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Abstract

Do large datasets provide value to psychologists? Without a systematic methodology for working

with such datasets, there is a valid concern that exploratory analyses will produce noise artifacts

rather than true effects. In this paper, we offer a way to enable researchers to systematically build

models and identify novel phenomena in large datasets. One traditional approach is to analyze the

residuals of models—the biggest errors they make in predicting the data—to discover what might

be missing from those models. However, once a dataset is sufficiently large, machine learning

algorithms approximate the true underlying function better than the data, suggesting instead that

the predictions of these data-driven models should be used to guide model-building. We call this

approach “Scientific Regret Minimization” (SRM) as it focuses on minimizing errors for cases

that we know should have been predictable. We demonstrate this methodology on a subset of the

Moral Machine dataset, a public collection of roughly forty million moral decisions. Using SRM,

we found that incorporating a set of deontological principles that capture dimensions along which

groups of agents can vary (e.g. sex and age) improves a computational model of human moral

judgment. Furthermore, we were able to identify and independently validate three interesting

moral phenomena: criminal dehumanization, age of responsibility, and asymmetric notions of

responsibility.

Keywords: moral psychology, machine learning, decision making, scientific regret
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Scaling up Psychology via Scientific Regret Minimization:

A Case Study in Moral Decisions

Introduction

The standard methodology in psychological research is to identify a real-world behavior,

create a laboratory paradigm that can induce that behavior, and then test a variety of hypotheses

on a group of participants. This methodology was first pioneered over one hundred years ago and

remains the de facto approach today. While it enables researchers to dissociate individual

variables of interest, it can also lead to over-fixation on a specific paradigm and the small amount

of variations it offers in contrast to more broadly sampling the space of experiments relevant to

the behavior of interest. As a result, several researchers have started to call for a shift towards

mining massive online datasets via crowdsourced experiments (Griffiths, 2015; Jones, 2016;

Goldstone & Lupyan, 2016; McAbee, Landis, & Burke, 2017; Paxton & Griffiths, 2017;

Hartshorne, Tenenbaum, & Pinker, 2018; Awad et al., 2018; Schulz et al., 2019) because the scale

offered by the internet enables scientists to quickly evaluate thousands of hypotheses on millions

of participants.

The Moral Machine experiment (Awad et al., 2018) is one recent example of a large-scale

online study. Modeled after the trolley car dilemma (Foot, 1967; Thomson, 1984; Greene,

Sommerville, Nystrom, Darley, & Cohen, 2001), this paradigm asks participants to indicate how

autonomous cars should act when forced to make life-and-death decisions. In particular,

participants were presented with two types of dilemmas: pedestrians versus pedestrians, in which

an empty car must choose between killing two sets of pedestrians (see Figure 1), and passengers

versus pedestrians (not shown), in which a car must choose between saving its passengers or a

group of pedestrians. The Moral Machine experiment collected roughly forty million decisions

from individuals in over two hundred countries, making it the largest moral reasoning experiment

ever conducted. In addition to the vast number of judgments collected, the experiment operated

over a rich problem space: the many possible combinations of twenty different types of agents

(e.g., man, girl, female doctor, dog) as well as contextual information (position of the car,
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Figure 1. A sample moral dilemma using the Moral Machine paradigm (Awad et al., 2018). Here,

the participant must choose whether an empty car should stay and kill a girl, old woman and a

dog, who are all illegally crossing, or whether the car should swerve and kill an infant, a woman,

and a dog, who are all legally crossing.

crossing signal) resulted in millions of unique dilemmas being presented to participants. With all

these variations, the question thus becomes: for any given dilemma, do participants prefer the car

to stay or swerve? Furthermore, what factors influence each decision?

Psychologists have developed a standard statistical approach for analyzing behavioral data

to answer such questions: identify all the possible predictors for an individual’s decision and fit a

model using these predictors. By analyzing the statistical significance of each predictor or an

overall model metric that penalizes complexity (e.g., the Akaike information criterion (Akaike,

1998)), the researcher finds a model that best trades off model complexity with accuracy.

Unfortunately, this approach does not scale well with large datasets. Statistical significance is
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achieved with lower effect sizes in large samples, and complexity penalties are dominated by

measures of fit such as the log-likelihood. As a result, when the dataset is sufficiently large, this

approach will always favor the more complex model even if the increase in predictive accuracy

per data point is trivial, making it difficult to gain insights in the data.

An even stronger critique of this approach is that it assumes prior knowledge of the relevant

predictors. In the Moral Machine dataset, the question is not just how important the different

factors might be to making moral judgments, but what these factors are to begin with. This

suggests the need for exploratory data analysis, a ‘detective-like’ methodology of generating and

evaluating hypotheses (Tukey, 1976; Behrens, DiCerbo, Yel, & Levy, 2012). One may try to test

all possible interactions, but there can easily be an exponential blowup in the number of

parameters, reducing the interpretability and thus the explanatory power of the model. For

example, a naïve featurization of the Moral Machine dataset results in more than 11,000

three-way interactions. Given that the Moral Machine dataset allows forty-way interactions and

the relevant predictors may be complex nonlinear functions of the lower-level features, this

approach would be difficult to implement in practice. What is needed is an efficient and

systematic way of conducting exploratory data analyses in large datasets to identify interesting

behaviors and the features that give rise to them.

Understanding the Moral Machine dataset in this manner is simply a microcosm of the

broader scientific enterprise. Consider a scientist interested in moral psychology. How does she

contribute to the field? She reads papers and combines that knowledge with her own personal

experiences, building an internal model that can predict behaviors in different settings. In parallel,

she reads the scientific literature to find models that explain these effects. Then, by analyzing the

differences between her own mental model and the literature, she either proposes an explanation

for a known phenomenon or hypothesizes a novel effect. She conducts an experiment that

evaluates her claim and continues this scientific process again.

We believe large datasets should be tackled in the same way, and we formalize this intuition

in a process we call “Scientific Regret Minimization” (SRM), by analogy to the notion of regret
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Figure 2. Scientific Regret Minimization. After collecting a large dataset, we use machine

learning models to separate the signal from the noise. We then critique psychological models with

respect to the signal identified by the machine learning model and continue doing so until both of

the models converge.

minimization in machine learning (Lai & Robbins, 1985). First, we suggest that researchers

should leverage the size of large datasets to train theoretically-unconstrained machine learning

models to identify the amount of variance in the dataset that can be explained (Khajah, Lindsey,

& Mozer, 2016; Peysakhovich & Naecker, 2017; Kleinberg, Liang, & Mullainathan, 2017;

Fudenberg & Liang, 2019; Glaser, Benjamin, Farhoodi, & Kording, 2019). Next, because these

models do not necessarily give insight to the underlying cognitive processes, a simple and

interpretable psychological model should be fit on the same dataset. Researchers should then
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critique the psychological model with respect to the black-box model rather than the data. The

intuition here is that the psychological model should only be penalized for incorrectly predicting

phenomena that are predictable (i.e. we should pay close attention to those errors that result in

regret). This critiquing process should continue until the predictions of both models converge,

thereby ending with a model that jointly maximizes predictive and explanatory power. The

residuals from this process may correspond to novel effects, and one can run separate experiments

that independently validate them. A summary of this approach is outlined in Figure 2.

The method of refining models by analyzing their errors (also known as “residuals”) is often

employed in exploratory data analysis (Box & Hunter, 1962; Blei, 2014; Linderman & Gershman,

2017). In this paradigm, researchers begin by proposing a model and fitting it to the data. By

looking at the inputs where the model’s predictions and the data diverge, they attempt to identify

new relevant features that will hopefully increase the model’s accuracy. They then incorporate

these new features into the model, fit it to the data, and continue repeating the process.

Our approach is different because we suggest that, once the dataset is sufficiently large,

models should be critiqued with respect to a powerfully predictive model rather than the data.

Critiquing with respect to the data in large datasets can be difficult because the largest residuals

often reflect noise. Formally, let f(x) be the true function we are trying to understand, and let the

data be y = f(x) + ε, where ε ∼ N (0, σ2
ε ). Furthermore, let us assume we are trying to predict

the data with a psychological model g(x). The expected squared residual between the

psychological model and the data is

E
p(x,y)

[
y − g(x)

]2

= E
p(x)

[(
f(x)− g(x)

)2
]

+ σ2
ε (1)

That is, the expected residual between the model and the data, y − g(x), will be the true residual,

f(x)− g(x), plus a term that captures the noise variance. (Derivations of all results appear in

Materials and Methods). Throughout this paper, we will refer to the residuals between the model

and data as the raw residuals. Equation 1 indicates that the correlation between the raw residuals

and the true residuals will have an upper bound determined by the noise variance, thus

highlighting an important problem with using them to guide model-building. The manual process
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of critiquing models with respect to the raw residuals often focuses on using the largest k

residuals to formulate new predictors. However, as the number of unique inputs increases, these k

residuals will mostly reflect noise because E[max |ε|] increases as well.

Figure 3. Scientific Regret Minimization demonstration. (Left) A graph that outlines the true

polynomial function, the data drawn from the polynomial function (with added noise), and a

neural network’s prediction. (Middle) The correlation between the raw residuals and the true

residuals versus the correlation between the smoothed residuals and the true residuals for a simple

linear model fit to the data. (Right) The average squared residual between the data and the true

function versus the average residual between the neural network and the true function. As

predicted, smoothed residuals correlate better with the true residuals when the error of the neural

network falls below the noise in the data. Ten simulations were run for each dataset size and error

bars in figures the middle and right reflect ±1 SEM.

If we think back to our hypothetical scientist, she is analyzing the differences between her

internal model and the psychological models in the literature. Once she has read enough of the

literature and has enough real-world experience, her internal model will be more sophisticated

than a simple table lookup of the data. Formally, let f̂(x) correspond to a data-driven machine

learning algorithm, such as a neural network. The expected residual between this model and the
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psychological model is

E
p(x,y)

[
f̂(x)− g(x)

]2

= E
p(x)

[(
f(x)− g(x)

)2
+

2
(
f(x)− g(x)

)(
f̂(x)− f(x)

)
+
(
f̂(x)− f(x)

)2
] (2)

We will refer to these residuals as the smoothed residuals. The latter two terms in the right-hand

expression correspond to the covariance of the predictive and psychological models’ errors, and

the generalization error of the predictive model. When the expression in Equation 2 is less than

the expression in Equation 1, i.e.

E
p(x)

[
2
(
f(x)− g(x)

)(
f̂(x)− f(x)

)
+
(
f̂(x)− f(x)

)2
]
< σ2

ε (3)

the smoothed residuals will be more highly correlated with the true residuals than the raw

residuals. Because the generalization error of data-driven machine learning algorithms decreases

with the amount of the data by which they are trained (Huang et al., 2018), the above inequality

will hold when the dataset is sufficiently large. Once this condition is met, we should critique the

psychological model with respect to the machine learning model rather than the dataset. Figure 3

demonstrates an example of how smoothed residuals become more representative of the true

residuals than the raw residuals as the dataset becomes large. In practice, it is difficult to know

when the dataset is large enough for this condition to be reached. For this paper, we approximated

it as the point at which the machine learning model outperformed the psychological model.

As a case study, we apply Scientific Regret Minimization to the Moral Machine dataset. We

demonstrate that a multilayer feedfoward neural network outperforms simple psychological

choice models for predicting people’s decisions, and we then continuously critique a rational

choice model until its predictive accuracy rivals that of the neural network. The result is an

informative, interpretable psychological theory that identifies a set of moral principles that inform

people’s judgments – exactly the kind of insight that is relevant to informing policy around new

technologies such as autonomous vehicles. This process also allowed us to identify three subtle

and complex moral phenomena, which we validated by running preregistered experiments. Our

end product is (1) a computational model of moral judgment that jointly maximizes explanatory
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and predictive power as well as (2) the identification and replication of several principles behind

human moral reasoning.

Results

Computational Modeling

Formalization. Scientific Regret Minimization first calls for identifying a paradigm of

interest and then critiquing a simple and interpretable psychological model with respect to a

data-driven predictive model. We restricted ourselves to the subset of the Moral Machine dataset

that contained pedestrians vs. pedestrians dilemmas (N = 15,226,477). We used a rational choice

model (Luce, 1959; McFadden, 1973) as our psychological model to explain human moral

judgment, assuming that, in the Moral Machine paradigm, humans constructed values for both

sides of pedestrians (i.e., vleft and vright) and saved the side with the higher value. Each side’s value

was determined by aggregating the utilities of its agents:

vside =
∑
i

uili (4)

in which ui was the utility given to every agent type i (e.g., man, girl, female doctor, dog), and li

represents the number of those agents on that side. This formalization assumes that a participant’s

choice c obeys the softmax choice rule, which states that participants chose to save a side in the

following way:

P (c = left|vleft, vright) = evleft

evleft + evright
(5)

We implemented this rule by fitting a logistic regression model to the data in order to infer the

utility vector u. We called this model the ‘Utilitarian’ model.

This model, however, did not incorporate the main inspiration behind the trolley car

dilemma: a resistance to intervening and thus killing bystanders, which is not justified by

utilitarian calculus. In order to incorporate such principles, we created a ‘Deontological’ model in

which the value of a side is
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vside =
∑
m

λmfm (6)

Here, λm refers to the strength of principle m and fm is a binary variable indicating whether that

principle was relevant to the given side. We proposed that two potential principles were relevant

in the Moral Machine paradigm. The first was that a side was penalized if saving it required the

participant to swerve. This penalty has been the primary focus of many moral psychology

experiments based on the trolley car dilemma (Greene et al., 2001; Greene, Nystrom, Engell,

Darley, & Cohen, 2004; Cushman, Young, & Hauser, 2006). Second, because the Moral Machine

dataset had three different crossing signal statuses (crossing legally, crossing illegally, and the

absence of a crossing signal) we added a penalty if a side’s pedestrians were crossing illegally.

This side might have been penalized by participants because the participants were waiving their

rights to protection by violating the law (Nino, 1983), and participants may have preferred to kill

the pedestrians whose rights have been waived. We used logistic regression to infer the values λ.

Lastly, given research demonstrating that individuals have both utilitarian and deontological

tendencies (Greene, 2007; Greene, Morelli, Lowenberg, Nystrom, & Cohen, 2008; Lombrozo,

2009; Cushman, 2013; Crockett, 2013), we created a ‘Hybrid’ model in which the value of a side

is a combination of utilitarian and deontological features:

vside =
∑
i

uili +
∑
m

λmfm (7)

This model served as our baseline psychological model for which to iterate upon during SRM.

Central to SRM is that, in addition to training these three choice models, we need to train a

data-driven machine learning model. We built a standard multilayer feedforward neural network

with forty-two inputs: twenty corresponding to the agents on the left, twenty for the agents on the

right, one for the car side, and one for the crossing signal status, thus completely specifying the

given dilemma. (It should be noted that one variable for the crossing signal status of the left-hand

side is sufficient because the crossing signal status of the right-hand side is just the opposite).

These inputs were the same as the ‘Hybrid’ model, except that the ‘Hybrid’ model had the added
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constraint that the value of an agent was constant across both sides (i.e., a girl on the left side was

just as valuable as a girl on the right side), while the neural network had no restriction.

Finally, as a comparison to a standard data analysis method, we applied a Bayesian variable

selection method to a model that started off with all features given to the ‘Hybrid’ model as well

as all two- and three-way interactions. Further details about this model are outlined in the SI Text.

Figure 4. Metrics for Different Models Trained on Subsets of the Moral Machine Data. (Top)

Performance of initial choice models and neural network as a function of dataset size. Five

bootstrapped samples were taken for every dataset size. Error bars indicate ±1 SEM. (Bottom)

Comparison of a choice model and a neural network before incorporating axes of differences

versus after incorporating axes of differences. The addition of these features resolves much of the

gap between the choice model and the neural network. Error bars indicate ±1 SEM.

Initial Results. The top panel of Figure 4 reports the results of training all the models on

differently-sized subsets of the data. Each model was trained on eighty percent of the subsets, and

the metrics here reflect the results when tested on the held-out twenty percent. This procedure

was completed for five different splits of the data. We report accuracy and area under the curve

(AUC), two commonly used metrics in evaluating models of binary decisions. Furthermore, we

also calculated the normalized Akaike information criterion (AIC), a metric in which a smaller
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number suggests a better model (Akaike, 1998).

In this training, the rational choice models performed extremely well at small sizes, and

their performance stayed relatively consistent as the dataset size increased. On the other hand, the

neural network performed poorly at small sizes, but became better with larger ones and eventually

surpassed the choice models1. We also want to point out the Neural Network had a better AIC

than the ‘Hybrid’ model despite the fact the former had over three thousand parameters while the

latter only had twenty-two. This result affirms our earlier point that metrics like the AIC become

uninformative, reducing to a measure of the log-likelihood, when the dataset is sufficiently large.

Most importantly, the neural network’s eventual performance suggested there were

systematic effects that our choice models were predicting incorrectly. We leveraged these

residuals via SRM to build a better choice model of human moral judgment.

Improving the Model

Identifying Axes of Differences. The standard methodology for critiquing models

suggests prioritizing the raw residuals, the largest differences between the choice model and the

data. Table 1 reports the five largest of these with a minimum sample size of one hundred

participants. We claim that the residuals for these dilemmas may often reflect noise and that the

neural network’s predictions are more representative of the true function than the data. For

example, in the largest raw residual, a car is headed towards a group of four humans (a man, a

woman, a girl, and a male executive). On the other side is a dog and three cats. According to the

data, over 99% of the 649 participants in this dilemma stayed in the lane and chose to kill the

humans instead of the animals. The choice model predicted a strong effect in the opposite

direction, and this prediction was reasonably close to the neural network’s prediction, suggesting

that the choice model may not be mispredicting here. To confirm this, we looked at the dilemmas

that followed these conditions: the car was headed towards agents that were comprised of men,
1 Furthermore, it should be noted that many modern neural networks have problems with calibration even when

they have a better AUC (Guo, Pleiss, Sun, & Weinberger, 2017). We thus computed a calibration plot in Supplementary

Figure S1 to ensure the neural network served as a good predictive model.
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women, girls, male executives, or any combination of them; the other side comprised of dogs

and/or cats; there was an absence of a crossing signal; the number of agents on each side were

identical; and at least fifty participants responded to the dilemma. There were forty-five such

dilemmas. In forty-four of these forty-five dilemmas, only 11.3% to 25.5% of participants chose

to kill the side with humans. The forty-fifth dilemma was the one with the largest residual, and

here 99.4% of participants chose to kill the human side. The results of the forty-four other

dilemmas suggest that the data for this dilemma is noisy, and thus we shouldn’t critique the

choice model for disagreeing with the data here.

Similarly, consider the second largest raw residual. Here, a car is headed towards an old

woman and a pregnant woman, who are crossing illegally. On the other side is a dog and cat

crossing legally. Both the data and the neural network predicted participants would not kill the

humans. However, the magnitudes were drastically different, and the correct magnitude is needed

to understand the priority of this residual. In the data, only 5.1% of the 924 participants killed the

humans, while the neural network predicted 25.8% of participants would. Like above, we

conducted an analysis of the data in similar dilemmas. We looked at dilemmas in which the car

was headed towards agents that were either pregnant women, old women, or both; the pedestrians

in front of the car were crossing illegally; on the other side of the car were animals; the number of

agents on the left and right side were equivalent; and at least fifty people responded to the

dilemma. In twelve of the thirteen dilemmas, 14.7% to 35.8% of participants chose to kill the side

with humans. The thirteenth was the dilemma reflected here, and thus the data of similar

dilemmas suggests the neural network’s prediction is more accurate than the data. Therefore,

while this dilemma exhibits a large residual for the choice model, the magnitude of the residual is

overestimated when critiquing with respect to the data.

Table 2 reports the largest smoothed residuals, i.e. the largest differences between the

choice model and the neural network. We suggest that these residuals reflect the ‘true residuals’

better than the data. In these dilemmas, participants must decide whether the car should stay and

kill the illegally crossing human or swerve and hit the legally crossing animal. Most participants
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Table 1

Biggest Differences Between Choice Model and Data (proportions show observed or predicted

proportion killing left side).

N Data Choice Model Neural Network

649 0.994 0.115 0.168

924 0.051 0.591 0.258

2671 0.292 0.760 0.346

146 0.274 0.736 0.349

2589 0.287 0.741 0.338

chose to swerve, and the neural network correctly predicted this result. However, the ‘Hybrid’

choice model often predicted the opposite. Looking at its coefficients, we can understand why:

there was a penalty for both illegally crossing and swerving, and the sum of those penalties

outweighed the utility differences between the human and the animal. We clustered those

dilemmas as humans-versus-animal dilemmas, and it seemed that, in these instances, humans

should be saved regardless of their crossing signal status and relationship to the side of the car.

This represented a deontological principle, a moral rule independent of the consequences of the

action (Alexander & Moore, 2016). Thus, while our ‘Hybrid’ choice model only used two

deontological principles, we added a third for future iterations: if a given dilemma requires

choosing between humans or animals, humans should be preferentially saved. This feature would

have been difficult to justify when looking at the residuals from the data, because the largest

residual there actually exhibited a strong effect in the opposite direction. Going down the list of

smoothed residuals, we are able to cluster another group of dilemmas with high errors and

conducted a similar analysis shown in Supplementary Table S1. Most salient to us in those
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dilemmas was an age gradient. Similar to above, future iterations of our model incorporated a

deontological principle explicitly favoring the young in old-versus-young dilemmas.

Table 2

Biggest Differences Between Choice Model and Neural Network (proportions show observed or

predicted proportion killing left side).

N Data Choice Model Neural Network

2541 0.301 0.699 0.272

2541 0.249 0.662 0.239

153 0.366 0.746 0.326

146 0.370 0.715 0.296

2561 0.195 0.637 0.220

Incorporating Axes of Differences. Humans versus animals and old versus young were

two of six ‘axes of differences’ the Moral Machine researchers explicitly manipulated in their

experiment, the other four being fat versus fit, more versus less, male versus female, and high

status versus low status. While these axes were not explicitly revealed to the participant, the

residuals we identified suggested participants were sensitive to them. We incorporated these six

new features as additional deontological principles into our ‘Hybrid’ choice model and plotted the

results in the bottom panel of Figure 4. The new choice model, ‘Hybrid + Axes’ had a

significantly better accuracy than the ‘Hybrid’ model, demonstrating that we were able to build a

better predictive model of moral judgment while retaining interpretability and explanatory power.

Furthermore, we added these axes as inputs into the neural network to create ‘Neural Network +

Axes.’ This model outperformed the original network at smaller dataset sizes but became

seemingly identical at larger ones, suggesting that the original network could construct these axes
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once there was sufficient data. These axes were at least as complex as twenty-way interactions.

This human part of identifying features from residuals is important in generating

explanatory insights of human behavior. First, it allows the researcher to connect the new features

with past research. For example, the ‘axes of difference’ we found are reminiscent of work by

Tversky regarding ‘features of similarity’ (Tversky, 1977). Second, this manual step helps ensure

that the researcher is incorporating psychologically meaningful features rather than spurious

information. For example, Zech and colleagues (Zech et al., 2018) found that machine learning

models were overfitting to hospital-specific information in a training set of medical images, rather

than validly approximating the true functional mapping between the images and diagnoses. A

human-led featurization step as we propose would help ensure that the new features for the

simple, interpretable model do not reflect this spurious information.

Despite the initial success in increasing accuracy after the first iteration, the model-building

process still displayed a potential for improvement (as indicated by the AUC curve), and thus we

conducted more iterations of our loop. Using the smoothed residuals from the second iteration,

we identified axes not explicitly manipulated by the researchers, such as Pregnant Women and

Doctors versus other humans, and split previous axes into sub-axes (e.g., young versus old was

split into young versus adult, adult versus old, and young versus old). The third and fourth

iterations modeled two-way and three-way conjunctive features between the axes of differences,

the crossing signals, and the intervention status (e.g. a car headed towards illegally crossing

humans in a humans-versus-animals dilemma).

Table 3 displays the final results of our model-building process. It is up to the modeler to

decide when to stop the process, and in this case study, we stopped when the metrics between the

new choice model and the neural network were maximally close. Supplementary Tables S2 to S7

report the largest smoothed and raw residuals for the later iterations. The features we identified at

these later iterations reflect more subtle and complicated principles. While there was conceptual

overlap between the largest smoothed residuals and raw residuals for the first iteration, the gap

seems to grow at the later iterations, in which the larger raw residuals seem to be very different
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Table 3

Comparison of Model Fit under Different Metrics

Model Type Accuracy AUC AIC

Deontological 0.630 0.631 1.303

Utilitarian 0.719 0.779 1.161

Hybrid 0.756 0.814 1.052

Hybrid + Axes (Iteration 1) 0.760 0.823 1.021

Additional Axes (Iteration 2) 0.764 0.825 1.019

Two-Way Conjunctions (Iteration 3) 0.764 0.829 1.003

Three-Way Conjunctions (Iteration 4) 0.768 0.830 0.999

Neural Network 0.768 0.833 0.999

Empirical Upper Bound 0.804 0.890 N/A

than the largest smoothed residuals. Our resulting model predicted human decisions with an

accuracy comparable to the neural network and was entirely interpretable (all features and their

weights are outlined in Supplementary Table S8). The table also shows the maximum possible

accuracy when using the aggregate data to predict the choice for every given dilemma via a table

lookup algorithm (i.e. if 90% of participants in a given dilemma chose to swerve, the empirical

prediction for that dilemma will be 90%; as a result, it should be noted that the performance of

this ‘model’ was not calculated out-of-sample, while all the other models were).

Empirical Results

SRM is a form of exploratory data analysis. Such methods have the vulnerability of

overfitting to data and thus need to be complemented with confirmatory data analysis techniques

(Tukey, 1980). We identified and empirically validated interesting effects from three iterations of

SRM. First, regarding a new axis of difference, we found convincing evidence that participants

excluded criminals from moral protections afforded to other human agents. We previously
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discussed the need to incorporate a deontological principle in humans-versus-animals dilemmas

that prefers saving the human side. While doing this increased the model’s overall predictive

power, our model started to err on a subclass of other dilemmas: criminals versus animals. In

order to build a better model of human moral judgment, we had to introduce a separate

criminals-versus-animals feature, thus dehumanizing criminals in the eyes of our model.

Second, we were able to identify an intuitive interaction between kids and an illegal

crossing status. Consider two dilemmas (illustrated in Supplementary Figure S2) where in the

first, the participant must choose between saving an old woman or a girl and in the second, the

participant must choose between saving either an old woman and a woman, or a girl and a

woman. Rational choice models are based on a linear utility function and would consider these

dilemmas to be treated equivalently, but the Moral Machine data and the neural network revealed

that participants did not always do so. Rather, participants treated the dilemmas as equivalent

when the side with children was crossing legally or if there was an absence of a crossing signal,

but not when the side with children was illegally crossing. In the latter cases, the side with

children in the second dilemma (i.e., with an adult) was penalized more than the corresponding

side in the first dilemma.

Lastly, there was an intriguing asymmetric interaction between car side and crossing signal

status in both male-versus-female dilemmas and fat-versus-fit dilemmas. Here, when the car was

headed towards the higher-valued individual (i.e., the female or the athlete) in the absence of a

crossing signal, the probability of saving the individual was roughly halfway between the

probability of saving them when they were legally crossing and the probability of saving them

when they were illegally crossing. However, this relationship did not hold when the car was

headed towards the lower-valued individual. Rather, in those cases, the probability of saving the

individual was significantly lower than the halfway point and close to the probability of saving

them when they were illegally crossing. Intuitively, lower-valued individuals aren’t given the

“benefit of the doubt” when their crossing legality is ambiguous.

We ran three preregistered experiments on Amazon’s Mechanical Turk in order to replicate
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and confirm these effects revealed by SRM.

Experiment 1: Criminal Dehumanization

In this experiment, participants chose between saving a human and a dog. We varied the car

side (dog, human), type of human (criminal, homeless man, old man, adult man), and crossing

signal status (legally crossing, illegally crossing, N/A) for a total of twenty-four dilemmas. Each

participant saw four of these twenty-four dilemmas. We calculated the percentage of participants

that chose to save the human over the dog in every dilemma. For each car side and crossing signal

combination, we conducted a Chi-squared test determining whether participants chose to save

criminals less than each of the other three humans. This resulted in eighteen separate Chi-squared

analyses, and for these eighteen analyses, criminals were saved at a rate between 11% to 28% less

than the other human agents. All analyses were significant at the α = 0.05 level, and seventeen of

the eighteen were significant at the α = 0.001 level. Graphical results are displayed in Figure 5

and tabular results are represented in Supplementary Table S9. The original Moral Machine

results are reported in Supplementary Table S10.

Figure 5. Dehumanization of Criminals. When pitted against dogs, participants save criminals at

a significantly lower rate that other human agents.

Our results in Experiment 1 suggest that criminals are excluded from certain protections

most humans are given, namely preferring to save them compared to dogs. These findings are
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consistent with a long line of work in sociology and psychology suggesting criminals are treated

as a lower class of individuals than others in society when it comes to evaluating their status as a

human being (Jahoda, 1999; Viki, Fullerton, Raggett, Tait, & Wiltshire, 2012; Bastian, Denson, &

Haslam, 2013; Haslam & Loughnan, 2014). Opotow et. al (Opotow, 1990) proposed that

dehumanization is a form of moral exclusion in which a victim can lose their entitlement to

compassion. Besides moral exclusion, other potential frameworks to understand participants’

behavior may be through retributive justice (Darley & Pittman, 2003; Witvliet et al., 2008) and

standard consequentialist reasoning. We believe both of these factors were also present in this

paradigm, but that they were already taken into account in our choice model as the inferred weight

given to criminals. The moral exclusion argument is supported by the fact that incorporating a

humans-versus-animals principle was an important predictor of Moral Machine behavior, but that

we had to specifically remove this label from situations that pitted criminals versus animals. Since

these axes of differences were derived from the features of the agents (Kim et al., 2018), our

modeling suggests that participants did not honor the ‘human’ feature for criminals.

Experiment 2: Age of Responsibility

In this experiment, participants either chose between saving a child or an old adult or they

chose between saving a child and an adult versus an old adult and an adult. We varied car side

(child, old adult), crossing signal condition (legally crossing, illegally crossing, N/A), and sex

(male, female) for a total of twenty-four stimuli. Each participant saw six of the twenty-four

dilemmas. We aggregated responses for all dilemmas in order to calculate the percentage of

participants that chose to save the young side. For each car side, sex, and crossing signal

combination, we conducted a Chi-squared analysis comparing the percentage that saved the

young side in a child versus old adult dilemma to the percentage that saved the young side in a

child and adult versus old adult and adult dilemma. Of these twelve analyses, we hypothesized

four would be significant while the other eight would not be. Specifically, we hypothesized that

the analyses where the young side was crossing illegally would be significantly different but that
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the dilemmas in the other crossing signal conditions would not be. Three of the four hypothesized

significant effects were significant at the α = 0.05 level, while seven of the eight hypothesized

null effects were not significant at the α = 0.05 level. Results are graphically represented in

Figure 6 and reported in Supplementary Table S11. The original Moral Machine results are

reported in Supplementary Table S12.

The results from Experiment 2 suggest children are given a privileged status when

assigning blame. The jurisprudential logic for the privileged status of children in the law is that

children often lack the mens rea, i.e., the knowledge of wrongdoing and a necessary condition for

criminal conviction, when partaking in illegal activity (Platt & Diamond, 1966; Dalby, 1985;

Bandalli, 1998). (An intuition for why mens rea is considered important is encapsulated by

Justice Oliver Wendell Holmes Jr.’s famous quip: “Even a dog distinguishes between being

stumbled over and kicked.” (Holmes, 1881)) Earlier, we proposed that the negative penalty

associated with crossing illegally is justified by a consensual theory of punishment (Nino, 1983),

in which an individual waives their rights to being protected by the law when committing an

illegal action. In our experiment, when the illegally crossing pedestrians were solely comprised of

children, participants did not penalize them as much as when there was one adult. Formally, the

jurisprudential logic behind participants’ decisions here would be that the children did not have

the necessary mens rea when crossing illegally and thus they did not willingly waive their rights

to being protected by the law. As a result, they should not be penalized as much as adults, who

presumably did have the mens rea and thus knowingly waived their rights. Furthermore, the

empirical effect is stronger when the car is on the side of the old adult, which is intuitive under the

consensual theory of punishment framework as it seems more reasonable to excuse a child

compared to an adult for not realizing they were crossing illegally when the car was on the

opposite side.
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Figure 6. Age of Responsibility. Graphs demonstrate the differences in participants’ judgments

when deciding between a child and an old adult versus when deciding between a child and an

adult versus an adult and an old adult. The dilemmas are roughly equivalent when the side with

children are either crossing legally or when there is absence of a crossing signal, but not when

they are crossing illegally.

Experiment 3: Asymmetric Notions of Responsibility

Each dilemma in this experiment was either a male versus female or an athlete versus a

large person. We varied car side and crossing signal status, as well as age (adult, old) for the
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male-female dilemmas and sex for the fat-fit dilemmas, for a total of twenty-four dilemmas. Each

participant only saw four of the twenty-four possible dilemmas. For each axis (i.e., male-female

or fat-fit) and car side combination, we conducted a Chi-squared analysis comparing the

percentage that saved the higher-valued individual in the absence of a crossing signal to the

average of the percentages that saved in the legal and illegal crossing settings. We hypothesized

that when the car was headed towards the lower-valued individuals, the proportion saved in the

absence of a crossing signal condition would be significantly less than the mean of the other two

crossing signal settings, while we did not think there would be a significant difference when the

car was headed towards the higher-valued individuals. All four of our hypothesized significant

effects were significant at the α = 0.05 level and all four of our hypothesized null effects were not

significant at this level. Results are graphically represented in Figure 7 and reported in

Supplementary Table S13. The original Moral Machine results are reported in Supplementary

Table S14.

The results in Experiment 3 demonstrated that when the car is headed towards the

higher-valued individual and there is an absence of a crossing signal, the individual is treated half

as if they are crossing legally and half as if they are crossing illegally. The same is not true when

the car is headed towards the lower-valued individual. In those cases, the individual is treated in

almost the same manner as when they are illegally crossing. One conjecture for this behavior is a

form of motivated reasoning (Kunda, 1990; Alicke, 2000; Ditto, Pizarro, & Tannenbaum, 2009).

Participants may have started off by assuming that the pedestrian in the same lane as the car is the

one at fault. However, because the participant was motivated to save the higher-valued individual,

they treated the absence of a crossing signal as an ambiguity that suggested equal probability of

crossing legally or illegally. Conversely, when the car is headed towards the lower-valued

individual, participants may have been motivated to infer that the individual was probably

crossing illegally, and thus use the fact they are in front of the car to justify this belief.
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Figure 7. Asymmetric Notions of Responsibility. The dotted line indicates the average of the

legal and illegal crossing conditions. When the car is headed towards the high-valued individual,

their judgments are close to that predicted by the dotted line. However, when the car is headed

towards the lower-valued individual, their judgments are close to the ones in which the individual

is crossing illegally.

Discussion

When there is so much data in front of us, where do we even start to look? This problem is

not unique to large-scale experiments. Rather, it is the problem of the scientific enterprise in
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general. The scientific method has offered a solution: identify the signal in the data and iteratively

critique hypotheses until they are able to explain as much of the signal as possible. In this paper,

we formalized this idea as an iterative loop in which we critique interpretable and

theoretically-constrained psychological models with respect to a data-driven machine learning

algorithm. Standard forms of exploratory data analysis critique models with respect to the data,

but once the dataset is sufficiently large, a purely data-driven machine learning algorithm like a

neural network can often provide a better estimate of the true underlying function than the data

itself.

We illustrated this methodology in the domain of moral decision-making. Psychological

models of moral reasoning are often derived from consequentialist and deontological theories in

moral philosophy (Kant, 1785; Bentham, 1789), and these theories have been extremely fruitful in

motivating moral psychology research. However, it is inevitable that a highly theoretically-driven

scientific program will lead to incomplete models of human behavior. By contrasting these

constrained models with data-driven models, we were able to identify shortcomings and use them

to build a model that is both theoretically grounded and powerfully predictive. We found that

incorporating axes of differences and their interactions with other deontological principles

improved the accuracy of a rational choice model of moral decision-making. We then validated

three of our findings by running independent preregistered experiments.

Our work is conceptually similar to model compression in which a ‘simple’ model is

trained on the predictions of a complex model (Buciluǎ, Caruana, & Niculescu-Mizil, 2006).

However, in that line of work, simplicity is defined with respect to a runtime processing whereas

in ours is defined with respect to interpretability. Both our work and theirs leverage the fact that a

neural network can serve as a universal function approximator (Hornik, Stinchcombe, & White,

1989; Hartman, Keeler, & Kowalski, 1990). They use it as their rationale to use a neural network

to approximate the predictions of boosting trees, while we use it as our rationale to estimate the

true underlying function. Because neural networks are the ‘simple’ model in model compression,

there is no residual analysis, and thus the majority of the work is dedicated to identifying ways to
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create a large dataset so that a neural network can be trained on, while the majority of our

methodology is centered around residual analysis.

SRM is also similar to research by Rudin and colleagues (Rudin et al., 2010; Rudin, 2019),

in which the goal is to create interpretable machine learning models for high-stakes decisions.

Our results in Table 3 demonstrate that there is not necessarily a tradeoff between accuracy and

interpretability, as commonly thought by many machine learning researchers. Rather, if given

structured features, interpretable models can perform similarly to (and perhaps even outperform)

black-box machine learning models. The methodology we propose in this paper is a systematic

process for identifying and building structured features in the data.

The Moral Machine dataset proved to be a fruitful case study for Scientific Regret

Minimization: rational choice models performed well, but we were still able to use a neural

network to identify shortcomings once the dataset became sufficiently large. We expect that this

methodology can be used in different domains, especially in mature fields (which may have

unwittingly missed important systematic effects), but also in newer fields wherein the gaps

between theoretically-inspired models and data-driven models remain large. Future work can

extend our methodology in at least two different ways. The first is automating the identification

and clustering of residuals into human-interpretable features. The second is that, while we

assumed a specific functional form (i.e., a rational choice model) for the final model, it is

plausible that this theoretical model is incorrect and thus we may need to develop a systematic

way to identify the proper functional form itself.

Lastly, on a broader note, we hope to further the development of a synergistic

correspondence between psychology and data science approaches in scientific modeling

(Rosenfeld, Zuckerman, Azaria, & Kraus, 2012; Dwyer, Falkai, & Koutsouleris, 2018; Peterson,

Abbott, & Griffiths, 2018; Bourgin, Peterson, Reichman, Griffiths, & Russell, 2019). Cognitive

science famously grew out of the intersection of six different fields (Gardner, 1987), but some

have suggested that this revolution did not create the emergence of a new discipline (Lakatos,

1986; Miller, 2003; Núñez et al., 2019). Rather, research often proceeds independently in each
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contributing field. One potential reason for the lack of unification lies on a philosophical level:

different scientific traditions have different epistemic values and are methodologically

incommensurable (Kuhn, 1962). For example, psychology prioritizes explanation while machine

learning is almost exclusively focused on prediction, and their methodologies reflect these

differences (Hofman, Sharma, & Watts, 2017; Yarkoni & Westfall, 2017; Jolly & Chang, 2019).

To live up to promise of the cognitive revolution, we need to truly integrate the different values

and methodologies implicit in these related fields. We hope the approach in this paper offers a

step in that direction.

Methods

Mathematical Analysis and Simulations

The proof for the result in Equation 1 is below:
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The proof for the result in Equation 2 is the following:
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For Figure 3, data was generated from the polynomial function 3x(x− 2)2(x+ 2)2(x+ 1),

and the input was uniformly sampled from the domain [−2.5, 2.5] and rounded to the nearest

thousandth, thus allowing for multiple samples of the same data point. Each data point had noise

independently drawn from a normal distribution N (0, 10). The neural network used a ‘ReLU’

activation function and had two hidden layers, the first with one hundred hidden neurons and the

second with fifty hidden neurons. Ten different simulations were run for each different dataset

size.

Computational Modeling

The neural network was trained to minimize the binary crossentropy between the model’s

output and human binary decisions. We conducted a grid search on the space of hyperparameters

to identify the optimal settings for the network. A neural network with three 32-unit hidden layers

and a ‘ReLU’ activation function was used for all the analyses in this paper. Keras (Chollet, 2018)

was used for training the neural networks, and the networks were optimized through Adam

(Kingma & Ba, 2014). Logistic regression models were trained via sci-kit learn (Pedregosa et al.,

2011).

When calculating metrics for a given dataset size, five samples of that size were

bootstrapped from the whole dataset. Each sample was split into training and testing sets.

Train/test splits were based on unique dilemmas as opposed to individual judgments. There was a

wide distribution of the number participant judgments per unique dilemma, and we wanted both

the training and test sets to have similar distributions. Thus, in order to approximate an 80/20

split, we sorted the dilemmas by the number of judgments and binned the dilemmas into groups
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of five. For every bin, four were randomly assigned to the training set and the fifth was assigned

to the testing set. As a result, all train/test splits were approximately, but not exactly, 80/20 splits.

Empirical Results

2,086 participants across twelve conditions were recruited from Amazon Mechanical Turk

and paid $0.50 to participate in an experiment in which they indicated their preferences in

twenty-eight Moral Machine autonomous car dilemmas. The order of all twenty-eight dilemmas

was randomized for each participant. Five of the twenty-eight dilemmas were attention checks. In

the attention checks, participants had the option of either saving or killing everyone in the

dilemma. If they chose to kill everyone more than once, they were excluded from further analysis.

The experiment’s preregistration called for 163 participants per condition (twelve conditions for a

total N = 1, 956) after the exclusion criteria were applied.

Nine of the remaining twenty-three dilemmas were passengers versus pedestrian dilemmas

while fourteen were the stimuli for the hypotheses. The nine passengers versus pedestrian

dilemmas were included to add variation because the fourteen stimuli used for the hypotheses

were all pedestrian versus pedestrian dilemmas. Answers for these dilemmas were not analyzed.

Furthermore, both the nine passengers versus pedestrian dilemmas and five attention checks were

kept constant across all twelve conditions.

Because there were a total twenty-four possible stimuli for each hypothesis, Hypothesis 1

and Hypothesis 3 stimuli were split into six groups of four and allocated throughout the twelve

conditions such that each group was assigned to two conditions. Hypothesis 2 stimuli were split

into four groups of six and allocated such that each group was assigned to three conditions. Thus,

of the fourteen dilemmas participants saw for the hypotheses, four were for Hypothesis 1, six

were for Hypothesis 2, and four were for Hypothesis 3. The end result was that all Hypothesis 1

and Hypothesis 3 stimuli received 326 judgments while all Hypothesis 2 stimuli received 489

judgments. These sample sizes were chosen in order to achieve 95% power at detecting a true

effect using the Chi-squared proportion test at α = 0.05. Effect sizes were estimated using results
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from the Moral Machine dataset. It should be noted that our procedure was different than the

original Moral Machine paradigm, which asked participants thirteen dilemmas and operated over

a wider range of experimental manipulations.

Experiments were coded using the jsPsych software package (De Leeuw, 2015) and the

interface with Amazon Mechanical Turk was provided with psiTurk (Gureckis et al., 2016). The

dilemmas were created using the ‘Design’ feature on the Moral Machine website.

Data from the experiments and the analysis script for the figures in this paper are uploaded

at https://osf.io/25w3v/?view_only=b02f56f76f7648768ce3addd82f16abd. The preregistration

can also be accessed from there.
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Supplementary Material

Bayesian Feature Selection

To simulate an alternative approach towards exploratory data analysis, we conducted a form

of Bayesian feature selection (Mitchell & Beauchamp, 1988). We trained a Bayesian logistic

regression model with all ‘Hybrid’ model features and their two- and three-way interactions.

Each weight was given a prior of a Gaussian distribution with mean 0 and standard deviation 0.1.

Once this model was trained, all features in which a weight of 0 was located in its 95% credible

interval were removed. We then trained this new model, and repeated this procedure until all

features that were fit were significant. (More computationally intensive variable selection

procedures, such as marginal likelihood, were infeasible given the size of the dataset). Table S15

outlines the iterations’ metrics and Table S16 reports the final features and their weights.

The resulting model from this approach performed a little better than the original ‘Hybrid’

model and far worse than our final choice model (and in fact worse than the model after our first

iteration). It seems that for such an approach to rival ours, we would have needed to start off with

a model that encapsulated at least all twenty-way interactions. Such a model would be even more

intractable to conduct for Bayesian feature selection.

Methods

Due to the size of the dataset and the feature set, this model was trained through variational

inference (Blei, Kucukelbir, & McAuliffe, 2017) rather than traditional MCMC sampling. The

model was trained using a Flipout gradient estimator (Wen, Vicol, Ba, Tran, & Grosse, 2018) and

optimized via Adam (Kingma & Ba, 2014). Metrics were computed by taking the MAP estimate

of each weight. The model was trained using the Tensorflow Probability package (Dillon et al.,

2017) .
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Figure S1. A calibration plot between the neural network’s predictions and the aggregate

dilemmas for all dilemmas over one hundred responses. We calculated a line of best fit for all

dilemmas (i.e. not just those with over hundred responses), weighting each dilemma by the

number of participants that answered it. The line of best fit had a slope of 1.003 and an intercept

of 0.001.
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Table S1

Old vs. Young Dilemmas (proportions show observed or predicted proportion killing left side).

N Data Choice Model Neural Network

11554 0.343 0.636 0.333

11578 0.362 0.637 0.344

7166 0.721 0.511 0.747

5758 0.523 0.635 0.403

5691 0.476 0.625 0.395
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Table S2

Biggest Differences Between Choice Model and Data for Second Iteration

N Data Choice Model Neural Network

649 0.994 0.164 0.168

1124 0.000 0.600 0.442

1113 0.288 0.791 0.680

890 0.001 0.396 0.272

365 0.326 0.709 0.719
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Table S3

Biggest Differences Between Choice Model and Neural Network for Second Iteration

N Data Choice Model Neural Network

130 0.600 0.869 0.537

1471 0.434 0.712 0.394

2898 0.436 0.714 0.420

3879 0.520 0.786 0.509

3377 0.224 0.508 0.231
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Table S4

Biggest Differences Between Choice Model and Data for Third Iteration

N Data Choice Model Neural Network

649 0.994 0.155 0.168

1124 0.000 0.605 0.442

1113 0.288 0.806 0.680

890 0.001 0.693 0.272

365 0.326 0.709 0.719
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Table S5

Biggest Differences Between Choice Model and Neural Network for Third Iteration

N Data Choice Model Neural Network

162 0.599 0.835 0.567

2606 0.558 0.765 0.499

8235 0.340 0.637 0.373

175 0.269 0.541 0.283

359 0.315 0.539 0.290
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Table S6

Biggest Differences Between Choice Model and Data for Fourth Iteration

N Data Choice Model Neural Network

649 0.994 0.147 0.168

1124 0.000 0.517 0.442

1113 0.288 0.763 0.680

365 0.326 0.766 0.719

187 0.001 0.427 0.393
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Table S7

Biggest Differences Between Choice Model and Neural Network for Fourth Iteration

N Data Choice Model Neural Network

175 0.269 0.560 0.283

326 0.301 0.564 0.301

359 0.315 0.552 0.290

172 0.273 0.556 0.304

159 0.308 0.568 0.323



SCIENTIFIC REGRET MINIMIZATION 48

Feature Weight

Man 0.339

Woman 0.360

Pregnant 0.502

Stroller 0.537

Old Man 0.271

Old Woman 0.264

Boy 0.452

Girl 0.466

Homeless 0.208

Large Woman 0.234

Large Man 0.165

Criminal -0.093

Male Executive 0.351

Female Executive 0.371

Female Athlete 0.448

Male Athlete 0.407

Female Doctor 0.413

Male Doctor 0.427

Dog 0.333

Cat 0.285

Crossing Signal 1.115

Car Side -0.427
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Humans vs. Animals 1.034

Car Side on Humans 0.828

Car Side on Animals -0.207

Legally Crossing Humans -0.653

Illegally Crossing Humans 0.313

Car Side on Legally Crossing Humans -0.303

Car Side on Illegally Crossing Humans 0.189

Car Side on Legally Crossing Animals -0.124

Car Side on Illegally Crossing Animals 0.350

Criminals vs. Animals -0.727

Car Side on Criminals -0.427

Car Side on Animals 0.300

Legally Crossing Criminals 0.045

Illegally Crossing Criminals 0.226

Car Side on Legally Crossing Criminals 0.056

Car Side on Illegally Crossing Criminals 0.232

Car Side on Legally Crossing Animals 0.006

Car Side on Illegally Crossing Animals 0.011

Pregnant vs. Other Humans 0.338

Car Side on Pregnant 0.347

Car Side on Other Humans 0.009

Legally Crossing Pregnant -0.109

Illegally Crossing Pregnant -0.121

Car Side on Legally Crossing Pregnant -0.162

Car Side on Illegally Crossing Pregnant -0.068

Car Side on Legally Crossing Other Humans 0.053

Car Side on Illegally Crossing Other Humans -0.053



SCIENTIFIC REGRET MINIMIZATION 50

Pregnant & Doctor vs. Other Humans 0.490

Car Side on Pregnant & Doctor 0.699

Car Side on Other Humans 0.208

Legally Crossing Pregnant & Doctor -0.330

Illegally Crossing Pregnant & Doctor -0.275

Car Side on Legally Crossing Pregnant & Doctor -0.358

Car Side on Illegally Crossing Pregnant & Doctor -0.363

Car Side on Legally Crossing Other Humans -0.087

Car Side on Illegally Crossing Other Humans -0.028

Executive & Doctor vs. Other Humans 0.150

Car Side on Executive & Doctor 0.056

Car Side on Other Humans -0.094

Legally Crossing Executive & Doctor -0.059

Illegally Crossing Executive & Doctor -0.070

Car Side on Legally Crossing Executive & Doctor 0.002

Car Side on Illegally Crossing Executive & Doctor -0.012

Car Side on Legally Crossing Other Humans 0.059

Car Side on Illegally Crossing Other Humans 0.061

Doctor vs. Other Humans 0.324

Car Side on Doctor 0.311

Car Side on Other Humans -0.013

Legally Crossing Doctor -0.146

Illegally Crossing Doctor -0.195

Car Side on Legally Crossing Doctor -0.177

Car Side on Illegally Crossing Doctor -0.208

Car Side on Legally Crossing Other Humans -0.013

Car Side on Illegally Crossing Other Humans -0.032
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Old vs. Young -0.402

Car Side on Old -0.680

Car Side on Young -0.277

Legally Crossing Old 0.221

Illegally Crossing Old 0.252

Car Side on Legally Crossing Old 0.408

Car Side on Illegally Crossing Old 0.446

Car Side on Legally Crossing Young 0.194

Car Side on Illegally Crossing Young 0.187

Adult vs. Young -0.150

Car Side on Adult -0.457

Car Side on Young -0.307

Legally Crossing Adult -0.007

Illegally Crossing Adult 0.053

Car Side on Legally Crossing Adult 0.248

Car Side on Illegally Crossing Adult 0.336

Car Side on Legally Crossing Young 0.283

Car Side on Illegally Crossing Young 0.255

Old vs. Adult & Young -0.390

Car Side on Old -0.722

Car Side on Adult & Young -0.332

Legally Crossing Old 0.223

Illegally Crossing Old 0.233

Car Side on Legally Crossing Old 0.441

Car Side on Illegally Crossing Old 0.500

Car Side on Legally Crossing Adult & Young 0.267

Car Side on Illegally Crossing Adult & Young 0.218
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Old & Adult vs. Young -0.207

Car Side on Old & Adult -0.471

Car Side on Young -0.264

Legally Crossing Old & Adult 0.099

Illegally Crossing Old & Adult 0.223

Car Side on Legally Crossing Old & Adult 0.299

Car Side on Illegally Crossing Old & Adult 0.421

Car Side on Legally Crossing Young 0.198

Car Side on Illegally Crossing Young 0.200

Old vs. Adult -0.309

Car Side on Old -0.714

Car Side on Adult -0.405

Legally Crossing Old 0.295

Illegally Crossing Old 0.199

Car Side on Legally Crossing Old 0.464

Car Side on Illegally Crossing Old 0.465

Car Side on Legally Crossing Adult 0.266

Car Side on Illegally Crossing Adult 0.169

Old & Adult vs. Adult & Young -0.663

Car Side on Old & Adult 0.145

Car Side on Adult & Young 0.808

Legally Crossing Old & Adult 0.056

Illegally Crossing Old & Adult 0.314

Car Side on Legally Crossing Old & Adult 0.026

Car Side on Illegally Crossing Old & Adult -0.044

Car Side on Legally Crossing Adult & Young -0.358

Car Side on Illegally Crossing Adult & Young -0.031
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All Young vs. Other Humans 0.104

Car Side on All Young -0.055

Car Side on Other Humans -0.159

Legally Crossing All Young 0.022

Illegally Crossing All Young 0.015

Car Side on Legally Crossing All Young 0.062

Car Side on Illegally Crossing All Young 0.041

Car Side on Legally Crossing Other Humans 0.026

Car Side on Illegally Crossing Other Humans 0.040

Male vs. Female -0.373

Car Side on Male -0.353

Car Side on Female 0.020

Legally Crossing Male 0.204

Illegally Crossing Male 0.159

Car Side on Legally Crossing Male 0.440

Car Side on Illegally Crossing Male 0.317

Car Side on Legally Crossing Female 0.158

Car Side on Illegally Crossing Female 0.236

Homeless vs. Other Humans -0.320

Car Side on Homeless -0.146

Car Side on Other Humans 0.174

Legally Crossing Homeless 0.139

Illegally Crossing Homeless 0.134

Car Side on Legally Crossing Homeless 0.196

Car Side on Illegally Crossing Homeless 0.081

Car Side on Legally Crossing Other Humans -0.053

Car Side on Illegally Crossing Other Humans 0.057



SCIENTIFIC REGRET MINIMIZATION 54

Executives vs. Homeless 0.001

Car Side on Executives -0.149

Car Side on Homeless -0.150

Legally Crossing Executives -0.029

Illegally Crossing Executives 0.024

Car Side on Legally Crossing Executives 0.214

Car Side on Illegally Crossing Executives 0.187

Car Side on Legally Crossing Homeless 0.163

Car Side on Illegally Crossing Homeless 0.243

Executives vs. Adult 0.092

Car Side on Executives -0.125

Car Side on Adult -0.217

Legally Crossing Executives 0.042

Illegally Crossing Executives -0.214

Car Side on Legally Crossing Executives 0.192

Car Side on Illegally Crossing Executives 0.044

Car Side on Legally Crossing Adult 0.258

Car Side on Illegally Crossing Adult 0.150

More vs. Less 0.800

Car Side on More 0.498

Car Side on Less -0.302

Legally Crossing More -0.617

Illegally Crossing More -0.375

Car Side on Legally Crossing More -0.200

Car Side on Illegally Crossing More 0.007

Car Side on Legally Crossing Less 0.383

Car Side on Illegally Crossing Less 0.417
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Fat vs. Fit -0.293

Car Side on Fat -0.313

Car Side on Fit -0.021

Legally Crossing Fat 0.305

Illegally Crossing Fat 0.194

Car Side on Legally Crossing Fat 0.539

Car Side on Illegally Crossing Fat 0.360

Car Side on Legally Crossing Fit 0.166

Car Side on Illegally Crossing Fit 0.233

Fat vs. Adult -0.392

Car Side on Fat -0.479

Car Side on Adult -0.086

Legally Crossing Fat 0.377

Illegally Crossing Fat 0.131

Car Side on Legally Crossing Fat 0.619

Car Side on Illegally Crossing Fat 0.366

Car Side on Legally Crossing Adult 0.235

Car Side on Illegally Crossing Adult 0.241

Adult vs. Fit -0.071

Car Side on Adult -0.271

Car Side on Fit -0.200

Legally Crossing Adult 0.204

Illegally Crossing Adult -0.063

Car Side on Legally Crossing Adult 0.462

Car Side on Illegally Crossing Adult 0.306

Car Side on Legally Crossing Fit 0.369

Car Side on Illegally Crossing Fit 0.258
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Table S8

Features and Weights for Final Choice Model
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(a)

(b)

Figure S2. Two Moral Machine dilemmas that demonstrate an age gradient. Rational choice

models treat these dilemmas equivalently, but the data indicated that participants do not do so

when the side with children is illegally crossing.
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Car Side Signal (Human) % Save Criminal % Save Homeless p-value Prediction

Human Legal 0.65 0.88 p < .001 Significant

Human N/A 0.68 0.84 p < .001 Significant

Human Illegal 0.63 0.79 p < .001 Significant

Dog Legal 0.78 0.89 p < .001 Significant

Dog N/A 0.71 0.90 p < .001 Significant

Dog Illegal 0.69 0.83 p < .001 Significant

Car Side Signal (Human) % Save Criminal % Save Old Man p-value Prediction

Human Legal 0.65 0.87 p < .001 Significant

Human N/A 0.68 0.82 p < .001 Significant

Human Illegal 0.63 0.81 p < .001 Significant

Dog Legal 0.78 0.87 p = .002 Significant

Dog N/A 0.71 0.88 p < .001 Significant

Dog Illegal 0.69 0.85 p < .001 Significant

Car Side Signal (Human) % Save Criminal % Save Man p-value Prediction

Human Legal 0.65 0.89 p < .001 Significant

Human N/A 0.68 0.85 p < .001 Significant

Human Illegal 0.63 0.81 p < .001 Significant

Dog Legal 0.78 0.91 p < .001 Significant

Dog N/A 0.71 0.89 p < .001 Significant

Dog Illegal 0.69 0.83 p < .001 Significant

Table S9

Results from Experiment 1 comparing the percentage of participants that save criminals versus

dogs and the percentage of participants that save other humans versus dogs. We used a χ2

analysis between the proportions, where N = 326 and df = 1.
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Car Side Signal (Human) % Save Criminal N % Save Homeless N

Human Legal 0.50 1679 0.79 1630

Human N/A 0.44 3840 0.75 3829

Human Illegal 0.37 2597 0.61 2526

Dog Legal 0.56 2571 0.82 2638

Dog N/A 0.52 3879 0.79 3955

Dog Illegal 0.43 1551 0.65 1600

Car Side Signal (Human) % Save Criminal N % Save Old Man N

Human Legal 0.50 1679 0.80 1659

Human N/A 0.44 3840 0.76 3833

Human Illegal 0.37 2597 0.66 2538

Dog Legal 0.56 2571 0.83 2543

Dog N/A 0.52 3879 0.81 3825

Dog Illegal 0.43 1551 0.69 1621

Car Side Signal (Human) % Save Criminal N % Save Man N

Human Legal 0.50 1679 0.81 1642

Human N/A 0.44 3840 0.79 3889

Human Illegal 0.37 2597 0.66 2598

Dog Legal 0.56 2571 0.85 2597

Dog N/A 0.52 3879 0.83 3873

Dog Illegal 0.43 1551 0.69 1641

Table S10

Results from the Moral Machine dataset corresponding to the scenarios in Experiment 1 /

Supplementary Table S9.



SCIENTIFIC REGRET MINIMIZATION 60

(a) Male

Car Side Signal (Young) % Save (with Adult) % Save (without Adult) p-value Prediction

Young Legal 0.83 0.77 p = .013 Null

Young N/A 0.77 0.75 p = .600 Null

Young Illegal 0.71 0.64 p = .024 Significant

Old Legal 0.90 0.91 p = .827 Null

Old N/A 0.92 0.93 p = .538 Null

Old Illegal 0.81 0.75 p = .030 Significant

(b) Female

Car Side Signal (Young) % Save (with Adult) % Save (without Adult) p-value Prediction

Young Legal 0.84 0.80 p = .094 Null

Young N/A 0.78 0.76 p = .403 Null

Young Illegal 0.70 0.65 p = .152 Significant

Old Legal 0.92 0.91 p = .562 Null

Old N/A 0.92 0.89 p = .061 Null

Old Illegal 0.81 0.73 p = .001 Significant

Table S11

Results from Experiment 2 comparing the percentage of participants that save the young side with

an adult versus the percentage of participants that save the young side without the adult. We used

a χ2 analysis between the proportions, where N = 489 and df = 1.
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(a) Male

Car Side Signal (Young) % Save (with Adult) N % Save (without Adult) N

Young Legal 0.88 3516 0.88 7124

Young N/A 0.80 8540 0.83 17289

Young Illegal 0.52 5745 0.64 11578

Old Legal 0.93 5584 0.93 11428

Old N/A 0.92 8611 0.93 17411

Old Illegal 0.60 3487 0.72 7299

(b) Female

Car Side Signal (Young) % Save (with Adult) N % Save (without Adult) N

Young Legal 0.87 3589 0.89 7330

Young N/A 0.81 8561 0.84 17193

Young Illegal 0.53 5743 0.66 11554

Old Legal 0.93 5680 0.94 11399

Old N/A 0.92 8654 0.93 17306

Old Illegal 0.61 3480 0.72 7166

Table S12

Results from the Moral Machine dataset corresponding to the scenarios in Experiment 2 /

Supplementary Table S11.
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(a) Male-Female Dilemmas

Car Side Age % Save (No Signal) % Save (Mean) p-value Prediction

Male Adult 0.14 0.25 p < .001 Significant

Female Adult 0.55 0.50 p = .224 Null

Male Old 0.19 0.27 p = .012 Significant

Female Old 0.55 0.50 p = .196 Null

(b) Fat-Fit Dilemmas

Car Side Sex % Save (No Signal) % Save (Mean) p-value Prediction

Fat Male 0.15 0.27 p < .001 Significant

Fit Male 0.44 0.46 p = .609 Null

Fat Female 0.16 0.26 p = .003 Significant

Fit Female 0.47 0.42 p = .253 Null

Table S13

Results from Experiment 3 comparing the percentage of participants that save the higher-valued

individual in the no crossing signal condition versus the mean of the percentages of participants

saving the higher-valued individual in the other two crossing signal conditions. We used a χ2

analysis between the proportions, in which N = 326 and df = 1.
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(a) Male-Female Dilemmas

Car Side Age % Save (No Signal) N % Save (Mean)

Male Adult 0.19 19675 0.39

Female Adult 0.51 19798 0.50

Male Old 0.24 19871 0.40

Female Old 0.57 19937 0.53

(b) Fat-Fit Dilemmas

Car Side Age % Save (No Signal) N % Save (Mean)

Fat Male 0.18 17222 0.37

Fit Male 0.45 17444 0.47

Fat Female 0.20 17357 0.38

Fit Female 0.46 17347 0.47

Table S14

Results from the Moral Machine dataset corresponding to the scenarios in Experiment 3 /

Supplementary Table S13.
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Table S15

Iterations of Bayesian Feature Selection

Iteration No. No. of Features Accuracy AUC AIC

1 1562 0.757 0.816 1.058

2 1251 0.757 0.816 1.053

3 678 0.758 0.818 1.046

4 519 0.758 0.819 1.041

5 372 0.758 0.819 1.041

6 289 0.759 0.819 1.041

7 250 0.759 0.819 1.041

8 235 0.759 0.819 1.041

9 227 0.759 0.819 1.041

10 220 0.758 0.819 1.041

11 212 0.758 0.819 1.041

12 207 0.757 0.819 1.041

13 185 0.759 0.819 1.041

14 181 0.758 0.819 1.040
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Feature Mean Standard Deviation

Man 0.692 0.008

Woman 0.865 0.005

Pregnant 0.977 0.011

Stroller 1.034 0.024

Old Man 0.263 0.005

Old Woman 0.365 0.005

Boy 1.130 0.007

Girl 1.291 0.004

Homeless 0.404 0.005

Large Woman 0.677 0.003

Large Man 0.428 0.006

Male Executive 0.691 0.010

Female Executive 0.801 0.006

Female Athlete 0.961 0.005

Male Athlete 0.768 0.005

Female Doctor 0.860 0.006

Male Doctor 0.821 0.008

Dog 0.152 0.004

Crossing Signal 0.950 0.004

Car Side -0.274 0.005

Woman * Female Doctor -0.132 0.009

Old Man * Criminal 0.085 0.015

Old Man * Dog -0.086 0.008

Old Woman * Boy 0.040 0.005

Old Woman * Girl 0.020 0.005
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Boy * Female Doctor 0.084 0.009

Girl * Female Doctor -0.057 0.008

Girl * Crossing Signal -0.035 0.008

Large Woman * Male Athlete 0.061 0.009

Large Man * Dog -0.057 0.008

Criminal * Cat -0.052 0.008

Female Athlete * Crossing Signal -0.049 0.006

Man * Woman * Old Man 0.025 0.004

Man * Woman * Old Woman -0.014 0.005

Man * Woman * Large Man -0.021 0.005

Man * Woman * Cat 0.176 0.022

Man * Stroller * Female Executive -0.192 0.021

Man * Old Woman * Male Athlete -0.118 0.010

Man * Boy * Crossing Signal 0.055 0.012

Man * Girl * Male Executive -0.146 0.023

Man * Girl * Female Executive -0.141 0.013

Man * Girl * Female Athlete -0.206 0.017

Man * Large Man * Male Executive -0.213 0.017

Man * Large Man * Female Doctor -0.196 0.020

Man * Female Executive * Female Athlete -0.121 0.023

Man * Male Athlete * Crossing Signal -0.047 0.007

Man * Male Doctor * Dog 0.055 0.016

Man * Dog * Cat -0.047 0.009

Woman * Pregnant * Boy -0.181 0.026

Woman * Pregnant * Criminal -0.220 0.056

Woman * Pregnant * Female Athlete -0.239 0.018

Woman * Pregnant * Male Athlete -0.293 0.029
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Woman * Pregnant * Male Doctor -0.467 0.022

Woman * Stroller * Cat 0.159 0.020

Woman * Old Man * Female Athlete -0.210 0.015

Woman * Old Man * Male Athlete -0.148 0.012

Woman * Old Woman * Dog 0.216 0.019

Woman * Boy * Male Athlete -0.269 0.028

Woman * Boy * Female Doctor -0.181 0.011

Woman * Girl * Female Doctor -0.353 0.009

Woman * Girl * Male Doctor -0.179 0.015

Woman * Homeless * Cat 0.134 0.012

Woman * Large Woman * Female Executive -0.177 0.015

Woman * Large Woman * Cat 0.054 0.009

Woman * Large Man * Male Athlete -0.034 0.004

Woman * Large Man * Female Doctor -0.119 0.018

Woman * Criminal * Female Doctor -0.275 0.034

Woman * Male Executive * Female Doctor -0.189 0.016

Woman * Male Executive * Male Doctor -0.321 0.023

Woman * Female Executive * Female Athlete -0.254 0.015

Woman * Female Executive * Female Doctor -0.182 0.026

Woman * Female Executive * Male Doctor -0.271 0.015

Woman * Female Athlete * Female Doctor -0.292 0.019

Woman * Female Athlete * Male Doctor -0.146 0.017

Woman * Male Athlete * Female Doctor -0.057 0.026

Pregnant * Stroller * Male Doctor -0.265 0.051

Pregnant * Old Man * Boy 0.077 0.017

Pregnant * Old Man * Male Athlete 0.072 0.019

Pregnant * Old Man * Cat 0.078 0.024
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Pregnant * Old Woman * Criminal -0.342 0.028

Pregnant * Old Woman * Male Executive -0.323 0.029

Pregnant * Boy * Girl -0.251 0.028

Pregnant * Girl * Male Doctor -0.316 0.032

Pregnant * Homeless * Male Doctor -0.183 0.049

Pregnant * Female Doctor * Male Doctor -0.123 0.051

Pregnant * Female Doctor * Crossing Signal 0.170 0.036

Pregnant * Dog * Cat -0.117 0.006

Stroller * Old Woman * Boy -0.196 0.045

Stroller * Old Woman * Girl -0.144 0.035

Stroller * Boy * Crossing Signal 0.152 0.016

Stroller * Girl * Male Executive -0.188 0.025

Stroller * Girl * Crossing Signal 0.289 0.039

Stroller * Homeless * Crossing Signal -0.131 0.026

Stroller * Large Woman * Male Executive -0.112 0.054

Stroller * Large Woman * Male Doctor -0.135 0.035

Stroller * Female Executive * Male Athlete -0.321 0.028

Stroller * Female Athlete * Crossing Signal 0.176 0.018

Stroller * Female Doctor * Male Doctor -0.335 0.026

Stroller * Dog * Cat -0.115 0.007

Stroller * Dog * Crossing Signal 0.109 0.009

Old Man * Old Woman * Boy -0.082 0.005

Old Man * Old Woman * Girl -0.136 0.006

Old Man * Old Woman * Female Doctor 0.074 0.008

Old Man * Old Woman * Crossing Signal -0.047 0.006

Old Man * Boy * Crossing Signal -0.044 0.008

Old Man * Girl * Female Doctor -0.114 0.017
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Old Man * Girl * Crossing Signal -0.114 0.008

Old Man * Male Executive * Female Executive -0.101 0.007

Old Man * Male Athlete * Female Doctor -0.153 0.018

Old Man * Female Doctor * Crossing Signal -0.090 0.014

Old Woman * Boy * Girl 0.060 0.005

Old Woman * Boy * Large Man 0.070 0.021

Old Woman * Girl * Male Executive -0.053 0.027

Old Woman * Girl * Female Doctor -0.174 0.018

Old Woman * Large Woman * Male Executive -0.116 0.016

Old Woman * Large Woman * Female Executive -0.223 0.015

Old Woman * Large Man * Criminal 0.119 0.019

Old Woman * Large Man * Male Executive -0.109 0.019

Boy * Girl * Female Athlete 0.041 0.008

Boy * Large Woman * Female Athlete -0.094 0.013

Boy * Large Woman * Male Athlete -0.238 0.011

Boy * Large Woman * Crossing Signal 0.047 0.019

Boy * Large Man * Crossing Signal 0.128 0.012

Boy * Male Executive * Crossing Signal 0.130 0.013

Boy * Female Executive * Male Doctor 0.068 0.009

Boy * Female Executive * Dog 0.127 0.017

Boy * Female Executive * Crossing Signal 0.120 0.012

Boy * Female Athlete * Crossing Signal 0.178 0.015

Boy * Male Athlete * Crossing Signal 0.191 0.017

Boy * Female Doctor * Crossing Signal 0.255 0.014

Boy * Male Doctor * Crossing Signal 0.152 0.016

Boy * Dog * Cat -0.126 0.005

Boy * Dog * Crossing Signal 0.169 0.014
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Girl * Homeless * Female Doctor -0.256 0.034

Girl * Large Woman * Large Man 0.052 0.010

Girl * Large Woman * Male Athlete -0.174 0.014

Girl * Large Man * Cat 0.157 0.012

Girl * Criminal * Female Doctor -0.365 0.016

Girl * Male Executive * Female Executive 0.067 0.009

Girl * Male Executive * Cat 0.073 0.023

Girl * Male Executive * Crossing Signal 0.203 0.020

Girl * Female Executive * Dog 0.211 0.014

Girl * Female Executive * Crossing Signal 0.231 0.019

Girl * Female Athlete * Crossing Signal 0.262 0.014

Girl * Male Athlete * Cat 0.072 0.014

Girl * Male Athlete * Crossing Signal 0.276 0.010

Girl * Female Doctor * Crossing Signal 0.183 0.010

Girl * Male Doctor * Crossing Signal 0.088 0.020

Girl * Dog * Cat -0.154 0.005

Girl * Cat * Crossing Signal 0.188 0.014

Homeless * Male Executive * Crossing Signal 0.056 0.015

Homeless * Female Executive * Cat 0.116 0.024

Homeless * Cat * Crossing Signal 0.115 0.014

Large Woman * Large Man * Female Athlete -0.030 0.005

Large Woman * Large Man * Male Athlete -0.047 0.005

Large Woman * Female Athlete * Male Athlete 0.038 0.005

Large Woman * Male Doctor * Dog 0.070 0.027

Large Woman * Dog * Cat -0.056 0.004

Large Man * Male Executive * Dog 0.095 0.010

Large Man * Female Doctor * Cat 0.085 0.013
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Male Executive * Female Executive * Dog 0.105 0.014

Male Executive * Female Athlete * Crossing Signal 0.162 0.010

Male Executive * Male Athlete * Cat 0.148 0.014

Male Executive * Female Doctor * Cat 0.154 0.026

Male Executive * Dog * Crossing Signal 0.062 0.021

Female Executive * Female Athlete * Crossing Signal 0.255 0.015

Female Executive * Male Athlete * Male Doctor -0.211 0.012

Female Executive * Female Doctor * Cat 0.151 0.020

Female Executive * Female Doctor * Crossing Signal 0.154 0.015

Female Executive * Male Doctor * Dog 0.096 0.018

Female Executive * Male Doctor * Crossing Signal 0.100 0.010

Female Executive * Dog * Crossing Signal 0.155 0.007

Female Athlete * Male Doctor * Cat 0.095 0.013

Female Athlete * Dog * Cat -0.108 0.007

Female Athlete * Cat * Crossing Signal 0.165 0.009

Male Athlete * Female Doctor * Dog 0.175 0.016

Male Athlete * Female Doctor * Cat 0.123 0.018

Male Athlete * Male Doctor * Cat 0.222 0.010

Male Athlete * Dog * Crossing Signal 0.120 0.013

Female Doctor * Male Doctor * Cat 0.230 0.013

Female Doctor * Cat * Crossing Signal 0.153 0.013

Male Doctor * Cat * Crossing Signal 0.094 0.013
Table S16

Mean and Standard Deviation of Posterior Weights for Bayesian Variable Selection


