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Abstract

Effectively updating one’s beliefs requires sufficient empirical
evidence (i.e., data) and the computational capacity to process
it. Yet both data and computational resources are limited for
human minds. Here, we study the problem of belief updating
under limited data and limited computation. Using informa-
tion theory to characterize constraints on computation, we find
that the solution to the resulting optimization problem links
the data and computational limitations together: when compu-
tational resources are tight, agents may not be able to integrate
new empirical evidence. The resource-rational belief updating
rule we identify offers a novel interpretation of conservative
Bayesian updating.
Keywords: Belief Updating; Bayes rule; Resource Rational-
ity; Information Theory

Introduction
Intelligent agents need to be able to update their beliefs about
the world based on empirical evidence. There are two fun-
damental challenges involved in this process: the empirical
evidence is often based upon limited data, and it needs to
be perceived and processed using limited computational re-
sources. Each of these limitations has significant implications
for belief updating.

Limited data means that even an ideal agent will have be-
liefs that incorporate uncertainty. Under reasonable assump-
tions, the optimal method of belief updating is Bayes’ rule
(Jaynes, 2003), which indicates how a probability distribution
over hypotheses (the “prior” distribution) should be updated
based on new data (becoming the “posterior” distribution). If
the observed data are consistent with multiple hypotheses that
have non-zero prior probability, these hypotheses will also
have non-zero posterior probability: the posterior will reflect
data uncertainty, which is irreducible even with more compu-
tation. For example, even after tossing three heads in a row,
a coin is still likely to be fair; it feels wrong to have strong
beliefs about the bias of a coin based on a few observations.

Limited computation can magnify this uncertainty. The ex-
act belief-updating solution provided by Bayes’ rule can re-
quire significant amounts of computation, becoming infeasi-
ble in realistic settings (e.g., Koller & Friedman, 2009). It
has thus been proposed that people instead use an affordable
amount of computation to obtain an approximation to the pos-
terior (Sanborn & Chater, 2016; Griffiths, Vul, & Sanborn,
2012). This possibility has been explored using sampling-
or optimization-based approximation algorithms, which have

been shown to correspond well with human behaviors in a
variety of cognitive domains including probability judgments
(J.-Q. Zhu, Sanborn, & Chater, 2020; Dasgupta, Schulz, &
Gershman, 2017), belief updating (Dasgupta, Schulz, Tenen-
baum, & Gershman, 2020; Prat-Carrabin, Wilson, Cohen,
& Azeredo da Silveira, 2021), risky choices (Vul, Good-
man, Griffiths, & Tenenbaum, 2014), and causal inference
(Bramley, Dayan, Griffiths, & Lagnado, 2017). These ap-
proximate solutions to Bayesian inference introduce errors
that result in computational uncertainty, adding to the uncer-
tainty in the resulting beliefs.

In this paper, we consider how a rational agent should man-
age these sources of uncertainty. In the spirit of resource-
rationality (Griffiths et al., 2012; Lieder & Griffiths, 2020),
we define an optimization problem in which we quantify
the cost of computation and the benefits of following the
Bayesian updating rule using information theory. The opti-
mal solution, called computation-limited Bayesian updating,
is then derived. We compare the predictions from the optimal
updating rule with the behavioral data curated in the meta-
analysis of human belief updating conducted by Benjamin
(2019). Manipulating the computational cost also leads to up-
dating behaviors that are more Bayesian with more efficient
compute, suggesting a computational account of cognitive de-
velopment in children (L. Zhu & Gigerenzer, 2006; Girotto &
Gonzalez, 2007).

Resource-rational updating rules
We consider an agent that updates her beliefs by incorporat-
ing multiple sources of knowledge (e.g., by combining prior
beliefs with data, by combining historical and present data,
or by combining personal and social knowledge). Our fo-
cus is on the computational challenges that arise in this pro-
cess, rather than on the specific sources of knowledge in-
volved. However, we believe that the proposed solution can
be applied to a variety of belief-updating situations in which
knowledge comes from different sources.

To illustrate (see Figure 1), we consider a simplified sce-
nario that has received extensive experimental investigation:
an agent has to revise her prior beliefs (denoted qt−1) in
light of the knowledge from newly available data (denoted
dt ) where t denotes the temporal order of the beliefs and
the data. We adopt a probabilistic interpretation of knowl-
edge. In this regard, qt−1(θ) represents the subjective beliefs
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Figure 1: A schematic illustration of the human belief updat-
ing process. People are asked to update their beliefs (q) about
the unobservable state (θ). Information about the true value
of θ can only be accessed through the data (d) that is gen-
erated by the data-generating model. t denotes the temporal
order of the dataset, likelihoods, and beliefs where qt is cal-
culated based on the likelihood (Lt ) and the prior (qt−1).

about θ (e.g., θ could represent the bias of a coin or any other
objects that people can assign credence to), expressed as a
probability distribution over θ. The “subjective” knowledge
from the new data, dt , is described via the likelihood func-
tion Lt(θ) = p(dt |θ). A belief-updating rule specifies a way
to calculate the new beliefs qt(θ) based on qt−1(θ) and Lt(θ).

Deriving optimal updating rules
The standard belief-updating rule is Bayes’ rule, which indi-
cates that the posterior distribution (denoted pt(θ|dt)) should
combine prior and likelihood as follows:

pt(θ|dt) =
p(dt |θ)qt−1(θ)

p(dt)
(1)

∝ Lt(θ)qt−1(θ). (2)

Our agent could thus simply take qt(θ) = pt(θ), satisfying
the various optimality criteria that justify Bayesian inference.
However, the computational challenges involved in applying
Bayes’ rule can make it infeasible for agents with limited
computational resources.

Various methods for approximating Bayesian inference
have been proposed by theorists as an alternative for under-
standing human behaviors (Griffiths et al., 2012; Vul et al.,
2014; J.-Q. Zhu, León-Villagrá, Chater, & Sanborn, 2022;
Dasgupta et al., 2020; Sanborn & Chater, 2016), but there is
yet to be a theoretical investigation on the optimal updating
rule under computational constraints. In this section, we for-
mally develop the idea of a computation-limited agent by per-
forming a resource-rational analysis of belief updating where
people are assumed to best approximate the Bayes-optimal
posterior under a limited computational budget (c.f. Lieder &
Griffiths, 2020).

To derive an optimal updating rule, we need to define the
agent’s goal in revising old beliefs. We assume that the agent
tries to revise her belief towards the Bayes-optimal posterior
as close as possible, subject to the constraint that too drastic
changes in beliefs are too computationally costly.

Consider the Bayes-optimal posterior, pt , that the agent at-
tempts to approximate. We can model the approximation pro-
cess as the process of minimizing the information-theoretic
distance between the belief state and the posterior:

min
qt

DKL(qt ||pt) (3)

where qt is the new belief state, pt is the Bayes-optimal pos-
terior (i.e., calculated as in Equation 2 with qt−1 as the prior),
and DKL(a||b) denotes the Kullback–Leibler divergence be-
tween two probability distributions a and b, which is a type
of statistical distance that measures how a is different from b.
The KL-divergence can be intuitively interpreted as the ex-
pected surprise or dissimilarity from using b as a model when
the actual distribution should be a.

Next, we define the computational cost (C) of changing be-
lief states from qt−1 to qt as follows:

C(qt) = λDKL(qt ||qt−1) (4)

where λ is the conversion factor between one unit of informa-
tion and one unit of compute for approximation algorithms.
In other words, to change an agent’s belief state by one unit
(as measured in the information-theoretic distance), it will
cost λ. The parameter λ is also conceptually similar to the
conversion factor between one unit of information and one
unit of energy in thermodynamically inspired formalization
of bounded rationality (Ortega & Braun, 2013). Similar per-
spectives can also be found in the reinforcement learning lit-
erature (Todorov, 2006; Ho, Abel, Cohen, Littman, & Grif-
fiths, 2020) and the rational inattention model in economics
(Sims, 2003).

Assuming larger changes in belief states will require
greater cost, we can now combine the cost function with the
approximation process, resulting in the following optimiza-
tion problem:

min
qt

DKL(qt ||pt)+C(qt) (5)

Theoretically, the optimization problem stated in Equation
5 is one in which an agent is trying to find the best balance be-
tween achieving a high level of accuracy in their approxima-
tion while also minimizing the cost of making those approx-
imations. Many approximation algorithms can be character-
ized in this way. For example, sampling-based approxima-
tion algorithms such as Markov Chain Monte Carlo generate
samples to approximate the Bayes-optimal posterior, but each
sample is generated at a cost. Similarly, optimization-based
approximation algorithms such as variational inference may
improve the accuracy of parametric models through a costly
process of gradient descent. In practice, the efficiency of the
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approximation algorithm can impact the conversion factor λ

and thus the computational cost C, with more efficient algo-
rithms having lower values. For more information on how the
cost associated with sampling-based and optimization-based
approximation algorithms, refer to Appendix A.

Solving the optimization problem in Equation 5, we show
that the optimal update rule is

q∗t (θ) =
1
Z

pt(θ)
1/(1+λ∗)qt−1(θ)

λ∗/(1+λ∗) (6)

where Z =
∫

θ
pt(θ)

1/(1+λ∗)qt−1(θ)
λ∗/(1+λ∗)dθ is the normal-

izing constant. Detailed derivations for this rule can be
found in the Appendix B. Moreover, because pt is the Bayes-
optimal posterior, which is proportional to the product of
prior qt−1 and likelhood Lt , Equation 6 can be simplified to

q∗t (θ) ∝

[
qt−1(θ)Lt(θ)

]1/(1+λ∗)
qt−1(θ)

λ∗/(1+λ∗) (7)

= Lt(θ)
1/(1+λ∗)qt−1(θ) (8)

which precisely localizes the impact of computational limita-
tions to the processing of the data, as reflected in the expo-
nent of the likelihood term. Since λ ≥ 0, this exponent is less
than or equal to 1. Consequently, computational limitations
should be expected to decrease the extent to which agents are
sensitive to empirical evidence.

Summary
Our computation-limited Bayesian updating model is moti-
vated by an optimization problem where we use information
theory to characterize the costs and benefits of accurate up-
dating. When computational capacity is unbounded, standard
Bayesian updating becomes the optimal information process-
ing rule under our framework. Relaxing the psychologically
implausible assumption of infinite computational resources,
the optimal belief-updating rule can deviate from Bayes’ rule
and make more conservative use of data. Therefore, we
should expect deviations from the Bayes’ rule in the direc-
tion of decreased sensitivity to empirical evidence, and for
these deviations to be exaggerated in settings where agents
face greater computational constraints.

Behavioral signatures of computation-limited
Bayesian updating

We applied the theory developed in the previous section
to a recent meta-analysis of belief updating conducted by
Benjamin (2019), which reviewed the vast empirical liter-
ature of belief updating using the classical bookbag-and-
poker-chip experiments (e.g., Grether, 1992; Holt & Smith,
2009; Barron, 2021; Buser, Gerhards, & Van der Weele,
2016; Coutts, 2019; Gotthard-Real, 2017; Möbius, Niederle,
Niehaus, & Rosenblat, 2022; Charness & Dave, 2017; Beach,
Wise, & Barclay, 1970; Dave & Wolfe, 2003; Kraemer & We-
ber, 2004; Sasaki & Kawagoe, 2007). A typical experiment
involves drawing poker chips (or balls) of different colors out

of bookbags (or urns) in front of people. Those people are
then asked to report their beliefs about which bookbag (or
urn) was selected to generate the chips (or balls).

Our analyses center on the sequential updating problem
within the context of bookbag-and-poker-chip experiments,
wherein participants are required to report their posterior es-
timates sequentially as new data becomes accessible. Within
this framework, the self-reported posterior from the preceding
trial can be regarded as an appropriate candidate for the prior
of the current trial. Therefore, sequential updating problems
offer the most unambiguous definitions of the prior and pos-
terior probabilities, facilitating the robust evaluation of our
theoretical model.

More formally, these experiments are binomial updat-
ing problems where people have two discrete hypotheses
about the binomial parameter θ. For example, the two
hypotheses might be A = {red-dominated bag} and B =
{blue-dominated bag}. Using θ to denote the probability
of sampling a red poker chip, under hypothesis A θ takes a
value θA greater than 0.5. Under hypothesis B θ takes the
value θB = 1 − θA in a symmetric updating problem. The
prior probabilities of the hypotheses A and B are typically
p(A) = 1− p(B) = 0.5. When red or blue chips are randomly
drawn from the chosen bag with replacement, the likelihoods
can be calculated using the binomial distribution with the ap-
propriate parameter θ.

Meta-analyzing the use of likelihoods and priors
In short, the computation-limited Bayesian updating rule ob-
tained in Equation 8 suggests that an agent should revise her
beliefs by raising the likelihood to a power. If we consider
the following generic updating rule:

q∗t ∝ Lα
t qβ

t−1, (9)

the computation-limited Bayesian updating then requires that
the power of likelihoods, α = 1/(1+ λ∗), should be in the
range between 0 and 1, and that of priors should be 1, β = 1.
Note that the standard Bayesian updating rule instead requires
that α = β = 1.

Experimenters analyzing the results of bookbag-and-
poker-chip experiments often use linear models to quantify
the contributions of likelihoods and priors in arriving at sub-
jective posterior estimates. By taking natural logarithms on
both sides of the generic updating rule (Equation 9), the mul-
tiplicative relationship between likelihood and prior becomes
additive. When we have two hypotheses, we can rewrite this
updating rule in terms of the log-odds, with

ln
qt(A)
qt(B)

= α ln
p(dt |A)
p(dt |B)

+β ln
qt−1(A)
qt−1(B)

+ ε (10)

where dt is the new data made available in the period between
t −1 and t, and ε is the residual of the model, which captures
response error and is assumed to be distributed as a Gaussian
with mean 0. We also assume that the posterior-odds that the
participants reported at previous timestep t − 1 become their
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Figure 2: Meta-analyzing regression coefficients for likeli-
hoods and priors (i.e., α̂ and β̂). Regression results are drawn
from 8 papers based on the regressions performed within in-
dividual paper. Error bars denote standard errors for regres-
sion coefficients. The data was curated by Benjamin (2019).
Inverse-variance-weighted means for likelihoods and priors
are 0.47 (red dashed line; 95%CI, [0.46,0.48]) and 0.90 (blue
dashed line; 95%CI, [0.88,0.91]) respectively. Estimates
from Charness and Dave (2017) did not count towards the
meta-analyzed mean due to absence of standard errors.

prior-odds for the next update at t. In this linear model, α and
β have clear behavioral interpretations in terms of the weight
given to likelihoods and priors.

All papers in Figure 2 ran linear regressions similar to the
linear model presented in Equation 10 except that some in-
cluded an intercept term in their linear regressions (Charness
& Dave, 2017; Grether, 1992). The detailed specifications of
the linear regressions and their methods of estimation were
summarized in the Online Appendix of Benjamin (2019). We
reproduced their meta analysis in Figure 2. Using the inverse-
variance-weighted mean calculation, the meta-analysed es-
timates of regression coefficients are that the α̂ estimate of
likelihoods is 0.47 and the β̂ estimate of priors is 0.90.1 This
result is consistent with a large body of prior findings that
demonstrate conservatism in belief updating, downweighting
likelihoods (e.g., Edwards, 1968).

Reanalyzing sequential updating problems
In addition to meta-analyzing past regression results whose
linear models and estimation methods vary across studies, we
also conducted our own linear regression (applying Equation
10) directly on behavioral data collected from people solving
the sequential updating problems. As shown in Figure 3, the
meta-analysis sample that reports subjective posterior-odds
includes 127 observations drawn from four papers (Benjamin,
2019). All regressions were estimated using the ordinary least
squares methods. The estimated coefficients (α̂, β̂) and their

1The inverse-variance-weighted mean for regression coefficient
is βcombined = (∑M

i=1
βi
σ2

i
)/(∑M

i=1
1

σ2
i
), where M is the total number of

regressions.

Figure 3: Reanalyzing sequential belief updating problems
studied in four papers. Regression coefficients for likelihoods
and priors (i.e., α̂ and β̂) were computed using participants’
mean posterior odds. Error bars denote standard errors for
regression coefficients. The data was curated by Benjamin
(2019). Inverse-variance-weighted means for likelihoods and
priors are 0.33 (red dashed line; 95%CI, [0.29,0.36]) and 0.95
(blue dashed line; 95%CI, [0.90,1.00]) respectively. Esti-
mates from Kraemer and Weber (2004) and one experiment of
Sasaki and Kawagoe (2007) did not count towards the meta-
analyzed mean due to missing standard errors.

standard errors are displayed in Figure 3, with meta-analyzed
mean estimates equal to 0.33 and 0.95 for likelihoods and
priors respectively.

This analysis provides further evidence that is consistent
with conservative updating. The majority of α estimates are
below 1, suggesting that people revised their beliefs less than
requested by the likelihood. The β estimates, however, are
closer to 1, indicating that priors or previous subjective pos-
teriors are used in an almost unbiased manner to calculate
the updated posterior. Our reanalysis and recent work (e.g.,
Powell, 2022) both point to the robust phenomenon of con-
servatism as the main form of deviations from Bayesian ra-
tionality in belief updating.

Conservatism as computation-limited updating
As discussed above, conservatism is a well-established prop-
erty of people’s belief updating. A range of explanations
have been proposed in the literature for conservatism, in-
cluding misperception of likelihoods, difficulty of aggregat-
ing different sources of information, and/or response bias
(Phillips & Edwards, 1966; Slovic & Lichtenstein, 1971; Ed-
wards, 1968). In more recent literature, conservatism has
been rationalized in various ways. Under circumstances of
higher-order uncertainty, such as when the correctness of
the likelihood function is uncertain, maintaining a degree of
conservatism may yield more precise posterior probabilities
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Figure 4: (A) Empirical and (B) predicted relationships be-
tween the amount of information gain from data and the
weights on likelihoods. The empirical weights on likelihoods
were adapted from Figure 3 and the information gains were
calculated as mean absolute log-likelihood-ratios. The pre-
dicted optimal weight on likelihood were calculated with a
fixed computational cost, C = 0.1. The solid lines represent
the best-fitting polynomial curves of the highest degree 3 by
minimizing least squares errors.

(Bramley, Lagnado, & Speekenbrink, 2015). Furthermore, in
cases where the causal representation is not comprehensive
(or where the world model of the agent becomes increasingly
complex), deliberately moderating the likelihood, as exhib-
ited in conservatism, can facilitate the relaxation of an oth-
erwise inefficient optimization problem (Ramscar, Hendrix,
Shaoul, Milin, & Baayen, 2014; Bramley et al., 2017).

Here, our computation-limited Bayesian updating model
offers a resource-rational interpretation of this behavior that
does not require appealing to any of these other factors. As
shown in Equation 8, computational constraints naturally lead
to a weaker-than-rational belief updating.

There are other regularities in human belief updating
that are potentially consistent with our computation-limited
model. For example, the impact of evidence (i.e., the value
of α) becomes smaller when data diagnosticity is stronger
(Phillips & Edwards, 1966) and when more data are presented
(Peterson, Schneider, & Miller, 1965). Both stronger signal
per datapoint and larger dataset result in greater information
gains from data. Indeed, the empirical weights on likelihoods
decrease as the information gains from the data increases (see
Figure 4A). In these experiments, the data presented to par-
ticipants was administered by randomly drawing poker chips
(or balls) from a selected bookbag (or urn). Assuming a fixed
computational cost, the computation-limited Bayesian updat-
ing rule also reproduces this negative relationship between
the biased use of likelihood and the amount of information
provided to participants (see Figure 4B).

Variation in computational cost
Our cognitive abilities develop as we grow older. While it
is evident that adults can integrate different sources of in-
formation in probabilistic reasoning (Griffiths & Tenenbaum,
2006), the question of how we acquire such an ability dur-
ing childhood remains unanswered. Here, we entertain the
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Figure 5: (A) Different age groups exhibit different belief-
updating behaviours. Human data show an increase in the
proportion of responses consistent with Bayesian updating
with age (L. Zhu & Gigerenzer, 2006; Girotto & Gonzalez,
2007). (B) Decreasing computational cost with age predicts
progressively better adherence to the Bayesian updating rule.

hypothesis that people approximate Bayesian updating in the
way suggested by our computation-limited account, but that
their computational cost gradually decreases as they age, re-
sulting in a more efficient use of compute. As a consequence,
we should expect a decrease in conservatism as people be-
come more able to engage in the computations required by
belief updating.

To test this prediction, we reanalyzed behavioral data col-
lected by Girotto and Gonzalez (2007) and L. Zhu and
Gigerenzer (2006), who studied changes in belief updat-
ing among 4- to 7-year-olds children and adults (see Fig-
ure 5A). Because limited information was provided to chil-
dren in Girotto and Gonzalez (2007) whereas all relevant in-
formation to reach a Bayes-optimal posterior was provided
in L. Zhu and Gigerenzer (2006), we simulated two dif-
ferent amounts of information gain from data (0.8 and 1.6
bits) while evenly varying the computational cost from 1
(preschoolers) to 0.1 (adults) among the 8 age groups (see
Figure 5B). Our model qualitatively reproduces the develop-
mental trajectories of Bayesian reasoning in children, which
are the result of a decreasing computational cost.

Discussion
Updating beliefs can be computationally costly. We intro-
duced a new framework for understanding how these costs
might be expected to affect human belief updating. By con-
struing computational constraints as constraints on the degree
to which beliefs can be changed by any new piece of data,
the theory predicts that people should underweight evidence.
Specifically, when compared to optimal Bayesian inference,
people should discount the likelihood but make accurate use
of the prior. We confirmed these predictions by reanalyzing
experiments that asked people to sequentially update their
beliefs. Our model also predicts that we should see greater
discounting of evidence under stronger computational con-
straints, a prediction that is borne out by examining develop-
mental data: the progressive increase in the correspondence
of beliefs with Bayesian inference with age supports the idea
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that computational cost plays a central role in belief updating.
We also note a number of limitations in our theory. First,

we made some convenient assumptions about the belief up-
dating process, which may weaken the generalizability of the
theory. In practice, priors and likelihoods may not necessarily
match the ones we have assumed. Second, the KL-divergence
may not be the correct quantity for measuring the disparity
between two probability distributions. There are other more
generalized information measures such as the Renyi entropy,
which may better describe the information processed by the
mind (Sajid et al., 2022).

The biggest advantage of our approach is that our theory
subsumes a large variety of algorithmic-level models that en-
gage with the computational-level problem of belief updat-
ing (c.f. Griffiths et al., 2012). These approximation algo-
rithms include, but are not limited to, sampling-based meth-
ods such as Markov chain Monte Carlo and importance sam-
pling, optimization-based methods such as variational Bayes,
and other approximation techniques such as neural networks.
As long as the degree of belief updating increases with the
amount of computation, these approximation schemes as well
as heuristics are expected to behave similarly to computation-
limited Bayesian updating. To gain a deeper understanding of
how humans update their beliefs in a way that unifies a vari-
ety of model predictions and behaviors, we must consider not
only the cost of limited data but also the cost of limited com-
putational resources.

Appendix A. Evaluating Approximation
Algorithms

Evaluating approximation algorithms can involve consider-
ing both the rate at which the algorithm approaches the tar-
get distribution and the cost of each step of the algorithm.
Here, we focus on the former metric, the convergence rate.
The speed of convergence is often measured in total varia-
tion distance between the target distribution and its approxi-
mation, which is upper bounded by the KL-divergence. An
∆-accuracy means that the total variation distance is less than
∆ ∈ [0,1] (Bishop, 2006). Therefore, a small value of ∆ re-
sults in a more accurate approximation of the target distribu-
tion. Moreover, a faster reduction in ∆ typically indicates a
larger convergence rate for the approximation algorithm, thus
a smaller conversion factor λ and a smaller cost of compute
C in Equation 5.

In the convex setting where global properties of the tar-
get distribution can be assessed through local information,
optimization-based approximation algorithms typically con-
verge faster than sampling-based approximation algorithms
(Barber, 2012; Bishop, 2006). Approximation algorithms
that use the gradient information are expected to converge
with a rate of 1/k where k is the number of gradient descents.

However, recent theoretical analyses show that in a class
of problems that are convex outside of a bounded region
but non-convex inside of it, sampling-based algorithms con-
verge to ∆-accuracy proportional to R/∆ iterations, whereas

any optimization-based algorithm converges in proportional
to (1/∆)R iterations (Ma, Chen, Jin, Flammarion, & Jordan,
2019). R denotes the radius of the non-convex region, with a
larger value indicating a more challenging optimization prob-
lem. Therefore, as greater computing power allows for a
larger number of iterations, the accuracy of approximation
algorithms improves.

Appendix B. Solving the Optimization Problem
Here, we provide a detailed mathematical solution to the op-
timization problem stated in Equation 5, deriving the result
stated in Equation 6. For simplicity we will use abbrevi-
ated notation for integrals over probability distributions. For
example, instead of writing the Kullback-Leibler divergence
between qt and pt as DKL(qt ||pt) =

∫
qt(θ) ln qt (θ)

pt (θ)
dθ we will

write it as
∫

qt ln qt
pt

, with all integrals being over θ and all
functions taking the argument θ implicitly.

We begin rewriting the optimization problem using the fol-
lowing format:

L(qt ,λ) =
∫

qt ln
qt

pt
+C(qt) (11)

=
∫

qt ln
qt

pt
+λ

∫
qt ln

qt

qt−1
(12)

=
∫

qt ln
q1+λ

t

ptqλ
t−1

(13)

= (1+λ)
∫

qt ln

(
qt

p1/(1+λ)
t qλ/(1+λ)

t−1

)
(14)

Note that the optimization problem reduces to a KL diver-
gence:

(1+λ)DKL

(
qt

∣∣∣∣∣∣∣∣p1/(1+λ)
t qλ/(1+λ)

t−1

)
(15)

which is minimized when

q∗t =
1
Z

p1/(1+λ)
t qλ/(1+λ)

t−1 (16)

where Z is the normalizing constant
∫

p1/(1+λ)
t qλ/(1+λ)

t−1 .
Substituting q∗t back, we obtain the following optimal value

for the conversion factor λ:

λ
∗ = argminλ(1+λ) ln

∫
p1/(1+λ)

t qλ/(1+λ)
t−1 (17)
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