a 16B token subsample of the English Google 1T dataset. 16B
tokens were chosen as it is the size of the smallest Google 1T dataset for other European languages after prepro-
cessing (Swedish, from a nominal 100B words).

information content on seven subsamples, reflecting 2 billion word increments sampled from
the above-derived 16 billion word subsamples. For each size subsample, average informa-
tion content is taken as the mean from 10 samples, and we compute the difference of this
mean from the average information content estimate from the first, 16 billion word sampled
corpus.

This analysis reveals that bias as a function of sample size varies across languages (compare
Czech and Dutch in Fig. 8). This is corroborated by an ANOVA examining difference as a
function of language, corpus size, and language × corpus size (all significant, p < .001).
However, the absolute magnitude of the bias is relatively small in comparison to the average
information content estimates themselves. Even in a 12.5% subsample of the most variable
language (Dutch), error with respect to the larger dataset is much less than 0.05 nats for 95%
of the words tracked. This suggests that the small corpus sizes in non-English Google 1T
datasets (all an order of magnitude smaller than the English 1T dataset) are unlikely to bias
average information content estimates in a way that drives the principal pattern of results,
and that the same pattern of results would obtain if datasets as large as the English one were
available for other languages.

Turning to the third analysis, one possible critique of the use of the IDS is that the restricted
set of lemmas may not be representative of full lexica, and it may thus obscure patterns that
emerge across the entire lecion. IDS datasets contain a small subset (800–1,200 items per
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Fig. 8. Bias in average information content estimates by language and size of corpus sample (2–16B subsamples
of a 16B word corpus for each language).

language) and tend to be relatively short and frequent with respect to the larger set of words
under analysis in Piantadosi et al. (2011). However, analogous to the argument presented
above regarding the use of in-dictionary words, we should expect to see the same pattern
of results hold for this subset if indeed length is driven by information content rather than
frequency. Further, if a different relationship holds among these words, theories of the inter-
action of communicative pressures and language structure must account for why it does not
hold among a sample of high-frequency words.

A second possible critique of the IDS-based analysis is that information content estimates
may vary according to what communicative contexts are covered by the base form of a word.
For example, consider a hypothetical language, English Prime, which differentiates a nomi-
native form dog and an accusative form of dog, doggo. In English, the information content
estimate for “dog” reflects the weighted combination of subject and direct object uses of
“dog”; under English Prime, it reflects only the subject usage. Under both languages, the
direct object usage is more predictable than subject usage: It is a relatively likely continuation
for a small set of transitive verbs. This would mean that dog would have a higher informa-
tion content in English Prime because it reflects only the less predictable nominative usage of
“dog.”

Because of variability in usage, the IDS analysis would ideally take into account all
inflections of a lemma. Unfortunately, we do not have access to consistent, high-quality
lemmatizers across the set of languages in the sample, nor access to datasets with the words
in their original sentential frames, as may be required to tag with appropriate lemmas. A
related potential source of variation in the information content estimate is which meanings
are co-lexified under the base form; that is, the set of polysemous and homographic uses of
the base form in each language. We leave it to future work to match usages more precisely
on the basis of word meaning and word form.
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5.2. Best practices for working with large-scale linguistic data

The case study presented above demonstrates how preprocessing and analytical choices
can influence the obtained results for a corpus analysis of large-scale linguistic data, partic-
ularly those built from language data on the Internet. We enumerate here a set of specific
recommendations for researchers conducting (or reviewing) work that relies on such methods
(Table 1). All these recommendations presuppose practices that we hope are already consid-
ered standard in the field: that researchers will publish their code and share derived datasets
in cases where the cost of computation is high.

5.2.1. Evaluate the linguistic status of web-gathered material
A challenge we address above is that of verifying that the collection of text corresponds

to conventionalized linguistic forms shared by speakers of a language (Section 2.1). Web-
scraped datasets may contain a large proportion of material that is outside of these conven-
tional forms, either as a result of errors in identifying the source language (e.g., the processing
pipeline that was used to generate the Google 1T dataset), or because many strings appear on
the Internet, which are not properly linguistic. If extensive linguistic material from other lan-
guages is present in an analysis, it may drive the obtained results, as we found here. We
recommend conducting analyses after filtering with a large, up-to-date, rule-based dictionary
such as Aspell to identify the conventional word forms in the language.

5.2.2. Represent words with care
Words—a slippery yet nonetheless useful construct—are surprisingly difficult to repre-

sent to machines. Modern systems of text representation rely on text encoding, or maps
from code units (typically binary representations) to characters (units of text with human-
interpretable semantic content). Researchers should choose and consistently employ a text
encoding throughout their preprocessing and analysis that is capable of capturing the minimal
differences between word forms respected by a linguistic community. Outside of English-only
research, this effectively means that researchers should use the Unicode standard, or UTF-8
encoding. While the choice of encoding scheme makes little difference for English, electing
a less expressive encoding scheme can have profound effects on analyses for languages that
require a broader character set to distinguish word forms, such as the Czech case in Sec-
tion 2.2.

Researchers should also note that above and beyond the problem of maintaining the appro-
priate text encoding throughout their analysis, there is the further problem of text normal-
ization: More expressive text encoding schemes such as Unicode are able to generate what
appear to be the same human-readable character with many different code units. For exam-
ple, in Unicode, the sequences U+0065, U+0301 (“Latin small letter e,” “combining acute
accent”) and U+00E9 (“Latin small letter e with acute”) are both rendered as é. Unless the
code units are “normalized” to the same standard (i.e., all multicharacter diacritical marks
converted to single characters, or the reverse), there is no guarantee of consistency within or
across datasets. This detail, while seemingly banal, can have consequences for the computa-
tion of lexical statistics, as well as for merging information about words across datasets.
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Finally, the process of tokenization—the discretization of utterances into orthographic
words—is nontrivial. While whitespace between characters generally works in English,6 this
solution is not robust across languages, many of which use spaces differently (e.g., Thai).
A variety of heuristic and statistical methods may be used to tokenize words in such cases;
both the effectiveness of the method and its appropriateness for the task at hand should be
considered carefully.

For research using orthographic representations of words, we strongly recommend the con-
sistent use of “normalized” UTF-8 representation, and we encourage researchers to carefully
consider how the dataset was tokenized. Researchers may also consider using learned, gener-
alizable representations from natural language processing that are more robust to these issues,
such as byte-pair encoding (Kudo, 2018; Sennrich, Haddow, & Birch, 2016) or embeddings
derived from the hidden layer of a convolutional neural network (Kim, Jernite, Sontag, &
Rush, 2016; Jozefowicz, Vinyals, Schuster, Shazeer, & Wu, 2016).

5.2.3. Match the set of words under analysis across languages
A third challenge of cross-linguistic work looking at the properties of lexica is choosing the

set of words in a given analysis. As argued in Section 2.3, the composition of a word list of
the n most frequent words in a language depends heavily on the typological characteristics of
a language, especially the complexity of morphological paradigms. We recommend the use
of matched word lists—a collection of minimally inflected/minimally marked word forms
elicited for a list of concepts such as the IDS (Key & Comrie, 2015).

5.2.4. Perform a sensitivity analysis or take a “multiverse” approach
In addition to the above three recommendations that target specific points of failure, we

urge researchers to adopt a general strategy of evaluating hypotheses over a range of analyti-
cal choices, rather than committing to one set of choices. While the specific recommendations
above constitute best practices that may help avoid common pitfalls, they are not uniformly
appropriate, nor do they solve the vast range of possible problems that may emerge. Lim-
iting an analysis to words in a dictionary or using a matched set of words for an analysis
introduce their own methodological drawbacks (see Sections 2.1 and 3.3). Rather, we encour-
age researchers working with large, noisy datasets in cognitive sciences and related fields to
employ the general framework and approach of sensitivity analysis, in which the robustness
of a particular result is evaluated by examining how those results change as a function of
models, inputs, and assumptions (Thabane et al., 2013). In line with the “multiverse” analyti-
cal approach outlined in Steegen et al. (2016), we also encourage researchers to evaluate their
hypotheses over a range of “reasonable” preprocessing and analytical choices, and report on
this larger space of analyses whenever possible in corpus-based research.

While sensitivity analysis is often prohibitively expensive or time-consuming for exper-
imental work, computation-first methods such as corpus analysis allow for researchers to
automate the process of hypothesis testing across a range of models, inputs, and assump-
tions. Provided that researchers have allocated time beforehand to take into account this added
dimensionality, the approach can incur relatively minor additional effort. This effort is well
worth it: Rigorous evaluation across a range of preprocessing choices can help establish the
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robustness of results or flag them as “brittle” results that only hold under certain assumptions.
For some researchers, this practice may already be self-evident; here we appeal to the remain-
der of the cognitive science, quantitative linguistics, psycholinguistics, and NLP communities
to pursue these practices in the name of constructing a robust lattice of scientific results, from
which future work can best progress.

6. Conclusion

Large-scale web-based linguistic corpora constitute a new set of resources that may help
to elucidate long-standing questions in language research. However, they also bring new
methodological challenges in data processing and analysis. The best practices we propose
offer a way for language researchers to standardize their approach to analyzing large multi-
lingual corpora and highlight the importance of assuring the robustness of analyses.
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Notes

1. Historically known as “sanity checks,” we encourage the adoption of the term “canary.”
2. The better known Zipf’s Law presented in the same work, concerns the power-law dis-

tribution of word frequencies.
3. We do not use the dictionary-based filter to restrict the input to the n-gram models used

to compute in-context predictability.
4. We use the 2013 release of the dataset.
5. We allow uppercase forms for German, which capitalizes all nouns by convention.
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6. The obvious exception is punctuation; sequences with high mutual information content
such as whoops-e-daisies or South Korea pose harder theoretical challenges (Church &
Hanks, 1990).

References

Altmann, G., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the domain of subsequent
reference. Cognition, 73(3), 247–264.

Aylett, M., & Turk, A. (2004). The smooth signal redundancy hypothesis: A functional explanation for relation-
ships between redundancy, prosodic prominence, and duration in spontaneous speech. Lang Speech, 47(1),
31–56.

Baroni, M., Bernardini, S., Ferraresi, A., & Zanchetta, E. (2009). The WaCky wide web: A collection of very large
linguistically processed web-crawled corpora. Language Resources and Evaluation, 43(3), 209–226.

Bentz, C., & Ferrer-i-Cancho, R. (2016). Zipf’s law of abbreviation as a language universal. Proceedings of the
Leiden workshop on capturing phylogenetic algorithms for linguistics. Universitätsbibliothek Tübingen, Tübin-
gen.

Bickel, B., & Nichols, J. (2005). Inflectional morphology. In T. Shopen (Ed.), Language typology and syntactic
description. Cambridge, UK: Cambridge University Press.

Bielec, D. (1998). Polish: An essential grammar. London: Routledge.
Blyth, C. (1972). On Simpson’s paradox and the sure-thing principle. Journal of the American Statistical Associ-

ation, 67(338), 364–366.
Bochkarev, V., Solovyev, V., & Wichmann, S. (2014). Universals versus historical contingencies in lexical evolu-

tion. Journal of the Royal Society Interface, 11(101), 20140841.
Brants, T., & Franz, A. (2006). Web 1T 5-gram version 1 LDC2006T13. Philadelphia, PA: Linguistic Data Con-

sortium.
Brants, T., & Franz, A. (2009). Web 1T 5-gram, 10 European languages version 1 LDC2009T25. Philadelphia,

PA: Linguistic Data Consortium.
Brysbaert, M., New, B., & Keuleers, E. (2012). Adding part-of-speech information to the SUBTLEX-US word

frequencies. Behavior Research Methods, 44(4), 991–997.
Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., & Robinson, T. (2013). One billion

word benchmark for measuring progress in statistical language modeling. Conference of the International
Speech Communication Association (pp. 2635–2639). Last accessed 6/10/2018. Available at: https://static.
googleusercontent.com/media/research.google.com/en//pubs/archive/41880.pdf.

Chetail, F., & Boursain, E. (2019). Shared or separated representations for letters with diacritics? Psychonomic
Bulletin & Review, 26(1), 347–352.

Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: The MIT Press.
Church, K., & Hanks, P. (1990). Word association norms, mutual information, and lexicography. Computational

Linguistics, 16(1), 22–29.
Davies, M., & Fuchs, R. (2015). Expanding horizons in the study of World Englishes with the 1.9 billion word

Global Web-based English Corpus (GloWbE). English World-Wide, 36(1), 1–28.
Denoyer, L., & Gallinari, P. (2006). The Wikipedia XML corpus. International Workshop of the Initiative for the

Evaluation of XML Retrieval (pp. 12–19), Dagstuhl Castle, Germany.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, June). BERT: Pre-training of deep bidirectional

transformers for language understanding. Proceedings of the 2019 conference of the North American chap-
ter of the Association for Computational Linguistics: Human language technologies, Vol. 1 (long and short
papers) (pp. 4171–4186). Minneapolis, MN: Association for Computational Linguistics. Available at: https:
//www.aclweb.org/anthology/N19-1423 https://doi.org/10.18653/v1/N19-1423

Evans, N., & Levinson, S. (2009). The myth of language universals: Language diversity and its importance for
cognitive science. Behavioral and Brain Sciences, 32(5), 429–448.

 15516709, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.12983 by Princeton U

niversity, W
iley O

nline L
ibrary on [09/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41880.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41880.pdf
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/N19-1423


24 of 26 S. C. Meylan, T. L. Griffiths / Cognitive Science 45 (2021)

Fenk, A., & Fenk, G. (1980). Konstanz im kurzzeitgedächtnis—Konstanz im sprachlichen Informationsfluß. In
Zeitschrift für experimentelle und angewandte Pshychologie XXVII (Vol. 3, pp. 400–414).

Ferrer-i-Cancho, R. (2017). The placement of the head that maximizes predictability. An information theoretic
approach. Glottometrics, 39, 38–71.

Ferrer-i-Cancho, R. (2018). Optimization models of natural communication. Journal of Quantitative Linguistics,
25(3), 207–237.

Ferrer-i-Cancho, R. F., Bentz, C., & Seguin, C. (2020). Optimal coding and the origins of Zipfian laws. Journal of
Quantitative Linguistics, in press. Available at: https://doi.org/10.1080/09296174.2020.1778387

Ferrer-i-Cancho, R., Bentz, C., & Seguin, C. (2020). Optimal coding and the origins of Zip-
fian laws. Journal of Quantitative Linguistics, 1–30. Available at: https://paperswithcode.com/paper/
optimal-coding-and-the-origins-of-zipfian/review/

Ferrer-i-Cancho, R., & del Prado Martín, F. M. (2011). Information content versus word length in random typing.
Journal of Statistical Mechanics: Theory and Experiment, 2011(12), L12002.

Ferrer-i-Cancho, R., Hernández-Fernández, A., Lusseau, D., Agoramoorthy, G., Hsu, M. J., & Semple, S. (2013).
Compression as a universal principle of animal behavior. Cognitive Science, 37(8), 1565–1578.

Genzel, D., & Charniak, E. (2002). Entropy rate constancy in text. Proceedings of the 40th annual meeting of the
Association for Computational Linguistics (ACL) (pp. 199–206), Philadelphia, PA.

Gibson, E., Bergen, L., & Piantadosi, S. (2013). Rational integration of noisy evidence and prior semantic expec-
tations in sentence interpretation. Proceedings of the National Academy of Sciences USA, 110(20), 8051–8056.

Gibson, E., Futrell, R., Piandadosi, S., Dautriche, I., Mahowald, K., Bergen, L., & Levy, R. (2019). How efficiency
shapes human language. Trends in Cognitive Sciences. Available at: https://doi.org/10.1016/j.tics.2019.02.003

Gustison, M., Semple, S., Ferrer-i-Cancho, R., & Bergman, T. (2016). Gelada vocal sequences follow Menzerath’s
linguistic law. Proceedings of the National Academy of Sciences, 113(19), E2750–E2758.

Heesen, R., Hobaiter, C., Ferrer-i-Cancho, R., & Semple, S. (2019). Linguistic laws in chimpanzee gestural com-
munication. Proceedings of the Royal Society B, 286(1896), 20182900.

Huang, M., Ma, H., Ma, C., Garber, P., & Fan, P. (2020). Male gibbon loud morning calls conform to Zipf’s
law of brevity and Menzerath’s law: Insights into the origin of human language. Animal Behaviour, 160,
145–155.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., & Wu, Y. (2016). Exploring the limits of language model-
ing. Preprint arXiv:1602.02410.

Kanwal, J., Smith, K., Culbertson, J., & Kirby, S. (2017). Zipf’s law of abbreviation and the principle of least
effort: Language users optimise a miniature lexicon for efficient communication. Cognition, 165, 45–52.

Kenstowicz, M. (2007). Salience and similarity in loanword adaptation: A case study from Fijian. Language
Sciences, 29(2–3), 316–340.

Key M., & Comrie B. (Eds.) (2015). Intercontinental dictionary series (IDS). Leipzig: Max Planck Institute for
Evolutionary Anthropology. Available at: http://ids.clld.org/

Kim, Y., Jernite, Y., Sontag, D., & Rush, A. (2016). Character-aware neural language models. Thirtieth AAAI
Conference on Artificial Intelligence, Phoenix, AZ.

Kudo, T. (2018). Subword regularization: Improving neural network translation models with multiple subword
candidates. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers) (pp. 66–75). Melbourne, Australia: Association for Computational Linguistics.

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126–1177.
Levy, R., & Jaeger, T. (2007). Speakers optimize information density through syntactic reduction. In B. Schölkopf,

J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems (Vol. 19, pp. 849–856).
Cambridge, MA: MIT Press.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L. (2020,
July). BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. Proceedings of the 58th annual meeting of the Association for Computational Linguistics (pp.
7871–7880). Stroudsburg, PA: Association for Computational Linguistics. Available at: https://www.aclweb.
org/anthology/2020.acl-main.703 https://doi.org/10.18653/v1/2020.acl-main.703

 15516709, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.12983 by Princeton U

niversity, W
iley O

nline L
ibrary on [09/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1080/09296174.2020.1778387
https://paperswithcode.com/paper/optimal-coding-and-the-origins-of-zipfian/review/
https://paperswithcode.com/paper/optimal-coding-and-the-origins-of-zipfian/review/
https://doi.org/10.1016/j.tics.2019.02.003
http://ids.clld.org/
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


S. C. Meylan, T. L. Griffiths / Cognitive Science 45 (2021) 25 of 26

Lorenz, A., & Zwitserlood, P. (2016). Semantically transparent and opaque compounds in german noun-phrase
production: Evidence for morphemes in speaking. Frontiers in Psychology, 7, 1943.

Mahowald, K., Dautriche, I., Gibson, E., & Piantadosi, S. (2018). Word forms are structured for efficient use.
Cognitive Science, 42(8), 3116–3134.

Mahowald, K., Fedorenko, E., Piantadosi, S., & Gibson, E. (2013). Info/information theory: Speakers choose
shorter words in predictive contexts. Cognition, 126(2), 313–318.

Menzerath, P. (1954). Die Architektonik des deutschen Wortschatzes (Vol. 3). F. Dümmler.
Michel, J., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., The Google Books Team, Pickett, J. P., Holberg,

D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M. A., & Aiden, E. L. (2011). Quantitative analysis
of culture using millions of digitized books. Science, 331(6014), 176–182. https://doi.org/10.1126/science.
1199644

Perea, M., Fernández-López, M., & Marcet, A. (2020). What is the letter é? Scientific Studies of Reading, 24(5),
434–443.

Petersen, A. M., Tenenbaum, J. N., Havlin, S., Stanley, H. E., & Perc, M. (2012). Languages cool as they expand:
Allometric scaling and the decreasing need for new words. Scientific Reports, 2, 943.

Piantadosi, S., Tily, H., & Gibson, E. (2011). Word lengths are optimized for efficient communication. Proceedings
of the National Academy of Sciences USA, 108(9), 3526–3529.

Piantadosi, S., Tily, H., & Gibson, E. (2013). Information content versus word length in natural language: A reply
to Ferrer-i-Cancho and Moscoso del Prado Martin. Preprint arXiv:1307.6726.

Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). A comprehensive grammar of the English language.
London: Longman.

Sennrich, R., Haddow, B., & Birch, A. (2016). Neural machine translation of rare words with subword units. In
Proceedings of the 54th annual meeting of the Association for Computational Linguistics (Vol. 1: long papers)
(pp. 1715–1725). Berlin: Association for Computational Linguistics.

Seyfarth, S. (2014). Word informativity influences acoustic duration: Effects of contextual predictability on lexical
representation. Cognition, 133(1), 140–155.

Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.
Silberzahn, R., Uhlmann, E., Martin, D., Anselmi, P., Aust, F., Awtrey, E., Bahník, Š, Bai, F., Bannard, C., Bonnier,

E., Carlsson, R., Cheung, F., Christensen, G., Clay, R., Craig, M. A., Dalla Rosa, A., Dam, L., Evans, M. H.,
Cervantes, I., Flores Fong, N., Gamez-Djokic, M., Glenz, A., Gordon-McKeon, S., Heaton, T. J., Hederos,
K., Heene, M., Mohr, A. J., Hofelich Högden, F., Hui, K., Johannesson, M., Kalodimos, J., Kaszubowski, E.,
Kennedy, D. M., Lei, R., Lindsay, T. A., Liverani, S., Madan, C. R., Molden, D., Molleman, E., Morey, R. D.,
Mulder, L. B., Nijstad, B. R., Pope, N. G., Pope, B., Prenoveau, J. M., Rink, F., Robusto, E., Roderique, H.,
Sandberg, A., Schlüter, E., Schönbrodt, F. D., Sherman, M. F., Sommer, S. A., Sotak, K., Spain, S., Spörlein,
C., Stafford, T., Stefanutti, L., Tauber, S., Ullrich, J., Vianello, M., Wagenmakers, E.-J., Witkowiak, M., Yoon,
S., & Nosek, B. A. (2018). Many analysts, one data set: Making transparent how variations in analytic choices
affect results. Advances in Methods and Practices in Psychological Science, 1(3), 337–356.

Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing transparency through a multiverse
analysis. Perspectives on Psychological Science, 11(5), 702–712.

Swadesh, M. (1971). The origin and diversification of language. Chicago, IL: Aldine.
Thabane, L., Mbuagbaw, L., Zhang, S., Samaan, Z., Marcucci, M., Ye, C., Thabane, M., Giangregorio, L., Dennis,

B., Kosa, D., Debono, V. B., Dillenburg, R., Fruci, V., Bawor, M., Lee, J., Wells, G., & Goldsmith, C. H. (2013).
A tutorial on sensitivity analyses in clinical trials: The what, why, when and how. BMC Medical Research
Methodology, 13(1), 92.

Tiedemann, J. (2012). Parallel data, tools and interfaces in OPUS. In Calzolari, N., Choukri, K., Declerck, T.,
Dogan, M. U., Maegaard, B., Mariani, J., Odijk, J., & Piperidis, S. (Eds.), Proceedings of the eight international
conference on language resources and evaluation (LREC’12), Istanbul, Turkey, Paris: European Language
Resources Association.

Tomasello, M., & Stahl, D. (2004). Sampling children’s spontaneous speech: How much is enough? Journal of
Child Language, 31(1), 101–121.

 15516709, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.12983 by Princeton U

niversity, W
iley O

nline L
ibrary on [09/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1126/science.1199644
https://doi.org/10.1126/science.1199644


26 of 26 S. C. Meylan, T. L. Griffiths / Cognitive Science 45 (2021)

von der Gabelentz, G. (1891). Die Sprachwissenschaft, ihre Aufgaben, Methoden und bisherigen Ergebnisse.
Leipzig: Weigel.

Wade, T. (1992). A comprehensive russian grammar. Oxford: Blackwell.
Zhang, A., Culbertson, B., & Paritosh, P. (2017). Characterizing online discussion using coarse discourse

sequences. In Proceedings of the 11th International AAAI conference on Weblogs and Social Media, Montreal.
Zipf, G. (1935). The psychobiology of language. Boston, MA: Houghton-Mifflin.
Zipf, G. (1949). Human behaviour and the principle of least-effort. Cambridge, MA: Addison-Wesley.

Appendix A: Binomial sampling
We use a binomial sampling scheme to evaluate how smaller datasets may bias average
information content estimates. This technique allows us to efficiently estimate the average
information content of a word in smaller subsamples of an unsmoothed n-gram dataset. This
techniques is particularly useful when the original dataset is not available to researchers for
sampling (as is true for Google 1T and Google Books 2012). Specifically, to estimate context-
weighted trigram surprisal for each word given a subsample of corpus of proportion γ , we
begin by drawing new counts for each context Xi in which a word is a possible continuation
according to the original corpus:

X s
i ∼ Binom

(
n = γ · C(X·), p = C(Xi)

C(X·)

)
, (1)

where C() is the count function, X· indicates all bigram contexts, and Xi indicates this particu-
lar bigram context. For example, in the process of computing the average information content
for the word car in a subsample, this would involve retrieving all preceding contexts for which
car is a continuation, and drawing a new count (possibly 0) for each of those contexts in the
new subsample.

We then sample how often the target word is the continuation for each sampled context,
using the continuation probabilities from the original dataset:

Ds
i ∼ Binom

(
n = X s

i , p = C(Di)

C(Xi)

)
, (2)

where C(Di) indicates the count of the context + target word trigram, and C(Xi) is the count of
the corresponding preceding bigram. For the example of computing the average information
content of car, this corresponds to drawing a new count for the number of instances where
car is the continuation for a specific context; for example, near the. Average information
content for a word can then be calculated from the sample by evaluating the newly estimated
conditional probability of that word in each of the newly-sampled contexts, weighting by
those context frequencies, where X s

i is the sampled count of the ith context, and X s
· is the sum

of all sampled contexts:

ICs = −
∑

i

(
X s

i

X s·

)
log

(
Ds

i

X s
i

)
. (3)
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