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Abstract 

A successful design accounts for the structure of the problem 
it is aimed at solving. When it is a human-directed design, 
this includes the expectations of its users. How do we arrive 
at such a design? One approach starts from first principles 
(e.g., simplicity, unity, symmetry, balance) to evaluate the 
quality of proposed designs. Here, we introduce design from 
zeroth principles, a form of human-in-the-loop computation 
that synthesizes a design that conforms to its users’ expecta-
tions. The technique begins by constructing a transmission 
chain seeded with a random design. Each user in the chain is 
exposed to the design and then recreates it, passing along 
their recreation to the next user, who does the same. Through 
this iterative process, the users’ perceptual, inductive, and re-
constructive biases directly transform the initial design into 
one that is better fit to human cognition. Such designs are eas-
ier to learn and harder to forget. We evaluated the approach in 
three domains — stimulus–response mappings, vanity phone 
numbers, and letter placement in typeset words — and show 
that it produces a good design in each. 

Keywords: design, cognitive ergonomics, inductive bias, 
transmission chain, user interface 

Introduction 
Successful design in the rationalist tradition begins by eval-
uating the problem that a designed object or system aims to 
solve: the goals, any constraints imposed by the environ-
ment or by human factors, and the surrounding context, 
broadly construed (Simon, 1996). Another tradition appeals 
to principles that are purported to be universal — simplicity, 
balance, unity, order, liveliness — rather than to direct con-
siderations of function (Lidwell, Holden, & Butler, 2010; 
White, 2002). Following these principles will, in theory, 
lead to successful designs.  

But what makes a design successful? Certainly, in cases 
where the design acts as the interface between a user and a 
system, the success of the design hinges in part on the user’s 
experience in working with the design. Users have expecta-
tions about how to interact with the world to accomplish 
their goals, and a good design conforms to those expecta-
tions — i.e., when humans are the users, good designs fit the 
human mind. Practices have developed around ensuring this, 
including techniques to compare variants of a design 
through statistical hypothesis testing (e.g., A/B testing), to 
measure performance under user-focused metrics (e.g., usa-
bility research), and to elicit feedback from potential users 
(e.g., focus groups). 

In cognitive science, a person’s expectations can be de-
scribed as perceptual, inductive, and reconstructive biases, 
as they pertain to perception, learning, and memory, respec-
tively. Bias in this sense means merely that the distribution 
of expected designs is not uniform — some match expecta-
tions better than others. Tools and techniques from the do-
main of cognitive science that identify, extract, and amplify 
these biases can thus aid designers in their quest to find 
cognitively fit forms. 

Transmission chains are one such technique for extracting 
and amplifying biases in memory and learning. Originating 
in early experiments by Frederic Bartlett, transmission 
chains pass information from one person to the next (Bart-
lett, 1932). At each step of the chain, the transmitted infor-
mation is transformed. So long as a few technical conditions 
hold, repeated application of a transformation leads to eras-
ure of the information contained in the input, leaving behind 
a signature of the transformation process itself. 

In this paper, we introduce a method that uses transmis-
sion chains to synthesize a design. Our technique begins by 
constructing a transmission chain seeded with a random de-
sign. Each user in the chain is exposed to the design and 
then recreates it, passing along their recreation to the next 
user, who does the same. Through this iterative process, the 
users’ inductive and reconstructive biases directly transform 
the initial design into one that is better fit to human cogni-
tion. No formal design principles are assumed. Thus, we call 
this process design from zeroth principles. 

The plan for the paper is as follows. We begin with a 
technical description of the transmission chain technique 
and its ability to amplify biases in perception, learning, and 
memory. Next, we apply the technique in three domains: 
stimulus–response mappings, vanity numbers, and letter 
placement in typeset words. We conclude with a discussion 
of how our method can be extended and elaborated, some 
criteria for design problems that might benefit from the 
technique, and possible modifications to the transmission-
based scheme that relate to other forms of human-in-the-
loop computation. 

Transmission chains reveal biases 
In a transmission chain, information is passed from one per-
son to the next. In the children’s game Telephone, for ex-
ample, a child invents a sentence and whispers it to the next 
child in line, who then does the same. By the time the sen-
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tence reaches the end of the chain, it has changed. Hilarity 
ensues. 

This kind of system can be formally modeled as a Markov 
chain, a stochastic process in which transformations are de-
fined by a transition matrix specifying the probability of go-
ing from one given state to any other state (Kalish, Griffiths, 
& Lewandowsky, 2007). In Telephone, for example, the 
transition matrix defines the probability that a given sen-
tence will transform into a given another (e.g., that “laid him 
on the green” becomes “Lady Mondegreen”). 

If a Markov chain obeys certain requirements,1 it can be 
proven that it will eventually converge to a stationary dis-
tribution, a distribution of states unchanged by the trans-
formation. This means that even if we seed a chain with a 
random state, after enough steps, the information contained 
in the input will be lost, leaving behind a signature of the 
transformation process itself. Identifying the stationary dis-
tribution of a Markov chain requires having a model for the 
probability with which it transitions from one state to anoth-
er. In the case of transmission chains, one such model is 
provided by assuming that perception, learning, and 
memory follow the principles of Bayesian inference. Given 
an observed stimulus d, people consider hypotheses h about 
its nature, and then produce a reconstruction d′. The Bayesi-
an analysis of transmission chains assumes hypotheses are 
sampled from the posterior distribution p(h|d) ∝ p(d|h)p(h), 
where p(d|h) gives the probability of seeing d if it were gen-
erated from h (known as the likelihood) and p(h) is the prior 
distribution over hypotheses and encodes people’s expecta-
tions about the prevalence of different hypotheses. If d′ is 
generated by sampling from the likelihood, then the station-
ary distribution of this Markov chain is the prior predictive 
distribution p(d) = Σh p(d|h)p(h). Consequently, we should 
expect the outcome of transmission to reflect people’s ex-
pectations, as expressed in the form of this prior predictive 
distribution. 

Cognitive scientists have used transmission chains in 
studies of serial reproduction and iterated learning to study 
reconstructive biases in memory and inductive biases in 
learning. For example, in Kalish, Griffiths & Lewandowsky 
(2007), participants first learned a functional relationship 
between two magnitudes (the length of a rectangular bar and 
the width of another) by observing pairs. Notably, partici-
pants were then tested on some examples that they had nev-
er directly observed. Responding to these novel stimuli re-
quires generalization beyond what they have observed. The 
authors found that the functional form passed in these 
transmission chains gradually reverts to a linear relationship 
regardless of the data that seeds the chain. From this, they 
concluded that this functional form is what people expect. 

                                                             
1 The condition that needs to be met is that the Markov chain must 
be ergodic, which is to say that starting from any state, one can 
eventually reach any another state; that the expected number of 
steps needed to reach each other state is finite in expectation; and 
that returning to any one state does not occur only as a multiple of 
some k > 1). 

If a good design is one that fits the expectations of its us-
ers, then any difficulty in perceiving, learning, or remember-
ing a design indicates that it may be inconsistent with the 
user’s cognitive biases. By passing the design through a 
transmission chain, the users’ perceptual, inductive, and re-
constructive biases will transform the initial design into one 
that is better fit to human cognition. In this way, it becomes 
possible to improve a design without appealing to first prin-
ciples — thus we call it design from zeroth principles. 

 Experiment 1: Stimulus–response mappings 
In which direction should a screw be turned in order to drive 
it further into wood? Which light switch should be flipped 
to turn off the patio light? And which knob should be turned 
to light the front left stove burner? Assigning these map-
pings are design decisions, and some mappings are better 
than others. Designs with stimulus–response compatibility 
offer a simple and clear mapping between an action and a 
response, leading to shorter reaction times and lower rates 
of error (Fitts & Seeger, 1953; Proctor & Reeve, 1989; 
Kornblum, Hasbroucq, & Osman, 1990). 

In Experiment 1A, we applied design from zeroth princi-
ples to stimulus–response mappings between light switches 
and lights. Experiment 1B evaluated the resulting mappings. 

Methods, 1A 
Experiment 1A constructed a transmission chain where par-
ticipants passed along a mapping between light switches and 
lights. The chain was seeded with a random mapping. 

Participants. We recruited 100 participants on Amazon 
Mechanical Turk, an online crowdsourcing platform. Each 
participant was paid $0.25 for a few minutes of work. 

Stimulus. The stimulus was a depiction of a set of six light 
switches and six lights (Fig. 1). When pressed, the switch 
turned on one of the lights for 1000 ms. 

 
 
Figure 1. A set of six light switches and lights. Which 
switch maps to which light? 

Procedure. Procedure. First, the participant learned the 
mapping. On each trial, one of the switches was highlighted 
in green. The participant was instructed to press the switch 
and observe what happened. Each switch was highlighted 
once over the course of training, such that the participant 
observed the entire mapping. Then the participant was tested 
on what they had learned. On each of six trials, one of lights 
was highlighted with a bounding box. The participant was 
instructed to turn on the highlighted light by pressing the 
corresponding switch. Once pressed, the switch became dis-
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abled and could not be reselected. There was no feedback. 
The order in which the pairings were learned and tested was 
random. Together, the participant’s six responses define a 
new mapping that was then passed along to the next partici-
pant in the chain. There were 10 chains of 10 participants. 

Results & Discussion, 1A 
Over time, mappings in the chain became more regular, by 
the tenth generation coming to resemble the solution where 
all the switches are mapped to the light directly above them 
(average Kendall rank correlation coefficient τ = 0.96 be-
tween light position and switch position; Fig. 2). In fact, 6 
of 10 chains converged to exactly this solution. 
 

 
Figure 2. Designing an intuitive mapping between switches 
and lights from zeroth principles. (A) Two chains that began 
with random mappings converged to the same design (B). 
The designs from the chain’s first generation (black) are 
considerably harder to learn than those from the last genera-
tion (blue). 

Methods, 1B 
Experiment 1B evaluated the designs synthesized through 
Experiment 1A by comparing the performance characteris-
tics of designs from the beginnings and ends of the chains. 

Participants. We recruited 200 participants on Amazon 
Mechanical Turk, an online crowdsourcing platform. Each 
participant was paid $0.50 for a few minutes of work. 

Stimulus. The stimulus was the same as in Experiment 1A. 

Procedure. Participants learned a mapping. On each of 30 
trials, one of the lights was highlighted with a bounding 
box. The participant was instructed to select and press the 
switch that would turn on the highlighted light. When 
pressed, the corresponding light turned on, providing the 
participant with feedback. Half the participants learned the 

random mappings drawn from the beginning of the chains in 
Experiment 1A; the other half learned the stopping states of 
the chains. 

Results, 1B 
Performance was better for designs from the stopping state 
of the chain than for designs from its starting state (propor-
tion correct of 0.70 vs. 0.38; independent samples t-test, 
t (198) = 7.1, p < 0.0001; Fig. 2B). 

Experiment 2: Vanity numbers 
A vanity number is a telephone number with an easily re-
membered sequence of digits — e.g., 1 (212) 222-2222, 
1 (800) 800-8000, or 1 (202) 456-1111. There is an active 
market for these numbers, where their pricing depends in 
part on intuitions for how easily they can be held in mind 
(Haucap, 2003). Valuable vanity numbers are highly sought 
after and are sold for prices that are orders of magnitude 
higher than those without an obvious pattern. Reasons for 
buying vanity numbers are idiosyncratic. Apple co-founder 
Steven Wozniak, for example, collected telephone numbers 
as a hobby, acquiring 888-8888 soon after the 888 exchange 
went on the market2. Businesses often use them in radio and 
television advertisements, and occasionally, as in the case of 
1-800-Flowers.com, Inc., incorporate them.  

In Experiment 2, we applied design from zeroth principles 
to choose memorable vanity phone numbers. We then eval-
uated the resulting numbers by measuring their memorabil-
ity and predicting their market value. 

Methods 
In Experiment 2, we constructed a transmission chain where 
participants passed along 10-digit phone numbers. Each 
chain was seeded with a random phone number. There were 
20 such chains. 

Participants. We recruited 40 participants on Amazon Me-
chanical Turk.  

Stimulus. Phone numbers were 10-digit strings formatted as 
(XXX) XXX-XXXX. All telephone numbers were sampled ran-
domly from those following the North American Number-
ing Plan format. 

Procedure. First, the participant viewed the phone number 
for 2 seconds. Then there was a retention interval of 4 se-
conds. Finally, the participant recreated the phone number 
by typing it on a keyboard. Twenty phone numbers were 
remembered and tested in this way. 

Estimating a telephone number’s value. We collected 
16,000 telephone numbers and their associated prices from 
phonenumberguy.com, an online marketplace for vanity 
numbers. The numbers vary widely in price, from $199 to 

                                                             
2 Not only are telephone numbers with strings of repeated digits  
memorable — they are also easy to press. Wozniak’s 888-8888 was 
soon swamped by calls from children mashing 8 on their family’s 
home phone (Wolf, 1998). 
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$199,999. We also collected 34,000 telephone numbers 
from Twilio, a communications company. We set the value 
of a Twilio number to be $99, midway between $0 and one 
dollar less than lowest vanity number, under the logic that 
any telephone number worth at least the minimum listed 
market price would not be available for less. To estimate the 
value of telephone numbers in the transmission chain, none 
of which were present in the collected data, we constructed 
a model of telephone number prices. From each listed num-
ber we extracted a set of binary features (Table 1). To sim-
plify the analysis, the features considered only the number’s 
digital representation, ignoring value derived from the 
phonewords. We then regressed log price on these features. 
The R2 of the resulting model was 0.53. 

Table 1. Features used to predict telephone number pricing 
and their weight in the model. 

Feature Example β (log USD) 
Millions 1 (415) 700–0000 1.67 
Seven in a row 1 (415) 777–7777 3.48 
Six in a row 1 (415) 877–7777 1.16 
Hundred thousands 1 (415) 870–0000 1.69 
Thousands 1 (415) 626–8000 0.60 
Hundred–thousands 1 (415) 500–6000 1.20 
Double repeater A 1 (415) 888–7777 1.96 
Double repeater B 1 (415) 866–7777 0.49 
Mid repeater 1 (415) 888–2465 0.65 
№ of unique digits 1 (415) 326–9087 –4.27 
Eight 9s in a row 1 (419) 999–9999 3.70 
Repeated sequences 1 (415) 670–7070 –0.17 

Results & Discussion 
Over time, telephone numbers in the chain became more 
memorable and more valuable. Table 2 shows the telephone 
numbers from one of the chains and their estimated value. 

The average number of correctly reported digits per num-
ber increased from 6.95 across the first five generations to 
9.29 across the final five. Note, however, the unforgiving 
nature of telephone numbers — with even a single misre-
membered digit, a call is unlikely to reach its intended tar-
get. Thus we also computed performance under a 0–1 loss 
function, counting only perfectly recalled numbers as hav-
ing been remembered at all. The proportion of correctly re-
ported numbers rose from 0.29 across the first five genera-
tions to 0.76 across the last five. 

The average value of a number in the first generation of 
the chain was $119, slightly more than the assigned value of 
a non-vanity number. By the end of the chain, the average 
value was higher, rising to $548 (two sample t-test on the 
log values, t(38) = 4.76, p = 1.75 × 10–4; Mann–Whitney 
U(38) = 40.5, p = 6.44 × 10–6). 

Table 2. Change points from a randomly seeded telephone 
number transmission chain and estimated values in USD. 
The first column is the index of the generation. 

i  Number $ 
0 (603) 639-5026 91 
1 (603) 639-7843 90 
2 (603) 639-0000 214 
8 (603) 693-1234 91 
9 (603) 693-1294 91 

10 (603) 693-0000 216 
20 (800) 963-0000 218 
24 (800) 936-0000 217 

Experiment 3: Letter Placement 
In typography, the shapes of characters are represented by 
glyphs with dark and light values spread over space. In se-
quence, these characters can be formed into words. Many 
typographic factors contribute to the final location of letters 
— we refer to the total contribution of these factors as letter 
placement. 

The success of printed text depends in part on its ability to 
be read. Letter placement plays a major role in determining 
that success. If characters are placed too close together, this 
hurts the text’s legibility, the ease of distinguishing between 
letters. If placed too far apart, readability, the ease of recog-
nizing groupings of letters into words, sentences, and para-
graphs, is worsened. With enough spacing, words become 
hard to distinguish from each other, particularly when the 
spaces between letters rival that between words. 

When typesetters would manually set metal type to design 
a page for print, they had to decide not only which typeface 
to use, but with what spacing modifications to lay type out 
on the page. Each glyph had a default width, but the spacing 
between characters could be controlled further through 
tracking, an adjustment of spacing between all letters, and 
kerning, adjustments of the spacing between specific pairs 
of letters (e.g., the “T” and “y” in “Type” look better when 
brought closer together than what is specified by their de-
fault widths)3. 

In today’s digital typefaces, default glyph width and kern-
ing information is built into font files and generally does not 
require manual adjustment by typesetters. Because tracking 
modifies a font’s general spacing, it still requires manual ad-
justment. However, the difference between a good and a 
poor digital typeface or font family can often boil down to 
the decisions the type designer made when considering (or 
failing to consider) each font’s kerning pairs. 

Over a lifetime, someone reading an hour a day will see 
hundreds of millions of typeset words. We argue that, with 
so much exposure to printed text, people will come to have 
strong expectations about the letter placement in printed 

                                                             
3 Whereas tracking was accomplished by adding space between 
every letter, kerning reduced space between letters. Positive kerns 
were also possible, but those cases were more often dealt with us-
ing ligatures or a new single character that played the role of both 
(“fi” → “fi”). We do not address ligatures here. 
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text. In Experiment 3, we use these expectations to derive 
letter placements through design from zeroth principles. 

Methods 
Experiment 3 constructed a transmission chain where partic-
ipants passed along typeset words. The chain was seeded 
with randomly spaced words. 

Participants. We recruited 200 participants on Amazon 
Mechanical Turk. 

Stimulus. Fifteen words set in Helvetica were used for the 
experiments: Typical, frogs, vacuum, hunchback, Chicago, 
Year, Egypt, the, eye, kiln, milk, WAVE, fjord, Bring, and 
Pile. These words were chosen because each has at least one 
pair of adjacent letters that benefit from kerning (e.g. the W 
and A in WAVE). The position of the final letter was deter-
mined by its position when set in Helvetica (Linotype, 
v10.0d4e1) at 100 points. In the randomly spaced words 
used to seed the chain, each letter’s position was chosen uni-
formly over the interval between the first and final letter, 
with the constraint that the letters are correctly ordered. We 
defined the space between two letters as the center-to-center 
distance (in pixels) between the letters’ minimum bounding 
boxes. 

Procedure. The word was presented for 2 s. After a 4 s re-
tention interval, the first and last letters of the word reap-
peared in their original position. To the left of the first letter 
was a repository of the letters not yet placed, starting with 
the second letter of the word. The participant was asked to 
place the letter into its displayed position in the word. Once 
moved, the next letter appeared. This continued until all the 
letters had been placed. The participant was able to readjust 
the letters as much necessary before submitting a response. 
The participant was able to submit a response only if all the 
word’s letters were arranged in the correct order. 

Task Error. To measure the fidelity of a participant’s rec-
reated word, we measured the space between pairs of adja-
cent letters4 and then computed the mean squared error be-
tween these spacings and those specified by the font file. 
We also computed two benchmarks of error — random spac-
ing and equal spacing. Random spacings were drawn in the 
same manner as the starting states, as described above. 
Equal spacings were defined with respect to the center of 
the letters’ minimum bounding box. 

                                                             
4 We took the ground truth letter placement to be the centroid of a 
letter’s bounding box when typeset in Adobe Illustrator and trans-
formed into outlines, rounding to the nearest pixel. 

 

 
Figure 3. Placing letters in typeset words from zeroth prin-
ciples. Confidence intervals, indicated by the shaded areas, 
are ±1 and ±2 SE. DZP1 uses the most recent state of a sin-
gle chain; DZP2 averages over chains and across time. 

Results & Discussion 
The benchmark methods of random spacing and equal spac-
ing produced errors of 120 pixel/word and 24 pixel/word, 
respectively (Fig. 3, yellow and purple dashes lines). Be-
cause the transmission chains are seeded with a random de-
sign, the initial performance is identical to that of random 
spacing. The results soon diverge, however, with design 
from zeroth principles (blue solid line) outperforming ran-
dom spacing and approaching the performance of equal 
spacing. Because the spacing between letters is metric, the 
method can be improved by aggregating across chains and 
time. In DZP2, then, the final design is arrived at by averag-
ing the states visited across all the chains. We found that 
DZP2 outperforms equal spacing, with designs more closely 
resembling those recommended by the Linotype font file. 

In addition to the methods reported here, we considered a 
second approach of framing the problem of the letter place-
ment. In this, the goal was not to position letters correctly 
between fixed endpoints of the first and last letters, but ra-
ther to position each letter, including the last, in sequence. 
This allowed the length of the word to vary widely. We 
found that this method did not converge to a good design. In 
general, letter placements that result from this process were 
too long. This is counteracted by the fixed-length task that 
we describe above. Modifications to the method may be 
able to counteract this lengthening influence.  

General Discussion 
These experiments demonstrate that design from zeroth 
principles can recover good designs without explicit design-
ing. In a series of three experiments, we constructed trans-
mission chains seeded with a random design. Each user in 
the chain was exposed to the design and then recreated it, 
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passing along their re-creation to the next user, who did the 
same. Through this iterative process, the users’ inductive 
and reconstructive biases directly transformed the initial de-
sign into one that is better fit to human cognition. We 
demonstrated the technique in three domains: stimulus–
response mappings, vanity phone numbers, and letter 
placement in typeset words. 

Our method can be extended in ways inspired by its com-
putational basis in Markov chains. Rather than estimating 
the prior predictive distribution over states, one can estimate 
the full transition matrix. This helps compensate for failures 
of convergence that can occur with short chains. Another 
method for avoiding undue influence from the starting states 
is to exclude the burn in trials, a standard procedure for dis-
carding initial samples in Markov Chain Monte Carlo simu-
lations (Murphy, 2012). Convergence can be detected using 
standard diagnostic tools for estimating whether an MCMC 
sampler has converged (Cowles & Carlin, 1996).  

A second direction in which the current method can be 
extended is to combine the technique with other forms of 
human-in-the-loop computation. For example, by including 
an explicit selection layer in which participants evaluate a 
design and determine whether a solution persists until the 
next generation, the process can be made more robust to the 
kinds of errors introduced by various experimental designs. 
Such an approach would bring the method closer to other 
forms of human-in-the-loop computation such as interactive 
evolutionary computation (Takagi, 2001) 

Design from zeroth principles can be used on other design 
problems, too. Consider for example collation, which re-
quires choosing a rule for how a set of items will be ordered. 
Often a well-established convention makes the choice an 
easy one. For example, alphabetical order is used widely, 
dictating the arrangement of words in a dictionary, topics in 
a reference book’s index, and quotes in a newspaper’s stock 
table. Other collation methods are conventional in other 
domains. The New York Times’ NFL sports standings, for ex-
ample, are arranged first by division and then by win–loss 
record, because these features are important to fans who at-
tend to pennant races. U.S. News & World Report ranks col-
leges according to their own quantitative metric of institu-
tional quality, best first, because their readers care about 
who came out on top. A collation method can be synthe-
sized through by having participants search for items in a 
list and then try to recall their order, passing along their col-
lation to the next participant. 

Some domains of design are unlikely to benefit from de-
sign from zeroth principles. One might imagine, for exam-
ple, that given people’s notorious difficulty in estimating 
their own understanding of the mechanism of helicopter 
flight and other complex phenomena (Rozenblit & 
Keil, 2002), a helicopter engine and rotor would be unwise 
to design in this way. First, the engine and rotor are not sub-
ject to much in the way of direct human interaction during 
use, so there is no reason for its design to be governed by 
human cognitive biases instead of the laws of aerodynamics, 
the materials in use, and the atmosphere. (The flight controls 

and their mapping to the movement of the rotor, however, 
are a different story.) In addition, we acknowledge that in 
domains requiring extensive training, there may be different 
memory biases that manifest in experts and novices5. A p-
ossible solution is to run separate transmission chains that s-
ynthesize a different design for each group. 
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