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Abstract

For human children as well as machine learning systems, a key
challenge in learning a word is linking the word to the visual
phenomena it describes. We explore this aspect of word learn-
ing by using the performance of computer vision systems as a
proxy for the difficulty of learning a word from visual cues. We
show that the age at which children acquire different categories
of words is correlated with the performance of visual classifi-
cation and captioning systems, over and above the expected
effects of word frequency. The performance of the computer
vision systems is correlated with human judgments of the con-
creteness of words, which are in turn a predictor of children’s
word learning, suggesting that these models are capturing the
relationship between words and visual phenomena.

Introduction
Both humans and machines face the problem of establishing
the relationship between visual and linguistic information. In
humans, this process is known as word learning, and has been
extensively studied by developmental scientists. In machines,
linking visual features with words is a key part of several
tasks studied by computer vision researchers, including ob-
ject classification and image captioning. In this paper, we
explore the extent to which the solutions to these problems
found by humans and machines are related by predicting the
time course of word learning in human children from the per-
formance of computer vision systems.

Developmental scientists have long been interested in un-
derstanding how infants and young children learn new words
(Bloom, 2002; Brown, 1973; Golinkoff et al., 2000; Quine,
1960; Wojcik et al., 2022), often framing the problem as
one of establishing reference between words and their cor-
responding objects, events, or properties (Markman, 1990;
Schwab & Lew-Williams, 2016). While the trajectory of
word learning varies across children, there is at least some
consistency in the rates at which different kinds of words are
learned (Frank et al., 2021). For example, children learn-
ing English (as well as many other languages) tend to learn
words describing body parts (such as “eye” or “nose”) ear-
lier than they learn connecting words (such as “and” or “be-
cause”). Developmental scientists have looked for predictors
of this pattern. For example, words that are more frequent
in child-directed speech tended to be learned earlier (Swing-
ley & Humphrey, 2018). However, the investigation of these
predictors has been limited to quantities that can be measured

from linguistic input (such as word frequency) or by adults
making an intuitive judgment about the properties of words
(such as a word’s “concreteness” or “abstractness”).

Previous work has not made use of predictors that di-
rectly measure the correspondence between a word and the
visual phenomena it describes. Visual aspects of reference
pose a challenge for the child learner because scenes vary
in complexity (Quine, 1960) and because the referents of
words can be highly variable (e.g., “dog” can refer to both
chihuahuas and Bernese mountain dogs). Relatedly, some
words and word categories refer to concrete objects (e.g.,
“cup”), but others do not (e.g., “more” or “fine”), a dimen-
sion known to shape age of acquisition (AoA) (Bergelson &
Swingley, 2013; Swingley & Humphrey, 2018). Prior ex-
perimental work has begun to understand how visual context
supports word learning. For example, young children can
track word/object co-occurrence statistics over time to disam-
biguate the meanings of novel labels in complex visual scenes
(Chen et al., 2018; Yurovsky et al., 2013), and infants who see
more variable views of objects show more rapid vocabulary
growth later on (Slone et al., 2019). Although the ease with
which a word can be mapped to a concrete visual referent af-
fects children’s noun learning, developmental scientists have
not formalized how the infant mind may process and create
representations of the statistics of visual scenes and labels.

In this paper, we investigate whether we can capture the
visual difficulty of learning words by examining the perfor-
mance of classification and image captioning systems. Since
these systems need to solve similar problems to children, they
may face the same difficulties. We look at how well object
classification and image captioning systems perform for dif-
ferent categories of words (such as animals vs. furniture), and
use the resulting performance measures to predict children’s
word learning. Our results show – across different tasks and
architectures – that the difficulty with which machines learn
words in different categories is a good predictor of the diffi-
culty with which children learn words in those categories, and
that including this measure improves prediction of children’s
word learning over just using word frequency. We also show
that the performance of the computer vision systems is corre-
lated with human judgments of the “concreteness” of a word,
which is known to predict AoA. Computer vision models thus
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provide an automated measure of this subjective quantity.
While human children and deep neural networks for ob-

ject classification and image captioning are presumably quite
different kinds of systems, discovering parallels in their per-
formance suggests that some aspects of the difficulty with
which different kinds of words are learned is a consequence
of the nature of the problem itself. Just as the statistics of
the linguistic input to children play a key role in understand-
ing language acquisition (Bergelson & Aslin, 2017; Laing &
Bergelson, 2020; Montag et al., 2015), the statistics of cor-
respondences between that linguistic input and the world that
it describes are significant. Our results demonstrate how im-
provements in computer vision systems offer new opportuni-
ties for the scientific study of child development.

Datasets and models
To investigate model word learning in a way that is relevant
to child word learning, we need two kinds of data:

1. Child word learning data, including which words (or word
categories) are learned at various developmental stages.

2. Standardized image and natural language data, which can
be used to train vision and language models to produce lan-
guage comparable to child word production.

We address both these needs by working with multiple
sources of data: WordBank for child word learning, and
COCO for training our models.

Child language acquisition data: WordBank
We use data sourced from the WordBank child language
database (Frank et al., 2017) to extract words commonly pro-
duced by toddlers between the ages of 16 and 30 months.
Figure 1 gives an example of the type of data collected and
tracked by WordBank. In particular, the data we use corre-
sponds to which words are easily (and not easily) produced
by toddlers of various ages. WordBank contains production
percentiles for approximately 1200 words, which we use for
our analysis of model word production.

In order to compare word learning at scale, we decided to
investigate patterns in word categories instead of individual
words. For an effective comparison to child word learning,
we use word categories for which there exists parallel child
data. Fortunately, the WordBank database contains such data.
We extracted approximately 1200 frequently-produced words
for toddlers, as listed in the WordBank database, and mapped
them to the corresponding category. WordBank categories
include people, toys, animals, etc. We remove sounds/sound
effects (such as “cockadoodledoo”) from these categories, be-
cause our models are restricted to vision and language.

Computer vision tasks: COCO
On the computer vision side we use the canonical
COCO (COCO) image captioning dataset (the Karpathy
split, to be precise (Karpathy & Fei-Fei, 2015)) for train-
ing and evaluating the models. The dataset contains 113,278

Figure 1: WordBank data tracking production of different cat-
egories across different ages. Each line represents the average
proportion of children producing all words in a given cate-
gory on the MCDI. The age at which half of children produce
a given word (age of acquisition; AoA) is marked with a cir-
cle on each line. We aim to predict the order of acquisition of
words in these categories using the performance of computer
vision models for the corresponding words.

training and 5,000 validation images, each associated with 5
captions provided by human annotators. We use two com-
puter vision tasks in our experiments: image captioning,
where a model is trained to produce a natural language cap-
tion, as well as the simpler image classification task, where a
model is trained to predict which visual categories are present
in the image, without tying these categories to a natural lan-
guage description. For image classification, we create (imper-
fect) binary labels comprising of 855 individual words which
are in both COCO and WordBank. The binary label is deter-
mined by whether the word is mentioned in one of the cap-
tions associated with the image.

We run experiments with canonical computer vision mod-
els. Our goal is to verify that our findings hold across a range
of standard setups. For image classification we use two dif-
ferent CNN architectures: VGGNet (Simonyan & Zisserman,
2014) and ResNet50 (He et al., 2016), both with and with-
out pretraining on ImageNet (Russakovsky et al., 2015). For
image captioning, we explore two more complex vision back-
bones: a ResNet101 CNN (He et al., 2016) or bottom-up fea-
tures from Faster R-CNN (Anderson et al., 2018; Ren et al.,
2015). We combine these models with one of two language
models: the classic LSTM (Anderson et al., 2018) or the more
recent Transformer (Vaswani et al., 2017).

We use open-source implementations of all models along
with the recommended hyperparameters (Chollet et al., 2015;
Luo et al., 2021; Luo et al., 2018). Each model is trained on a
single GPU. For image classification, we train with an adap-
tive learning rate using the Adam (Kingma & Ba, 2014) opti-
mizer and dropout until the loss converged. VGGNet trained
from scratch proved difficult to train to convergence, despite
performing grid search over initial learning rate, dropout, and
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batch size, so only pretrained results are reported. In the cap-
tioning models, for the LSTM layers, we use an input encod-
ing size of 1000, a hidden size of 512, a batch size of 10, and
an adaptive learning rate. For the Transformer layers, we use
8 attention heads, 6 encoder and decoder layers, 512 hidden
unit size, and a batch size of 10. We keep as much consistent
as possible between the implementations, so that we can have
a meaningful comparison.

Metrics
To quantitatively measure the correspondence between word
learning in human children and computer vision systems, we
adopted standard metrics used in the relevant fields: the me-
dian age at which children produce a word, and the word-level
performance measures of AUC for classifiers and SPICE for
captioning systems.

Metric for children: AoA (Age of Acquisition)
The Age of Acquisition (AoA) of a word is defined as the
age at which at least 50% of children produce the word.
WordBank includes the vocabularies of 5520 toddlers learn-
ing North American English assessed using parent report on
the MacArthur Bates Communicative Development Inventory
(MCDI) (Fenson et al., 2007). In the WordBank database,
AoA can be calculated over the parent-reported scores for
word learning for each child in the database. AoA has previ-
ously been shown to correspond with the difficulty of learning
to read a word (Coltheart et al., 1988). We use this measure
of AoA as a proxy for the difficulty of learning a word for
a child. AoA was calculated for each word and then aver-
aged within each of the WordBank categories: body parts,
animals, vehicles, toys, household, outside, food/drink, fur-
niture/rooms, clothing, locations, descriptive words, places,
people, action words, pronouns, question words, quantifiers,
helping verbs, time words, and connecting words.

Metrics for machines: AUC and SPICE
The metrics we use for our models are designed to mea-
sure a model’s performance at the level of individual words.
For classification models, we use AUC (the area under the
receiver operating characteristic (ROC) curve (Freedman,
2009)) as a classification metric which is robust to class im-
balance. Our multi-label, multi-class classification task was
binary for each label, so a per-word AUC calculated over each
label was an appropriate metric.

For captioning models, we use the Semantic-Propositional
Image Caption Evaluation score (SPICE) (Anderson et al.,
2016). SPICE is an automatic evaluation metric which uses
scene graphs corresponding to the actual image to gauge se-
mantic and propositional correctness, instead of just the tex-
tual n-gram comparison of previous metrics. From a cap-
tion like “woman sitting on a brown chair in a restaurant”,
SPICE produces a tuple-based scene graph containing tuples
like “woman-sitting” and “sitting-on-chair.” SPICE then cal-
culates whether each produced tuple matches one of the tu-
ples that appear in the ground truth manual captions. To get

Table 1: Classification model AUC correlation with AoA
Classification model setup

Model Training Pearson p Spearman p

VGG Pretrained -0.280 0.232 -0.311 0.182
ResNet50 From scratch -0.138 0.562 -0.081 0.734
ResNet50 Pretrained -0.531 0.016 -0.544 0.013

Table 2: Captioning model SPICE correlation with AoA

Captioning architecture

Pretrained Visual Features Language Layers Pearson p Spearman p

ResNet 101 LSTM -0.515 0.034 -0.640 0.006
Bottom-up (Faster R-CNN) LSTM -0.617 0.004 -0.708 0.000
Bottom-up (Faster R-CNN) Transformer -0.565 0.012 -0.624 0.004

a score for each individual WordBank word, we then aver-
age the tuple-based scores of all the tuples where the word
appears. The intuition for using this metric is that it is impos-
sible to gauge whether a word like “sitting” is used correctly
without looking at the other words around it.

For both AUC and SPICE, after calculating at a word-level
(or a tuple-level, for SPICE) we then aggregate over Word-
Bank categories for ease of comparison to AoA for those
same categories.

Results
As an initial analysis, we examined the raw correlation be-
tween AoA and the machine metrics. We then conducted a
series of multiple regression analyses to determine whether
computer vision systems can improve prediction of the time-
course of child word learning over existing measures used in
the child language acquisition literature.

Correlations
To compare the word category-level AoA to AUC/SPICE of
the models, we report two types of correlation: the Pearson
correlation coefficient, which assumes a linear relationship,
and the Spearman rank-order correlation coefficient, which
only assumes monotonicity (Freedman, 2009). The results
are shown in Table 1 for classification and Table 2 for cap-
tioning, with corresponding scatterplots in Figure 2.

Four of our models showed statistically significant correla-
tions with AoA: classification ResNet50 with pretrained fea-
tures, and all three of the captioning models. In all four of
these models, as performance (AUC or SPICE) increased,
AoA decreased: categories of words that were easier for
the models were acquired earlier by children. The remain-
ing two classification models (VGG with pretrained features
and ResNet50 trained from scratch) also showed correlations
consistent with this relationship, but those correlations were
not statistically significant. The correlation for ResNet50
trained from scratch was particularly weak, suggesting that
pretrained features may be important. The correlations for
the captioning systems were all of similar magnitude, sug-
gesting that the specific architecture (including the choice of
an LSTM or Transformer) may be less relevant than the cap-
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Figure 2: Regression of successful models’ performance vs age of acquisition in months, per category. Each category label is
placed so that its bottom left corner indicates the corresponding age of acquisition (AoA) and AUC (classification) or SPICE
(captioning) values. The black regression line shows the AoA predicted by each model in the regression, and the vertical
residual lines and category labels show the observed average AoA for the category.

tioning task itself.

Comparison with other predictors

As noted above, developmental psychologists have explored
variables that predict children’s word learning. One such
variable is the frequency with which words appear in child-
directed speech. We evaluated the correlation between word
frequency (extracted from the TalkBank database (MacWhin-
ney, 2007)) and AoA, finding a Pearson correlation of r =
-0.377 (p = 0.092) and a statistically significant Spearman
correlation of ρ = -0.494 (p = 0.022).

To determine whether our computer vision metrics (AUC
and SPICE) are predictive of AoA even after accounting for
word frequency, we conducted a multiple regression anal-
ysis where the independent variables are word frequency
and AUC/SPICE, and the dependent variable is AoA. The
coefficients of the multiple regression analysis show that
AUC/SPICE across different successful models do indeed
predict AoA over and above frequency in child-directed data.
The results are shown in Table 3. The multiple regression

Table 3: Multiple regression with TalkBank word frequency
as a predictor in addition to AUC or SPICE

Regression Coefficients (predicting AoA)

Model TalkBank p AUC / p R2

frequency SPICE

VGG Pretrained -1.891 0.128 -1.580 0.306 0.199
ResNet50 From Scratch -2.160 0.087 -1.243 0.431 0.178
ResNet50 Pretrained -1.286 0.269 -2.559 0.044 0.333
ResNet101 + LSTM -1.297 0.267 -2.148 0.050 0.329
Bottom-up + LSTM -1.225 0.229 -2.769 0.007 0.433
Bottom-up + Transformer -1.552 0.153 -2.355 0.027 0.404

analysis showed that all four predictors that originally re-
sulted in a statistically significant correlation with AoA re-
mained statistically significant when word frequency was
taken into account. Notably, word frequency was no longer a
statistically significant predictor in the resulting models.

Another variable that has been shown to be a good pre-
dictor of AoA is the “concreteness” of words (Bergelson &
Swingley, 2013; Swingley & Humphrey, 2018). Unlike word
frequency, concreteness is not a property that can be mea-
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Table 4: Multiple regression with concreteness judgments as
a predictor in addition to AUC or SPICE

Regression Coefficients (predicting AoA)

Model AUC p Concreteness p R2

SPICE

VGG Pretrained -0.128 0.884 -3.925 0.000 0.754
ResNet50 From Scratch -0.409 0.631 -3.926 0.000 0.757
ResNet50 Pretrained -0.940 0.213 -3.601 0.000 0.776
ResNet101 + LSTM 0.620 0.574 -3.996 0.002 0.631
Bottom-up + LSTM 0.488 0.668 -4.024 0.002 0.652
Bottom-up + Transformer 0.544 0.621 -3.897 0.002 0.629

Table 5: Correlation of AUC/SPICE with human judgments
of concreteness

Model Pearson p Spearman p

VGG 0.303 0.195 0.277 0.238
ResNet50 From Scratch 0.092 0.701 0.056 0.816
ResNet50 Pretrained 0.459 0.042 0.421 0.064
ResNet101 + LSTM 0.733 0.001 0.598 0.011
Bottom-up + LSTM 0.744 0.000 0.659 0.003
Bottom-up + Transformer 0.690 0.002 0.574 0.016

sured directly from the linguistic input to children. Rather,
it is typically measured by asking human raters to rate on a
scale how “concrete” or “abstract” they consider a word to
be, typically after providing a definition for concrete (e.g. can
be experienced with the five senses) and abstract words (e.g.
cannot be experienced through the five senses) (Brysbaert et
al., 2014). Some work has expanded these rating lists by us-
ing supervised models trained directly to predict concreteness
(Köper & im Walde, 2017). We ran a second multiple regres-
sion using a standard measure of concreteness (taken from
Köper and im Walde, 2017) as a predictor. The results are
shown in Table 6. In this model, concreteness was the only
statistically significant predictor, with neither word frequency
nor our measures being statistically significant. The same re-
sult is observed in a multiple regression incorporating only
concreteness and AUC/SPICE as predictors 4.

Investigation of this result revealed that it is a consequence
of substantial collinearity between the computer vision mea-
sures and concreteness ratings. The correlations between
AUC/SPICE and concreteness are shown in Table 5. The
four models that produced statistically significant correlations
with AoA are all correlated with concreteness, with statisti-
cally significant correlations from all the captioning models.

The observed correlation between concreteness and
AUC/SPICE makes sense: concreteness is people’s judgment
of how well a word corresponds with a visible or tangible
thing in the world, and this is what our measures reflect.
A high correlation with concreteness thus indicates that our
models are capturing what we intended: the ease of relating
a word to its visual referent(s). Importantly, the performance
of a computer vision model is an objective quantity that can
be estimated directly from a dataset, rather than a subjective
quantity that requires additional judgments from people. Fur-
ther, our approach captures meaningful variability within the
visual contexts of concrete and abstract words. For example,
the words “hello” and “economy” may be judged as equally

abstract (Köper & im Walde, 2017), however, “hello” may
be associated with a more consistent visual context as part of
a routine (e.g., waving) compared to “economy”. Similarly,
concrete words like “spoon” may have a more consistent sur-
rounding visual context (e.g., a kitchen), compared to words
like “dog”, which may be encountered in many different vi-
sual contexts. Future work can apply this approach to go be-
yond category-level estimates and capture the visual variabil-
ity of different items, as well as individual differences in the
visual contexts that different children experience in densely
sampled child-view visual corpora (e.g. Sullivan et al., 2022).
By providing a new way to directly measure the concreteness
of words, our approach provides a novel metric that can be
used in the broader investigation of language processing.

Discussion
We have shown that despite training on only standard ma-
chine learning datasets (ImageNet and COCO), several cap-
tioning models and one classification model successfully pre-
dict the age at which children acquire different categories of
words. This result holds across multiple architectures, and for
both simple and complex models. This indicates that these
models effectively capture the visual difficulty of learning a
word for a child. It also suggests that the underlying mech-
anisms of learning for models and children might be similar
in ways that are not yet fully understood but result from the
shared statistical structure of the problems they face.

Figure 2 provides some intuition for why visual difficulty
goes beyond training data distribution: for example, while the
categories ‘food/drink’ and ‘descriptive words’ occur much
more frequently in child-directed speech than in the COCO
training data, the models are nevertheless successfully pre-
dictive of AoA for those categories. This illustrates the value
of ML approaches to concreteness, and provides some intu-
ition for the commonalities in child and model learning. Cer-
tain categories are also difficult for both models and children,
despite those categories being overrepresented in the train-
ing data. For example, quantifiers are difficult for both mod-
els and children to learn, despite being well represented in
COCO training data and child-directed speech.

Pretraining seems to be one of the key differentiating fac-
tors between the models which showed substantial correlation
and those which did not, such as the ResNet50 model pre-
trained and the same ResNet50 trained from scratch. There
are several potential reasons for this. If pretraining (even on
ImageNet alone) supports learning to extract visual features,
that skill can be applied to more complex visual features than
those in the training data. However, pretraining is not the
whole story: the difference between pretrained VGGNet and
ResNet50 classification models’ correlation to AoA shows
that architecture does contribute to the correlation as well.

The consistently high correlations for captioning models
with language components support anecdotal evidence that
these larger models combining vision and language modali-
ties do indeed produce more human-like performance for vi-
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Table 6: Multiple regression with all variables as predictors of AoA: TalkBank word frequency, AUC/SPICE, and concreteness

Regression Coefficients (predicting AoA)

Model TalkBank p AUC / p Concreteness p R2

frequency SPICE

VGG Pretrained -1.111 0.096 -0.015 0.986 -3.747 0.000 0.794
ResNet50 From Scratch -1.170 0.077 -0.594 0.461 -3.704 0.000 0.801
ResNet50 Pretrained -0.967 0.144 -0.661 0.374 -3.530 0.000 0.804
ResNet101 + LSTM -1.469 0.076 0.901 0.383 -4.099 0.001 0.713
Bottom-up + LSTM -1.239 0.126 0.647 0.552 -4.106 0.001 0.707
Bottom-up + Transformer -1.445 0.082 0.782 0.447 -3.951 0.001 0.709

sual word learning. The high correlation across different ar-
chitectures opens the door to future investigations as to why
exactly this is the case – it is clearly not one particular el-
ement, such as a transformer language model, which yields
this result. However, sophisticated language modeling with
attention mechanisms, present in all the captioning models
either through the LSTM or Transformer layers, may be im-
portant for producing these results.

Relationship to Previous Work
While there has been no previous work looking directly at
predicting AoA from metrics derived from computer vision
models, there is an extensive literature in cognitive science
and computer vision examining different kinds of correspon-
dences between humans and machines. For example, repre-
sentations from image classification systems have been used
to predict human judgments of image typicality (Lake et al.,
2015), the similarity between images (Hebart et al., 2020;
Jozwik et al., 2017; Peterson et al., 2018), image classifica-
tion (Battleday et al., 2020; Sanders & Nosofsky, 2020), and
neural responses to images (Schrimpf et al., 2020; Yamins &
DiCarlo, 2016). Better capturing these aspects of human cog-
nition has been shown to result in improvements in computer
vision applications (Peterson et al., 2019). Developmental
research has also previously explored the use of deep neu-
ral networks to capture aspects of children’s language learn-
ing, particularly systems that are trained on data from cam-
eras mounted on the heads of infants (Bambach et al., 2018;
Orhan et al., 2020; Tsutsui et al., 2020). This research has
primarily focused on visual object learning rather than pre-
dicting the timecourse of word-learning itself. Other work
has looked at using multimodal neural networks to capture
human performance in stylized word-learning settings (Vong
& Lake, 2022). This work provides a converging perspective
on how models from computer vision can be used to capture
the relationship between linguistic and visual input.

Future Work
In demonstrating how vision and language models’ effec-
tively capture word learning difficulty in children, this work
also opens the door to more behavioral comparisons of
word learning in children and computer vision models. We

have demonstrated this result on a standardized group of
datasets, with standard pretraining protocols. An impor-
tant future question is, to what extent particular architec-
tural components (ResNet/Faster R-CNN visual features, or
LSTM/Transformer language layers) are important for cap-
turing different facets of child word learning. Is it the scale of
larger captioning models which yields the robust similarity to
child word learning? Or is it the attention mechanisms in the
more sophisticated language components? Another impor-
tant line of inquiry is how this result changes with datasets; it
is surprising that this correlation exists although children and
models are certainly exposed to different data. Training mod-
els on a child-directed dataset, such as SAYCam (Sullivan et
al., 2022) is likely to strengthen the correlation to child word
learning patterns. Our results lay the groundwork for further
behavioral comparisons between models and child learning.

Conclusion
We have shown that the difficulty with which computer vision
models learn different categories of words predicts the age
at which children learn words in those categories. Although
computer vision systems and human children potentially have
significant differences in the mechanisms of learning, both
face the challenge of relating a word to the visual phenom-
ena it describes. The developmental parallels, which show
that the difficulty of learning different categories of words is
aligned for both machines and children, suggest that the struc-
ture of the learning problem itself may induce similarities in
patterns of learning. We hope that these results open the door
to new opportunities to model child development using ma-
chine learning systems for computer vision and language, and
in turn help us to understand these machine learning systems
better through their parallels to child development.
Acknowledgments. Mira Nencheva was supported by the ACM
SIGHPC Computational & Data Science Fellowship. This material
is based upon work supported by the National Science Foundation
(grant number 2107048) and the National Institute of Child Health
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