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Abstract

We consider the problem of determining the maximal α ∈ (0, 1] such that every matching
M of size k (or at most k) in a bipartite graph G contains an induced matching of size at least
α|M |. This measure was recently introduced in [ARS+17] and is motivated by computational
models in cognitive neuroscience as well as by modeling interference in radio and communication
networks.

We prove various hardness results for computing α either exactly or approximately. En route
to our results, we also consider the maximum connected matching problem: determining the
largest matching N in a graph G such that every two edges in N are connected by an edge. We
prove a nearly optimal n1−ε hardness of approximation result (under randomized reductions) for
connected matching in bipartite graphs (with both sides of cardinality n). Towards this end we
define bipartite half-covers: A new combinatorial object that may be of independent interest. To
our knowledge, the best previous hardness result for the maximum connected matching problem
was that it is hard to approximate within some constant β > 1.

Finally, we demonstrate the existence of bipartite graphs with n vertices on each side of
average degree d, achieving α = 1/2− ε for matchings of size sufficiently smaller than n/d. This
nearly matches the trivial upper bound of 1/2 on α which holds for any graph containing a path
of length 3.

1 Introduction

A matching in an undirected graph G is a set of vertex disjoint edges. An induced matching M in
G is a matching such that no two edges in M are connected by another edge in G. Matchings and
induced matchings can be used to measure the capacity of parallel network of processers. Here we
study computational and combinatorial aspects of such a measure [ARS+17] arising from radio and
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wireless networks as well as computational neuroscience. Some of our findings build on a new hard-
ness of approximation result concerning the problem of computing a maximal connected matching
in a bipartite graph (see Definition 2.3 for a formal definition) which may be of independent interest.

When using matchings to study parallel and distributed systems, the object of study is of-
tentimes a set of units that transmit or receive information. For example, in the communication
setting there is a bipartite network G = (S,R,E) consisting of senders (S) and receivers (R)1.
Given a set of edges E′ = {(si, ri)}16i6` ⊆ E every sender si ∈ S wishes to send a message to its
neighbor ri ∈ R. The assumption is that each sender si sends a message to a unique receiver, and
in order for a receiver to successfully receive a message, he can have only a single incident edge car-
rying a message at a given time, as messages arriving on multiple incident edges create interference
with each other. This is captured by a condition which we term the matching condition: A subset
E′ ⊂ E can be used for concurrent interference-free communication if it forms a matching in G, i.e.,
no two edges in E′ share a common vertex. However, in several communication settings, such as
radio and wireless networks [BLM93, CK85, AMS12], a more constrained setting is considered: the
senders cannot choose which edges to broadcast, but instead, if they choose to transmit, then they
automatically broadcast on all their incident edges. This leads to the stronger induced matching
condition: A subset E′ ⊂ E of edges can be used for concurrent interference-free communication if
it forms an induced matching in G.

Similar interference assumptions, directed towards understanding multitasking constraints in
neural systems, have been proposed in computational neuroscience [CDM90, FSGC14, MDO+16b,
MDO+16a]. These works seek to understand the reason behind multitasking limitations: The lim-
ited ability of people to execute control-dependent processes concurrently, a central and ubiquitous
finding in cognitive psychology [SS77]. Inspired by the parallel distributed processing framework
[RMG+87], the main idea in these works is that such limitations arise from interference between
computational units responsible for transmitting inputs to outputs and not, as commonly assumed
because of limited resources. [FSGC14, MDO+16b, MDO+16a] present a formal model to study
multitasking where given a bipartite graph G = (S, T,E) (task graph), every vertex s ∈ S is as-
sociated with a set of inputs Is, every vertex t ∈ T is associated with a set of outputs Ot and the
edge (s, t) is associated with a function (“task”) fs,t : Is → Ot. Every function fs,t is implemented
by a neural network Ns,t. Given a set of ` edges E′ = (si, ti)16i6` the set of functions fsi,ti can be
performed concurrently (“multitasked”) if E′ is an induced matching. The rationale for the match-
ing condition for interference-free parallel processing is similar to the exclusive read exclusive write
(EREW) assumption in parallel RAM: If the set of edges is not a matching, problems may occur as
two different values may be stored simultaneously in the same output vertex in T . Alternatively,
if two different tasks share the same input vertex in S this may inhibit independent processing of
these tasks as the input to both tasks has to be identical. The rationale for the induced matching
assumption arises from the idea that if two tasks (s1, t1) and (s2, t2) (with s1 6= s2 and t1 6= t2)
are performed then if the tasks (s1, t2) or (s2, t1) exist they are performed automatically as well,
interfering with computing fs1,t1 and fs2,t2 . We refer to [FSGC14, MDO+16b, MDO+16a, ARS+17]
for further study and justifications of this interference model. Finally we comment that this model
assumes a selection mechanism which selects at a given moment which set of tasks (edges) are to
be performed (see for example, [MDO+16b, MDO+16a]).

Based on these interference assumptions [FSGC14] suggested using the cardinality of a maximal
induced matching in G to measure the parallel processing capacity of a task graph G. One potential

1To simplify matters, we consider the synchronous setting where transmissions occur in discrete time slots.
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issue with this definition is that a task graph can contain a “large” induced matching even though
some subset of tasks allow for very poor multitasking. For example, consider a graph H consisting
of two bipartite cliques H1 and H2 (with equal sides) each of size 2m with H1 connected to H2 by
an induced matching of cardinality 2m. While H contains an induced matching of size 2m, there
are sets of m tasks (edges) out of which only a single edge can be executed without interference.
Furthermore, by taking a perfect matching in H1 one can find such a set of m ”bad edges” that
forms a matching in H.

In [ARS+17] a new measure has been proposed to capture how well task graphs allow for
interference-free processing (Definition 1.1 below). The idea behind this measure is to consider a
parameter k 6 n, and ask whether every matching M of size k (or of size at most k) contains a
large induced matching M ′ ⊆M . By considering every matching this measure is no longer agnostic
to subgraphs that are ”badly multitaskable” such as bipartite cliques. Unless stated otherwise we
will always assume that graphs are bipartite and that both sides of the bipartition have cardinality
n.

Definition 1.1. Let G = (A,B,E) be a bipartite graph, and let k ∈ N be a parameter. For
α ∈ (0, 1] we say that G is a (k, α)-multitasker if for every matching M in G of size |M | = k, there
exists an induced matching M ′ ⊆M such that

|M ′| > α|M |.

Define αk(G) to be the maximal α such that G is a (k, α)-multitasker if G contains a matching of
size k, and define αk(G) = 1 if G does not contain a matching of size k. We call the parameter
αk(G) ∈ (0, 1] the multitasking capacity of G for matchings of size k.

Also, define α6k(G) = min16`6k α`(G) and call it the multitasking capacity of G for matchings
of size at most k.2

The parameters αk and α6k measure how resilient to interferences G is. The larger these
parameters are, the better G is considered as a multitasker. One motivation for this definition is
the distinction between interference effects that result from a violation of the matching condition to
those that result from a violation of the induced matching condition. That is, the above multitasking
measure allows us to assess the fraction of tasks that can be performed concurrently conditioned
on not violating the matching condition. We omit the dependence of α on G when it is clear from
the context.

In [ARS+17] several properties of α6n(G) have been proven. For example, it was shown that
α6n(G) 6 9√

d
for all d-regular graphs, and that α6n(G) 6 O(( logn

d )1/3) for all graphs of average

degree d. This upper bound supports a previous hypothesis [FSGC14] suggesting that there is an
inherent tradeoff between density and multitasking capacity: for every task graph as the average
degree diverges to infinity, the multitasking capacity inevitably decrease to 0 3. Observe that as the
graph H (two bipartite cliques connected to one another by an induced matching) demonstrates,
such a trade-off does not hold when multiasking capacity is defined as the maximum cardinality
of induced matching (normalized by the number of vertices of the graph) as a graph can have
average degree Ω(n) and still contain an induced matching of size Ω(n). Finally, it was also shown

2Since we consider the minimum, the definition of αk ensures that values of r 6 k for which there is no matching
of size r have no influence on α6k(G).

3In the irregular case this tradeoff holds assuming the average degree satisfies d� logn.
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in [ARS+17] how to construct graphs with desirable multitasking properties. Namely graphs for
which α6k(G) > τ for τ = Ω(1) provided that k = O(n/d1+τ ), where d is the average degree of G.

The results in [ARS+17] leave several questions.

Question 1.2. Given a graph G and a parameter k, can we compute αk(G) or α6k(G) efficiently?

Indeed, if we are to use αk(G) or α6k(G) to evaluate how prone to interference parallel archi-
tectures are, then a natural question is whether it is possible to compute or approximate these
quantities in polynomial time. Hence to evaluate the usefulness of αk(G) in graph-theoretic models
of multitasking it is desirable to have efficient methods to compute αk(G) exactly or approximately.

Another question is whether it is possible to construct multitaskers with near-optimal capacity.
While [ARS+17] provide graphs with average degree d and α6k(G) = Ω(1) for k 6 n/dO(1), the
best constant value of α6k(G) they achieve is bounded away from the natural barrier α6k(G) 6 1/2
(if a network contains a path of length 3 then trivially α6k(G) 6 1/2 for all k > 3). We thus raise
the following question.

Question 1.3. Is there an infinite family of graphs Gn of average degree d such that α6k(Gn) >
1/2− ε for arbitrarily small ε > 0 and k > n/df(ε) for some function f > 0?

Here we address these two questions. For Question 1.2 we show that under standard complexity
theoretic assumptions αk(G) and α6k(G) cannot be computed efficiently, thus giving a negative
answer to this question. Towards this end we give new hardness of approximation results for
computing the size of a maximum connected matching (Definition 2.3) in bipartite graphs. For
Question 1.3 we give a positive answer, by showing how to construct bipartite graphs of average
degree d such that α6k(Gn) > 1/2 − ε for arbitrarily small ε > 0 and k > n/df(ε) for some
function f > 0. Our proof is algorithmic in the sense that given any matching M with |M | 6 k
there is a simple polynomial time algorithm that recovers an induced matching M ′ ⊆ M where
|M ′| > (1/2 − ε)|M |. We note that while for regular graphs it is proven in [ARS+17] that if
k � n/d then α6k = od(1), we do not know if one can achieve α6k bounded away from 0 for
k � n/d for irregular graphs and arbitrary4 d. Resolving this question is left for future work.

1.1 Our results

A useful notion in studying the computational hardness of computing the multitasking capacity is
that of a connected matching, which is a matching in which every two edges are connected by a
third edge. Connected matchings have been studied in several contexts, such as Hadwiger’s conjec-
ture [KPT05, PST03, FGS05]. Motivated by applications to other optimization problems [JKW14],
algorithms for finding connected matchings of maximum cardinality have been studied in special
families of graphs such as chordal [Cam03] and bipartite chordal graphs [JKW14]5 and bipartite
permutation graphs [GHvHP14].

In Section 3 we establish hardness of approximation for the size of the largest connected match-
ing to within a factor of n1−ε assuming NP 6= coRP. Previously, this problem was known to be
NP-hard to approximate within some constant factor [PST03] for general (non-bipartite) graphs.
We also prove that deciding whether a bipartite graph G = (A,B,E) with |A| = |B| = n contains
a connected matching of size n is NP-hard.

4for d = O(log log n) it is shown in [ARS+17] that there are graphs of average degree d with α6n(G) > 1/3.
5Observe that bipartite chordal graphs are not necessarily chordal. See [JKW14] for details.
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Variant Assumption k f (approximation factor) Remarks

αk(G) P 6= NP n n1−ε for any ε > 0

αk(G) P 6= NP n O(d/poly log d) G has maximum degree d

α6k(G) NP 6= coRP n some constant

α6k(G) NP 6= coRP n1−ε arbitrarily large constant

α6k(G) ETH n1−1/polyloglog(n) n1/polyloglog(n)

Table 1: Hardness of approximation results for computing the multitasking capacity. In each row,
the stated variant of the multitasking capacity (either αk(G) or α6k(G)) is hard to approximate
under the stated assumption up to a multiplicative factor f , for the stated values of k and f .

In Section 4 we prove several hardness results for computing the multitasking capacity. To be
more precise, we define the decision problem of computing the multitasking capacity as follows:

Definition 1.4. Let MT be the problem of deciding whether for a given graph G, a positive integer
k ∈ N and a rational number η > 0 it holds that αk(G) > η.

The problem MT belongs to the second level of the polynomial hierarchy, Π2, since the statement
αk(G) > η can be expressed as ∀M∃M ′P (G, k;M,M ′), where P is the predicate checking that M
is a matching in G of size k, and M ′ is an induced matching, (P is clearly computable in time
poly(|G|)). We note that it is not clear whether it belongs to NP or to coNP, and in fact, we give
evidence that MT belongs to neither of the classes. Specifically, we show that MT is both NP-hard
and coNP-hard; thus, if MT ∈ NP ∪ coNP, then the polynomial hierarchy collapses to the first
level.

Furthermore, we show various hardness of approximation results for computing αk(G) and
α6k(G). Most notably, we show under standard complexity theoretic assumptions that (1) αn(G)
is inapproximable to within n1−ε for any ε > 0, and, (2) α6k(G) is inapproximable to within any
constant for k = n1−ε for any ε > 0. Furthermore, under a stronger assumption, we improve the
inapproximability ratio for α6k(G) to n1/polyloglog(n) for k = n1−1/polyloglog(n). Our hardness results
are summarized in Table 1.

In Section 6, we prove the existence of multitaskers with near-optimal capacity. For integers
d, n with n > d and ε ∈ (0, 1), we show how to construct multitasker graph G on 2n vertices with
average degree d and α6k(G) > 1/2 − ε, where k = Ω(n/d1+O(1/ε)). In particular, for d = no(1)

this implies that ε can be taken to be o(1), and thus α6k(G) tends to its natural barrier 1/2 as n
grows.

1.2 Our techniques

Hardness results. With respect to multitasking, connected matchings are the worst possible
multitasking configuration for a matching of size k. In particular, it holds trivially that αk(G) > 1/k
and α6k(G) > 1/k, and the equality holds if and only if G contains a connected matching of size k.
This fact, together with extremal Ramsey–type bound on the size of independent sets, turns out
to be instrumental in proving hardness results for computing the multitasking capacity.

Construction of multitaskers. The starting point of our multitaskers with nearly optimal
multitasking capacity is based on locally sparse graphs, similarly to [ARS+17]. They used the local
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sparsity with Turan’s lower bound on independent sets in graphs with a given average degree in
order to establish the existence of sufficiently large independent sets (which translate to induced
matchings). However, the use of Turan’s bound necessarily entails a constant loss, which makes
the final multitasking capacity bounded away from 1/2. We circumvent this roadblock by also
requiring that the graph has large girth, and use this fact along with local sparsity in order to
carefully construct for any matching M a matching M ′ ⊆M of size (1/2− ε)|M |.

2 Preliminaries

All graphs considered in this work are undirected. A matching in a graph G = (V,E) is a collection
M ⊆ E of vertex disjoint edges. We say that a vertex v ∈ V is covered by M if it is one of the
endpoints of an edge in M . We say that a matching M is induced in G if no two edges in M are
connected by an edge in E, i.e., the vertices in M span only the edges in M and no other edges.
Given a graph G and an edge e = (u, v) ∈ E, we define the contraction of e to be the operation
that produced the graph G\e, whose vertex set is (V ∪ve)\{u, v}, the vertex ve is connected to all
vertices in G neighboring u or v, and for all other vertices x, y ∈ V \{u, v}, they form an edge in G\e
if and only if they were connected in G. Contracting a set of edges, and in particular contracting
a matching, means contracting the edges one by one in an arbitrary order6. A connected graph G
has radius r if r is the minimal number such that there exist a vertex v with every vertex in G of
distance at most r from v.

Below we define two combinatorial optimization problems that we will relate to when proving
hardness of approximation results for the parameters αk and α6k.

Definition 2.1. Given an undirected graph G, an independent set in G is a set of vertices that spans
no edges. The Maximum Independent Set Problem (MIS) is the problem of finding a maximum
cardinality of an independent set in G.

Definition 2.2. Given a graph G = (V,E), we say that two disjoint subsets of the vertices A,B ⊆ V
form a bipartite clique (biclique) in G if (a, b) ∈ E for all a ∈ A and b ∈ B. We say that the
biclique (A,B) is balanced if |A| = |B|. In the Maximum Balanced Biclique Problem we are given
a bipartite graph G and a parameter k, and the goal is to decide whether G contains a balanced
biclique with k vertices on each size.

Definition 2.3. Given a graph G, a connected matching in G is a matching M such that every
two edges in M are connected by an edge in G. We use νc(G) to denote the size of the maximum
cardinality of a connected matching in G. In the Connected Matching Problem, we are given graph
G and parameter k and our goal is to determine whether νc(G) > k.

Given an optimization (minimization or maximization) problem Π over graphs, we denote by
OPTΠ(G) > 0 the value of the optimal solution of Π for G. An algorithm A for a maximization
(minimization) problem is said to achieve an approximation ratio ρ > 1 if for every input G the
algorithm returns a solution A(G) such that OPTΠ(G) > A(G) > OPTΠ(G)/ρ (resp. OPTΠ(G) 6
A(G) 6 ρ ·OPTΠ(G)).

We assume familiarity with complexity classes such asNP, coNP, coRP,Π2, and the polynomial-
time hierarchy. Precise definitions of these terms are omitted, and can be found, e.g., in [Pap03].

6We remark that the graph obtained from contracting a set of edges, indeed, does not depend on the order.
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3 Hardness results for maximum connected matchings

In this section, we prove hardness results for finding large connected matchings in graphs.

3.1 Hardness of approximating the size of a maximum connected matching

We start by showing an almost optimal hardness of approximation result for the connected matching
problem.

Theorem 3.1. Given a bipartite graph G with n vertices on each side, it is NP-hard to approximate
νc(G) within a factor of n1−ε for any ε > 0 under a randomized polynomial time reduction.

More precisely, given a bipartite graph G with n vertices on each side, it is NP-hard to distin-
guish between the case where νc(G) > n1−ε and the case where νc(G) 6 nε for any ε > 0.

A natural approach to prove hardness of approximation results for connected matching is to
reduce the clique problem to it. Namely given a graph G = ([n], EG) for which we wish to determine
if G contains a k-clique, replace every vertex i by an edge ei = (ui, vi) and add two edges (ui, vj)
and (uj , vi) for every edge (i, j) in G. Call the resulting graph after these transformation G′. While
it is clear that a large clique in G translates to a large connected matching in G′, it is not clear
that a large connected matching in G′ implies a large clique in G. The difficulty is that a connected
matching might contain “bad” edges of the form (ui, vj) where i 6= j. An illustrative example is
the case where G = Kn/2,n/2 is a biclique; in this case, the largest clique in G has size only 2 but
the resulting graph G′ contains a large connected matching of size as large as n.

To overcome this problem, we first observe that instead of adding both (ui, vj) and (uj , vi) to
the graph G′ for every edge (i, j) in G. It suffices to add only one of the two to retain a large
connected matching in the YES case. Then, the insight is that, when we choose the edge to add
independently at random for each (i, j), we can control the number of bad edges in every connected
matching in G′

We formalize the described ideas below, starting with the main gadget of our reduction:

Definition 3.2. Fix n ∈ N. A bipartite graph HCn = (A = {u1, . . . , un}, B = {v1, . . . , vn}, EH) is
said to be a bipartite half-cover of Kn if (1) for every {i, j} ⊆ [n], (ui, vj) ∈ EH or (uj , vi) ∈ EH ,
and (2) for every i ∈ [n], (ui, vi) /∈ EH .

The reduction used in the proof of Theorem 3.1 uses the existence of such bipartite half-covers
of Kn that do not contain a large connected matching. Such graphs can be easily constructed using
a randomized algorithm as shown below.

Claim 3.3. There is an O(n)-time randomized algorithm that on input n ∈ N outputs a graph
HCn, which is a bipartite half-cover of Kn such that νc(HCn) 6 O(log n) with probability 1− o(1).

Proof. We construct HCn by choosing for each {i, j} ⊆ [n] to add to EH either (ui, vj) or (uj , vi)
independently with probability 1/2. Clearly, HCn is a bipartite half-cover of Kn. Below we show
that νc(H) 6 O(log n) with probability 1 − o(1). We prove this in two steps: first, we will prove
the O(log n) upper bound on a special class of connected matching and, then, we will show that
any connected matching contains a large (constant fraction) matching of this type.

Let M ⊆ EH be any matching in H. We say that the matching is non-repetitive if, for each
i ∈ [n], at most one of ui or vi appears in M . We will now argue that with probability 1 − o(1),
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any connected non-repetitive matching has size less than D := 20 log n. To do so, consider any
ordered tuple (i1, j1, . . . , iD, jD) where i1, . . . , iD, j1, . . . , jD are all distinct. The probability that
(ui1 , vj1), . . . , (uiD , vjD) is a connected matching is at most

Pr[∀1 6 k < ` 6 D, (uik , vj`) ∈ EH ∨ (ui` , vjk) ∈ EH ] =
∏

16k<`6D

Pr[(uik , vj`) ∈ EH ∨ (ui` , vjk) ∈ EH ]

=
∏

16k<`6D

(3/4) = (3/4)D(D−1)/2

where the first two equalities use the fact that i1, . . . , i1, j1, . . . , jD are distinct, meaning that the
events considered are all independent. Hence, by union bound over all such sequences, we can
conclude that the probability that H contains a connected non-repetitive matching of size D is at
most n2D · (3/4)D(D−1)/2 = (n2 · (3/4)(D−1)/2)D = o(1).

Finally, observe that any matching M ⊆ EH contains a non-repetitive matching M ′ ⊆ M of
size at least |M |/3. Indeed, given a matching M we can construct M ′ iteratively by picking an
arbitrary edge e = (ui, vj) ∈M , remove e and all edges touching vi or uj from M and add e to M ′.
We repeat this procedure until M = ∅. Since we add one edge to M ′ while removing at most three
edges from M , we arrive at a non-repetitive M ′ ⊆M of size at least |M |/3. As a result, the graph
HCn does not contain any connected matching of size at least 3D = O(log n) with probability
1− o(1).

Remarks.

1. We remark that a deterministic polynomial time construction of such graphs would imply
that the hardness result in Theorem 3.1 holds under a deterministic reduction (as oppose to
the randomized reduction, currently stated).

2. We comment that there is a connection between Ramsey graphs and half-cover of Kn with
small νc(HCn). Specifically, if we can deterministically construct half-cover for Kn with
νc(HCn) 6 f(n), then we can deterministically construct n-vertex (f(n)+1)-Ramsey graphs.
This is because, we can think of half-cover HCn as a bichromatic Kn where (i, j) for i < j
is colored red if (ui, vj) ∈ EH and it is colored blue otherwise (i.e. (uj , vi) ∈ EH). It is easy
to check that any monochromatic clique of size r in Kn implies a connected matching of size
r − 1 in HCn. While there are explicit constructions of Ramsey graphs, it is unclear (to us)
how to construct such half-cover from these constructions.

3. Using a different approach we can show that it is NP-hard to compute νc(G) under a deter-
ministic reduction. See Appendix A for details.

3.1.1 Proof of Theorem 3.1

With the gadget from Claim 3.3 we are ready to prove Theorem 3.1. This is done in the following
claim.

Claim 3.4. Let G = (VG = [n], EG) be an n-vertex graph, and let H = (A = {u1, . . . , un}, B =
{v1, . . . , vn}, EH) be a balanced bipartite graph. Let G�H = (A,B,EG�H) be the balanced bipartite
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graph with n vertices on each side, where (1) for every {i, j} ⊆ [n], (ui, vj) ∈ EG�H if and only if
(ui, vj) ∈ EH and (i, j) ∈ EG, and (2) for every i ∈ [n], (ui, vi) ∈ EG�H .

Then, for any such G we have νc(G � H) 6 ω(G) + 3νc(H) where ω(G) denotes the clique
number of G. Furthermore, if H is a bipartite half-cover of Kn, then ω(G) 6 νc(G�H).

Claim 3.4 immediately implies Theorem 3.1. Indeed, by [H̊as01, Zuc06] given an n-vertex graph
G it is NP-hard to decide between the case where ω(G) > n1−ε/2, and the case where ω(G) 6 nε/2.
Therefore, we can define a randomized reduction that given an n-vertex graph G constructs (with
high probability) HCn, the bipartite half-cover of Kn, with νc(HCn) 6 O(log n), and outputs
G�H, which can be clearly constructed in time that is linear in the size of G. In the YES case, if
ω(G) > n1−ε/2, then by the “furthermore” part of Claim 3.4 we have νc(G�HCn) > ω(G) > n1−ε/2,
and in the NO case, if ω(G) 6 nε/2, then by Claim 3.4 we have νc(G�HCn) 6 ω(G) + νc(HCn) 6
nε/2 +O(log n). This completes the proof of Theorem 3.1.

We now turn to the proof of Claim 3.4.

Proof of Claim 3.4. First, we will show that νc(G � H) 6 ω(G) + 3νc(H). Let M ⊆ EG�H be
any connected matching in G � H. We partition M into two disjoint sets M‖ and M× where
M‖ = M∩{(ui, vi) | i ∈ [n]} andM× = M\M‖. We will show that |M‖| 6 ω(G) and |M×| 6 3νc(H).

To show that |M‖| 6 ω(G), suppose that M‖ = {(ui1 , vi1), . . . , (uit , vit)}. By the definition if
(ui, vi) is connected to (ui′ , vi′) in G�H, then (i, i′) ∈ EG. Therefore, {i1, . . . , it} induces a clique
in G and ω(G) > t = |M‖| follows.

Next, we show that |M×| 6 3νc(H). Let us first define non-repetitive matching in the same way
as that in the proof of Claim 3.3. Using the same argument as in that proof, we can conclude that
M× contains a non-repetitive connected matching M ′× ⊆ M× of size at least |M×|/3. We claim
that M ′× is also a connected matching in H. Indeed, since every edge in M ′× belongs to EH , the
non-repetitiveness implies that any pair of edges in M ′× is connected by an edge that also belongs
to EH . As a result, we can conclude that |M×| 6 3|M ′×| 6 3νc(H).

Combining the above two bounds yields νc(G�H) 6 ω(G) + 3νc(H) as desired.

Finally, assume that H is a bipartite half-cover of Kn. For any clique C ⊆ VG in G, it is
not hard to see that the matching MC = {(ui, vi) : i ∈ C} is a connected matching in G � H.
Indeed, for each distinct i, j ∈ C we have either (ui, vj) ∈ EH or (uj , vi) ∈ EH (from definition
of bipartite half-cover of Kn), and hence either (ui, vj) or (uj , vi) belongs to EG�H . Therefore,
νc(G�H) > ω(G), which completes our proof.

3.2 Hardness of finding a connected perfect matching

In this section we show that given a bipartite graph G with n vertices on each side, it is NP-hard
to find a connected matching of size n.

Theorem 3.5. Given a bipartite graph G = (A,B,E) with |A| = |B| = n it is NP-hard to
determine whether νC(G) = n.

Proof. By Theorem 3.1 given a graph G = (A,B,EG) with N vertices of each side it is NP-hard
to decide whether G contains a connected matching of size k = N1−ε. Consider the reduction that
given a graph G = (A,B,EG) outputs H = (A∪A′, B ∪B′, EH) as follows. The sets A′ and B′ are
two disjoint sets that are also disjoint from A,B with |A′| = |B′| = N − k. The set of edges EH is
defined as EH = EG ∪ {(i, j) : i ∈ A′, j ∈ B ∪B′} ∪ {(i, j) : i ∈ A ∪A′, j ∈ B′}. That is, the graph
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H contains the graph G as the induced graph on the vertices A ∪B, and in addition, every vertex
in A′ is connected to all vertices in B ∪ B′, and every vertex in B′ is connected to all vertices in
A ∪A′,

The graph H is a balanced bi-partite graph with n = 2N − k vertices on each side. We claim
that νC(G) = k if and only if νC(H) = n.

In one direction, suppose that G has a connected matching MG = {e1, ..., ek} of size k. We
construct a matching M ′ of size 2N − k as follows. For each vertex v ∈ A∪B not covered by MG,
we pick a distinct element wv ∈ A′ ∪ B′ that is a neighbor of v. Define a matching in H to be
M ′ = M ∪N , where N = {(v, wv) : v ∈ V (G) \ V (MG)}. By the construction of H, each edge in
N is connected to every other edge in M ′ using an edge between A′ and B′. Every pair of edges in
MG are connected since MG is a connected matching in G. Thus, M ′ is a connected matching of
size n in H.

Conversely, suppose H has a connected matching MH of size n. Then, there must be is a
submatching M ⊆MH of size |M | = k such that no edge in M contains a vertex in A′ ∪B′. Thus,
M is a matching in G, and since MH is a connected matching so is M . It follows that G has a
connected matching of size k, as required.

4 Hardness results for computing αk(G)

In this section we study the computational complexity both of the decision problem MT as well
as the problem of computing αk(G) exactly or approximately. We first show an almost optimal
inapproximability result for αn(G), which is stated and proved below.

Theorem 4.1. For any ε > 0, given a bipartite graph G with n vertices in each part, it is NP-hard
to approximate αn(G) within a factor n1−ε.

Furthermore, given a bipartite graph G with n vertices in each part, where the degree of each
vertex is at most d it is NP-hard to approximate αn(G) within a factor O( d

log4(d)
) and it is UG-hard

to approximate αn(G) within a factor O( d
log2(d)

).

Proof. The proof is by a reduction from the Maxium Independent Set problem. Given an n vertex
graph H = (UH , EH) instance of the MIS we construct a bipartite graph G as follows. Denote
the vertices of H by UH = {u1, u2, . . . , un}. Then the vertices of the bipartite graph G = (VG =
A ∪ B,EG) are defined by A = {vi : i ∈ [n]} and B = {v′i : i ∈ [n]}, and the edges of G are
EG = {(vi, v′i) : i ∈ [n]} ∪ {(vi, v′j) : i < j ∧ (ui, uj) ∈ EH}. Note that the only perfect matching in
G, i.e., a matching of size n, is the matching N = {(vi, v′i) : i ∈ [n]}. Indeed, suppose there exists
another matching M with |M | = n. Then M has at least one edge of the form e = (vi, v

′
j) with

i < j and suppose that e is such that i is minimal (where the minimum is taken with respect to
all edges not in N). If any edge in M covers v′i, then it cannot belong to N as M is a a matching.
By the definition of EG there cannot be an edge in M that covers v′i by the minimality of i. As
all vertices of H must be matched in order for |M | = n, we get a contradiction showing that N is
indeed the unique matching of size n.

We claim that H contains an independent set of size at least α if and only if αn(G) > α
n .

Indeed, a set I ⊆ VH is an independent set in H if and only if M ′ = {(vi, v′i) : i ∈ I} is an induced
matching contained in M . Hence if H contains an independent set of size α then M contains an
induced matching of size α. Conversely, If M contains an induced matching of size α then H has
an independent set of size α. It is well known that for any δ < 1/2 it is NP-hard to distinguish
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between n-vertex graphs that contain an independent set of size at least n1−δ (YES case) and
graph that do not contain an independent set of size at least nδ (NO-case) [H̊as01, Zuc06]. By the
reduction described above it is NP-hard to distinguish between a bipartite graph G′ with sides of
cardinality n satisfying αn(G′) > n1−δ/n = n−δ to a graph G′′ satisfying αn(G′) 6 nδ/n = nδ−1 as
this would enable to distinguish between the YES and NO cases described above. The result now
follows by taking δ to equal ε/2.

The result for graphs of maximum degree d follows by noting that if the maximal degree of
H is at most d, then the maximal degree of G is upper bounded by d + 1. Therefore, since it is
NP-hard to approximate MIS in graphs of maximum degree d within a factor of O( d

log4(d)
) [Cha16]

and UG-hard to approximate MIS in graphs of maximum degree d within a factor of O( d
log2(d)

)

[AKS09], the analogous hardness computing αn also follows.

We remark that by adding isolated vertices to the graph, the above hardness result also implies
hardness of approximating αk(G) to within factor of k1−ε for every ε > 0 and every k > nδ for any
constant δ ∈ (0, 1).

Recall the decision problem MT from Definition 1.4. As mentioned in the introduction, MT
clearly belongs to the class Π2. We show the following:

Theorem 4.2. The decision problem MT is NP-hard and coNP-hard.

Proof of Theorem 4.2. By Theorem 4.1 if follows that that there is a reduction from any problem
in NP that produces a graph G and a parameter k = n such that in the YES case αk(G) > 1/nε,
and in the NO case αk(G) 6 1/n1−ε. In particular, this implies that MT is NP-hard.

In order to prove that MT is coNP-hard we use Theorem 3.5. Indeed, observe that αn(G) 6 1/n
if and only if G contains a connected matching of size n, and hence there is a reduction from any
problem in NP that produces a graph G and k = n such that in the YES case αk(G) 6 1/k, and
in the NO case αk(G) > 2/k. This completes the proof of Theorem 4.2

Using Theorem 3.5, we demonstrate that it is unlikely that MT belongs to NP ∪ coNP.

Corollary 4.3. If the decision problem MT belongs to NP ∪ coNP, then the polynomial-time
hierarchy collapses to the first level.

Indeed, this follows from the fact that if NP ⊆ coNP, then NP = coNP (see e.g., Proposition
10.2 in [Pap03]), and hence the polynomial hierarchy collapses to the first level.

We end this section with several remarks.

1. Note that the proof of Theorem 4.1 shows that the problem of computing αn(G) is NP-hard
on graphs with n vertices on each side even if G contains a unique perfect matching.

2. Note also that the hardness result in Theorem 4.1 for bounded degree graphs cannot hold
for d regular graphs (as opposed to graphs with degree at most d) unless P = NP. This
is because in [ARS+17] it is shown that αn(G) 6 O(1/

√
d) for every d-regular graph G. In

particular, this implies that it is easy to approximate αn(G) within a factor of O(
√
d) for

d-regular graphs.

5 Hardness results for computing α6k(G)

Here we prove that it is hard to calculate the parameter α6k(G).

11



5.1 Hardness results for computing α6n(G)

We first consider the k = n case.

Theorem 5.1. Given a bipartite graph G = (A,B,E) with |A| = |B| = n, it is NP-hard to
compute α6n(H).

Proof. It is immediate that α6n(H) > 1/n and that equality holds if and only if H contains a
connected matching of size n. The theorem follows from Theorem 3.5.

We proceed and consider approximating α6n(G).

Theorem 5.2. Unless NP = coRP, there is no polynomial algorithm for approximating α6n(H)
within some constant factor.

Proof. We first use the fact that it isNP-hard to distinguish between n-vertex graphs with cliques of
size b·n to graphs with no clique of size a·n where a, b are some constants satisfying 1/2 < a < b < 1.
Indeed it is well known that there are a, b ∈ (0, 1) such that it is NP-hard to distinguish between
n-vertex graphs with cliques of size b · n and graphs with no clique of size a · n (e.g. [H̊as01]). The
fact now follows by taking a graph G of n vertices, adding to it a clique of size n and connecting
all vertices in this clique to all vertices of G.

Given a graph G apply the reduction in Claim 3.4 (with H being the random graph described in
Claim 3.3) and call the resulting graph G′. If there is a clique G of size b·n then clearly α6n(G′) 6 b

n .
Suppose there is no clique of size a · n in G. Then by Claim 3.3, with high probability there is no
connected matching in G′ of size greater than (a+ δ) ·n where δ > 0 can be taken to be arbitrarily
small. It follows that for c > a + δ, every connected matching in G contains a induced matching
of size at least 2. Therefore, for (a + δ) < c < 1 we have that conditioned on the existence of a
matching of size k, αk(G

′) = 2
cn >

1
(a+δ)·n . Indeed, 2

c >
1
a+δ as a + δ > 1/2. As for k < (a + δ)n

it clearly holds that αk(G
′) > 1

(a+δ)n , we have that in this case α6n(G′) = a+δ
n . This implies that

approximating α6n(H) within a ratio smaller than b
a+δ in polynomial time would allow one to

determine whether G contains a clique of size b · n or no clique of size a · n. Taking δ such that
b

a+δ > 1 concludes the proof.

5.2 Hardness results for computing α6k(G) for k < n

We now turn to the problem of proving hardness of approximation results for α6k(G) for k < n; for
certain values of k, we show that α6k(G) is NP-hard to approximate to within any constant factor
under randomized reduction. One approach to prove this is to use the reduction in Theorem 4.1.
However, this approach does not seem to work, as it allows one to consider also matchings that
contain “diagonal edges” of the form (ui, v

′
j) and it is not clear how to apply the analysis in

Theorem 4.1 to such matchings. Instead, we build upon the hardness of the connected matching
problem given in Theorem 3.1. We claim that the reduction in Theorem 3.1 shows that it is hard
to approximate α6k(G) for k = n1−ε. Note that in the YES-case, if νc(G) = k > n1−ε, then
α6k(G) = 1/k. The NO-case is a bit subtle, and it is, a priori, not clear why νc(G) 6 nε implies
that any matching of size at most k contains a large induced matching. We resolve this problem
using the following Ramsey-theoretic fact (see e.g., [BH92, ES35]).
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Fact 5.3. Let G be an n-vertex graph not containing a clique of size k+ 1 and suppose k > 2 log n.
Then G contains an independent set of size at least s = log n/ log(k/ log n).

Coupled with Theorem 4.1 we prove the following result.

Theorem 5.4. For any constants ε ∈ (0, 1/2) and ρ > 1, it is NP-hard (under randomized
reduction) to approximate α6k(G) within a factor of ρ on bipartite graphs with n vertices on each
side for k = n1−ε.

Proof. By Theorem 3.1 given a bipartite graph G it is NP-hard to distinguish between the case
where νc(G) > n1−ε, and the case where νc(G) 6 nδ for δ = 1/(2ρ).

For the YES-case if νc(G) > n1−ε, then clearly α6k(G) = 1/k for k = n1−ε.
In the NO-case suppose that νc(G) 6 nδ, and consider an arbitrary matching M of size s with

s 6 k. If s < 2δk then clearly M contains an induced matching of size at least s/(2δk). Otherwise,
contract all edges in M . Denote by H(M) the subgraph induced by the s contracted vertices.
Observe that a subset of vertices in H(M) forms a clique if and only if their corresponding edges in
G form a connected matching. Otherwise, by the assumption that νc(G) 6 nδ we get that H(M)
contains no clique of size nδ. Hence, by Fact 5.3 we conclude that H(M) contains an independent
set of size at least log s

log(nδ/ log s)
> 1

2δ (assuming n is sufficiently large).

Therefore, given a bipartite graph G with n vertices on each side, and k = n1−ε it is NP-hard to
distinguish between the YES-case of α6k(G) 6 1/k, and the NO-case of α6k(G) > 1/(2δk) = ρ/k.
This concludes the proof.

We can achieve stronger hardness results under stronger assumptions thanNP-hardness. Recall
that the Exponential Time Hypothesis (ETH) postulates that no algorithm of running time 2o(n)

can decide whether an n-variable SAT formula has a satisfying assignment. Assuming ETH we
have the following hardness result:

Theorem 5.5. Assuming ETH there exists a k such that given H = (A,B,E) with |A| = |B| = n
there is no polynomial time algorithm that approximates α6k(H) within a factor of n(1/ log logn)c

where c > 0 is a universal constant independent of n.

We will rely on the following simple lower bound on independent sets in graphs of average
degree davg due to Turan.

Lemma 5.6. Every n-vertex graph with average degree davg contains an independent set of size at
least n

davg+1 .

Proof of Theorem 5.5. It is known [Man17] that assuming ETH for k = n1−1/polyloglog(n) there is
no polynomial algorithm that distinguishes between the case where H contains a bipartite clique
with t vertices on each side (YES-case) to the case where every subgraph contained in H with

k′ 6 k vertices satisfies |E(H)| 6
(
k′

2

)
/n(1/ log logn)c (NO-case). In the first case α6k(H) = 1/k. In

the second case, given a matching M with |M | = k; and k′ 6 k we claim that M contains an in-
duced matching of size Ω(max((k′n−(1/ log logn)c , 1)). The claim is trivially true if k′ 6 n(1/ log logn)c

hence assume k′ > n(1/ log logn)c . Let H(M) be the graph induced on M and let H ′(M) be the
graph obtained after all edges in M are contracted. Clearly the average degree of H ′(M) is
O(k′n−(1/ log logn)c) (see Lemma 2.1 in [ARS+17]) hence by Lemma 5.6 it contains an indepen-
dent set I ′ of size Ω(n(1/ log logn)c). It is easily verified that this independent set corresponds to
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an induced matching contained in M whose size is Ω(n(1/ log logn)c). Therefore every matching of
size at most k′ 6 k contains an induced matching of size Ω(dk′n−(1/ log logn)c)e) which implies that
α6k(H) = Ω(n(1/ log logn)c/k). It follows that if we could approximate α6k(H) within a factor better
than Ω(n(1/ log logn)c)) in polynomial time then we could distinguish between the YES and NO cases
described above. This concludes the proof.

6 Improved construction of multitaskers

In this section we prove the following theorem.

Theorem 6.1. Let d 6 n be positive integers such that n is sufficiently large, and let ε ∈ (0, 1) be
such that ε > 20 log d

logn . Then, there is a bipartite graph G with n vertices on each side and average

degree at least d/2, such that α6k(G) > 1/2− ε for k = ( 1
101e5

)4/ε · n
d1+8/ε = n

d1+O(1/ε) .

For the proof of Theorem 6.1 we need the following lemma. We remark that a similar result
also appears in [ARS+17] (proof of Theorem 4.14 in the arXiv version).

Lemma 6.2. Let G = (A,B,E) be a balanced bipartite graph, and let g be the girth of G. Let
t ∈ N be such that for every subset of vertices T ⊆ A ∪ B satisfying |T ∩ A| = |T ∩ B| 6 s 6 t it
holds that |E(T )| 6 (2 + β/g)s edges for some β > 0. Then α6t(G) > 1

2 −
1+β
g .

Proof. Let G = (A,B,E) with |A| = |B| = n that satisfies the assumptions in the lemma. and let
M be a matching in G of size of size s 6 t . We show that M contains an induced matching M ′ of
size at least (1

2 −
1+β
g )|M |.

Let F be the graph whose vertices correspond to the s edges of M , and two vertices in F
are connected if the corresponding edges are connected by an edge in G. We show below that F
contains an independent set on nearly half of its vertices. By the assumptions of the claim, the
girth of F is at least g/2, and any set of s of its vertices spans at most (1 +β/g)s edges. Construct
an independent set in F as follows. As long as F contains a vertex of degree at most 1 add it to
the independent set, and omit it and its unique neighbor from F . Suppose that this process stops
with h vertices. This implies that the independent set so far has at least (s−h)/2 vertices. If h = 0
we are done, as the independent set has at least s/2 vertices. Otherwise, in the induced subgraph
of F on the remaining h vertices the minimum degree is at least 2 and the average degree is at
most 2 + 2β/g. Hence it contains at most 2βh/g vertices of degree at least 3. Omit these vertices.
The remaining graph is a union of paths and cycles, which may contain odd cycles, but all cycles
in it are of length at least g/2. Therefore this part contains an independent set of size at least
1
2(1− 2β/g) · (1− 2/g)h, which together with the (s− h)/2 vertices obtained in the initial process
result with an independent set of size at least

s− h
2

+
1

2
(1− 2β/g) · (1− 2/g)h >

s− h
2

+
1

2
(1− 2β/g − 2/g)h >

s

2
− 1 + β

g
h > (

1

2
− 1 + β

g
)s,

as required.

We can now prove Theorem 6.1.

Proof. We start with a random bipartite graph G′ with n vertices on each side, in which each edge
is included independently with probability p = d/n. The following two claims prove the properties
required in order to apply Lemma 6.2.
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Claim 6.3. Let g be an even integer such that 2/ε 6 g 6 4/ε. Then, with probability 1− 2
n0.3 > 0.99

the number of cycles of length at most g is upper bounded by
√
n.

Proof. The expected number of cycles of length up to g is upper bounded by

g/2∑
s=2

(
n

s

)2

(s!)2p2s 6
g/2∑
s=2

(np)2s 6
2/ε∑
s=2

d2s 6 2d4/ε.

In particular, for ε > 20 log d
logn the expected number of cycles of length up to g is at most 2d4/ε 6 2n1/5.

The claim follows by Markov’s inequality.

Claim 6.4. With probability 0.99, every subgraph of G′ with at most ( 1
101e5

)4/ε · n/d1+8/ε vertices
on each side has average degree at most (2 + ε/4).

Proof. Let s be an integer satisfying 1 6 s 6 ( 1
101e5

)4/ε · n/d1+8/ε. By the union bound over all
subsets of G′ with s vertices on each side, the probability that G′ contains a balanced subgraph
with s vertices on each side and average degree at least (2 + ε/4) is(
n

s

)2( s2

(2 + ε/4)s

)
p(2+ε/4)s 6

(ne
s

)2s
· (se)(2+ε/4)s ·

(
d

n

)(2+ε/4)s

6

(
e5d2+ε/4sε/4

nε/4

)s
6

(
1

101

)s
.

By taking the union bound,over all values of s we get that the probability that G′ contains a dense
induced subgraph is at most

∑∞
s=1

(
1

101

)s
= 0.01, as required.

By Chernoff bound with probability 0.99, G′ contains at least 0.9dn edges. Therefore, with
probability 0.97 the latter event occurs together with the events in the two foregoing lemmas.

Let g ∈ [2
ε ,

4
ε ] be an even integer, as in Claim 6.3. We remove an edge from each cycle of length

at most g, thus removing at most
√
n edges, so that the average degree remains at least d/2. The

resulting graph G satisfies the conditions of Lemma 6.2 with g ∈ [2
ε ,

4
ε ] and t = ( 1

101e5
)4/ε ·n/d1+8/ε,

and hence αt(G) > 1/2− 2/g 6 1/2− ε, as required. This concludes the proof of Theorem 6.1.

Remark. We note that if we consider α6n(G) instead of α6n/d1+O(1/ε)(G), then for the construction

in the proof of Theorem 6.1 it holds that α6n(G) = O( ln d
d + O(1/

√
n)) with high probability.

Indeed, it can be shown that prior to deletions G′ has a matching of size Ω(n) and no induced
matching of size larger that O( ln d

d n) with high probability. Therefore, since removing
√
n edges

can increase the size of any induced matching by at most
√
n, we get that the entire construction

satisfies α6n(G) = O( ln d
d + 1/

√
n).

6.1 Is αk(G) = 1/2 attainable?

The foregoing positive result obtains α6k(G) = 1/2−ε for k as large as Θ(n/d1+O(1/ε)), approaching
the natural barrier 1/2. One may wonder whether 1/2 can be attained exactly, and for which values
of k. We now show the following limitation.

Theorem 6.5. There is an absolute positive constant d0 such that for n > d > d0 and k >
log n/ log d + O(1), every graph G with n vertices on each side and average degree d has α6k(G)
strictly smaller than 1/2. This is tight up to the leading constant 1 as there is a graph G′ with n
vertices on each side and average degree d so that for k = 0.5 log n/ log d, α6k(G) = 1/2.
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Note that by Theorem 6.1, for a fixed constant d there are graphs G with n vertices in each
side and average degree d for which α6k(G) is arbitrarily close to 1/2 for k = Ω(n). The Theorem
above shows, however, that even for a logarithmic k, exactly 1/2 is not attainable.

For the proof we need two results. The first is the following theorem of Verstraëte.

Theorem 6.6 (Verstraëte [Ver00]). Let r > 2 be a natural number and let G be a bipartite graph
of average degree at least 4r and girth at least g. Then there exist cycles of (g/2− 1)r consecutive
even lengths in G. Moreover, the shortest of these cycles has length at most twice the radius of G.

The second is a special case of a result of Kostochka and Pyber [?], see [Ver00] for its simple
proof.

Lemma 6.7. Let G be a graph on n vertices with at least bn1+1/t edges, where b > 1. Then G
contains a subgraph of average degree at least b and radius at most t.

We proceed with the proof of Theorem 6.5.

Proof. The tightness, proved in [ARS+17], is simply the known existence of a d-regular bipartite
graph G′ with n vertices on each side and girth at least log n/ log d.

To prove the main part of the theorem observe that one obstacle to obtaining α6k(G) = 1/2
is the existence of a short cycle of length 2 modulo 4. Indeed, consider a cycle of length ` = 2k,
where k is an odd integer. It is straightforward to check that picking every other edge of the cycle
yields a matching M of size k, in which the largest induced matching contained in M has size
(k−1)/2 = (1

2 −
1
2k )|M |. Hence, a graph G containing such cycle has α6k(G) strictly less than 1/2.

It thus suffices to show that every bipartite graph with n vertices on each side and average degree
d > d0 contains such a cycle for some k = c log n/ log d.

Let G be such a graph. By Lemma 6.7 with b = 8 and (2n)1+1/t = d · n, G contains a
subgraph with average degree at least 8 and radius at most t. By the choice of the parameters
t = (log n + O(1))/ log d. By Theorem 6.6 with r = 2 and g = 4, this subgraph contains cycles of
two consecutive even lengths, both of length at most 2t + 2 = 2 log n/ log d + O(1) and one must
have length 2 modulo 4. In other words G contains a cycle of length ` 6 2 log n/ log d+O(1) with
` ≡ 2 mod 4. As explained above, this implies that for k = `/2, α6k(G) is strictly less than 1/2,
completing the proof.

7 Conclusion and future directions

We have studied the computational complexity of computing αk(G), a parameter that arises in
radio networks and models of multitasking in cognitive neuroscience. We find it noteworthy that
two independent lines of research lead to similar models of interference hinting that ideas from
radio networks can be useful for theoretical neuroscience and vice versa. Furthermore, our study
reveals that algorithmic as well as combinatorial questions (such as the existence of graphs with
certain combinatorial properties) are relevant to connectionist models of cognition. We hope that
future work will reveal more connections between such models, theoretical computer science and
combinatorics.

While we have shown that computing αk(G) is intractable, our results do not rule out the exis-
tence of an efficient constant factor approximation algorithm for α6n(G), which could potentially
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be used in computer simulations and in analyzing behavioral and neuroscientific data. Whether
such an algorithm exists is an interesting direction for future study.

Our multitasking model (notably the induced matching condition) assumes that performing
several tasks in parallel can have detrimental effects, when the different tasks interfere destructively
with one another. This can arise if they draw on a shared set of representations that must be put
to competing uses at the same time. For example, interference effects such as those in [FSGC14]
arise when incongruent stimuli must be processed, that demand different, competing responses.
However, it is important to recognize that performing tasks in parallel does not necessarily lead to
interference, and can even have a positive effect. This is the case if the tasks share representations
that favor the same or compatible responses (that is, they benefit by constructive interference).
Such mutual positive interactions between interactive parallel processes have been demonstrated
in [TW04].

We conclude with several specific questions arising from this work.

• We believe that for d-regular graphs the upper bound α6n(G) 6 9/
√
d is not tight. It is an

open problem whether for all d-regular graphs it holds that α6n(G) 6 o(1/
√
d). In particular,

it is consistent with our knowledge that α6n(G) = O( log d
d ) holds for all d-regular graphs.

• It would be interesting to see if the n1−ε hardness of approximation result for the size of
a largest connected matching can be obtained assuming P 6= NP (that is, under a deter-
ministic reduction). In particular, it would be interesting to find efficient and deterministic
constructions of bipartite half-covers with maximal connected matching upper bounded by
no(1).

• For d-regular graphs it is proven in [ARS+17] that for k � n/d it holds that α6k(G) = o(1).
It is an open question whether the same holds for irregular graphs (with average degree
d� log log n.)

• Finally, in many situations we are interested in multitasking a “small” number of tasks. This
raises the question of computing (or approximating) αk in the setting of fixed-parameter
algorithms. That is, given an n-vertex graph G, can we compute αk in time f(k) · poly(n),
where poly(n) is independent of k and f(k) is some function of k independent of n.
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A NP-hardness of computing the maximum connected matching
of a graph

In this section we that given a bipartite graph it is NP-hard to compute νC(G) exactly under a
deterministic polynomial time reduction. This is as opposed to the randomized reduction given in
Theorem 3.1. We remark that [PST03] proved this result for the non-bipartite case. Our proof is
an adaptation of their proof to the bipartite case.

Theorem A.1. It is NP-hard to determine given a bipartite graph G = (A,B) and a parameter
k whether G contains a connected matching of size k.

Proof. We reduce the biclique to the problem of determining if νC(G) = k. Recall that a biclique
G′ = (C ′, D′) in a bipartite graph G is a subgraph G′ of G such that every vertex in C ′ is connected
to every vertex in D′. A biclique (C ′, D′) is balanced if |C ′| = |D′| The biclique problem is: given
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a bipartite graph G = (A,B) (we assume that |A| = |B|) and integer k, is there a biclique (A′, B′)
with A′ ⊆ A,B′ ⊆ B and |A′| = |B′| = k. This problem is well known to be NP-complete.

Given a bipartite graphG = (A,B) with |A| = |B| = n, form a new graphH as follows. Initialize
H1 = (A1, B1) to equal G and we call this the copy of G inside H1. Then add a new set A′ of n
vertices such that (A1, A

′) forms biclique, and add a new set B′ of n vertices such that (B1, B
′)

forms a biclique. Initialize another graph H2 = (A2, B2) to be a biclique with |A2| = |B2| = n
(where A2, B2 are disjoint from A1 ∪B1 ∪A′ ∪B′). Add an edge between every vertex of (A1 ∪B′)
and every vertex of B2, and add an edge between every vertex of (B1 ∪A′) and every vertex of A2.
The resulting (bipartite) graph is H = (A1 ∪B′ ∪A2, B1 ∪A′ ∪B2).

Consider a connected matching M in H. Let MA ⊆ M be the set of all edges in M contained
in the biclique (A1, A

′) and let MB ⊆ M be the set all edges in M contained in the biclique
(B1, B

′), and let Mr = M − (MA ∪ MB). Then |M | = |MA| + |MB| + |Mr|. Let XA ⊆ A1

denote the set of vertices in A1 being an endpoint of an edge in MA, and let XB be analogously
defined with respect to B1 and MB. Since M is a connected matching, (XA, XB) is a biclique.
We also have |Mr| 6 2n −max{|XA|, |XB|} which implies |M | 6 2n + min{|XA|, |XB|} where we
have used |XA| = |MA|, |XB| = |MB|. Thus, if G has a connected matching of size 2n + k then
min{|XA|, |XB|} > k which means that there is a biclique of size k.

Conversely, if G contains a biclique (R,S) of size k, we can easily form a connected matching
M in H of size 2n + k. To construct M , we take k edges MA in (A,A′) with XA = R, we take k
edges MB in (B,B′) with XB = S, we take n − k edges matching the n − k vertices of A1 −XA

with n − k vertices B′2 ⊆ B2, we take n − k edges matching the n − k vertices of B1 − XB with
n− k vertices A′2 ⊆ A2, and we take k edges matching A2 −A′2 with B2 −B′2.

Thus, G contains a biclique of size k if and only if H contains a connected matching of size
2n+ k. This completes the proof.
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