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Abstract

People are adept at inferring novel causal relations, even from only a few observations. Prior

knowledge about the probability of encountering causal relations of various types and the nature of

the mechanisms relating causes and effects plays a crucial role in these inferences. We test a formal

account of how this knowledge can be used and acquired, based on analyzing causal induction as

Bayesian inference. Five studies explored the predictions of this account with adults and 4-year-olds,

using tasks in which participants learned about the causal properties of a set of objects. The studies

varied the two factors that our Bayesian approach predicted should be relevant to causal induction:

the prior probability with which causal relations exist, and the assumption of a deterministic or a

probabilistic relation between cause and effect. Adults’ judgments (Experiments 1, 2, and 4) were in

close correspondence with the quantitative predictions of the model, and children’s judgments

(Experiments 3 and 5) agreed qualitatively with this account.
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As adults, we know a remarkable amount about the causal structure of our environment.

Discovering this structure is a difficult inductive problem, requiring unobservable causal

relations to be inferred from limited observed data. Historically, psychological theories of

causal induction have fallen into two camps (Newsome, 2003): Covariation-based

approaches characterize human causal induction as the consequence of a domain-general

statistical sensitivity to covariation between cause and effect (e.g., Cheng, 1997; Shanks,

1995), whereas mechanism-based approaches focus on the role of prior knowledge about
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causal mechanisms (e.g., Ahn & Kalish, 2000; Bullock, Gelman, & Baillargeon, 1982;

Shultz, 1982; Wolff, 2007). In this article, we argue that a central part of the explanation for

how people come to know so much about the causal structure of their world is that they are

capable of combining these sources of information, using domain-general statistical infer-

ence guided by domain-specific prior knowledge. We show how covariational evidence and

prior knowledge about causal mechanisms can be combined via Bayesian inference. We test

the predictions of the resulting formal account through a series of experiments with both

adults and children.

Bayesian inference provides a natural way to identify how covariational evidence and

prior knowledge should be combined, indicating how a rational learner could best arrive at

an accurate solution to the problem of inferring causal structure from observed data. The

resulting computational-level analysis (in the spirit of Marr, 1982) of the problem of causal

induction is analogous to work in ideal observer or signal detection theory (Green & Swets,

1966; Yuille & Kersten, 2006), which indicates how a visual system can best make infer-

ences about the world from visual data. Just as ideal observer models make it possible to

explore how statistical information about the kinds of things encountered in the world

guides perception, Bayesian inference about causal structure gives us a way to investigate

how statistical information about events co-occurring interacts with existing knowledge to

guide human causal learning.

To provide a simple, concrete setting in which to explore the interplay of covariational

evidence and prior knowledge, we develop our approach for the specific case of learn-

ing about the causal relations between objects in simple physical systems. We focus on the

blicket detector paradigm (Gopnik & Sobel, 2000; Gopnik, Sobel, Schulz, & Glymour,

2001; Sobel, Tenenbaum, & Gopnik, 2004): Adults or children learn which objects (the blic-
kets) have a novel hidden causal power to activate a machine (the blicket detector). Typi-

cally, even 4-year-olds require only a handful of observations in order to learn about the

existence of this novel causal relation. Moreover, they use this knowledge both to make pre-

dictions and to design novel interventions and counterfactuals in much the same way that

the causal graphical models formalism would suggest (Gopnik et al., 2004).

We use this setting to test the hypothesis that adults and children integrate prior knowl-

edge and covariational evidence about causal relations in a way that is consistent with

Bayesian inference. We explore two different kinds of prior knowledge. First, we look at

the assumptions about the probability that an object is a blicket. Second, we explore a more

abstract assumption about the functional form of the causal relations participants observe:

whether they are deterministic or probabilistic. Our model allows us to integrate both these

forms of prior knowledge with current evidence. We then examine the consequences of

modifying these assumptions through experiments in which we change the probability with

which causal relations exist and whether those relations are deterministic or probabilistic.

Our strategy of conducting experiments with both adults and children illustrates the gen-

erality of our formal approach, and it provides the opportunity to investigate causal induc-

tion where it is easiest to study and where it is most important. Adult participants are willing

to answer a variety of questions about causality and produce multiple numerical ratings,

resulting in data that are sufficiently fine-grained to allow quantitative evaluation of our

1408 T. L. Griffiths et al. ⁄ Cognitive Science 35 (2011)



models. While we can obtain only a relatively coarse characterization of the beliefs of chil-

dren, they are arguably the group whose behavior we would most like to understand. Four-

year-olds are still in the process of forming their deepest theories of the causal structure of

their world, and using their capacity for causal induction to do so. Conducting parallel exper-

iments with both groups provides the opportunity to test the details of our models and to

show how they might help us understand the mechanisms of cognitive development, particu-

larly because causal graphical models explain many facets of children’s causal reasoning.

Further, there is a substantial literature on causal reasoning in young children, suggesting

basic perceptual and reasoning abilities are in place at quite young ages (e.g., Bullock et al.,

1982; Carey, 2009; Leslie & Keeble, 1987; Shultz, 1982), and comparing children to adults

makes it possible to identify aspects of causal reasoning that might develop over time.

The Bayesian approach to causal induction that we test follows in a long tradition of for-

mal models of human judgments about causal relations (e.g., Cheng, 1997; Shanks, 1995;

Ward & Jenkins, 1965). Previous models focus on covariation between cause and effect as

the basis for evaluating causal relations, and they are usually applied to experiments in

which such covariation is expressed over many trials on which causes and effects might

occur. Our experiments present a challenge to these models, showing that adults and chil-

dren can learn causal relations from few observations, and that situations in which people

observe exactly the same covariational evidence lead to different conclusions when people

have different prior knowledge about the causal relations involved.

The plan of the article is as follows. We first review formal approaches to human causal

induction and introduce the key ideas behind our Bayesian approach. We then discuss how

this approach can incorporate prior knowledge on the part of the learner, and how appropri-

ate knowledge can make it possible to learn causal relations from small amounts of data.

Showing that this approach can account for some of the basic results using the blicket detec-

tor paradigm motivates our experiments. Experiments 1–3 explore the consequences of

manipulating the probability that a causal relation exists in this paradigm. Experiments 4

and 5 examine how adults and children integrate more abstract prior knowledge with the

evidence they observe by considering inferences when the mechanism between causes and

effects is deterministic or probabilistic. We then consider some of the implications of these

results and the limitations of our analysis in the General Discussion.

1. Formal models of causal induction

Most formal models of causal induction follow one of two approaches: taking causal

induction to be a form of associative learning, or defining a rational procedure for estimating

the strength of a causal relation. We will briefly review these two approaches.

1.1. Learning associations

One way that an individual could reason about causal relations among events in the world

is to note their co-occurrence. Several psychologists have proposed that causal induction is
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based on recognizing associations among events (e.g., Dickinson & Shanks, 1995; Pearce,

1987). Many of these models have their origin with the Rescorla–Wagner (1972) model,

which increases the strength of association between a cue and an outcome when the cue is

present on a trial where the outcome occurs unexpectedly. This model provides an account

of many basic findings in the associative learning literature, including Kamin’s (1968)

‘‘blocking’’ phenomenon, in which a novel cue does not become associated with an out-

come when that cue only appears in the presence of another cue that has already been asso-

ciated with the outcome.

Subsequent research in associative learning has uncovered phenomena that cannot be

captured easily by simple associative models. One of these phenomena is backward block-
ing, a procedure that is identical in its contingencies to blocking, but reverses the order in

which the trials are presented (Chapman, 1991; Kruschke & Blair, 2000; Miller & Matute,

1996; Shanks, 1985). In the first part of training, two cues (A and B) occur with an out-

come. In the second, only one of those cues (A) occurs with the outcome. Learners come

to associate only cue A with the outcome, as with the standard ‘‘forwards’’ blocking pro-

cedure. However, since both A and B are associated with the outcome after the first part

of training, backward blocking requires that the association between B and the outcome

be modified in the absence of B in the second part of training. This is at odds with the

Rescorla–Wagner model, in which associations between cues and outcomes are only mod-

ified on trials where those cues are present. A number of other phenomena that present a

similar problem for simple associative models have been identified, being characterized

by retrospective revaluation of the association between cues and effects in light of later

evidence (e.g., Dickinson & Burke, 1996; Larkin, Aitken, & Dickinson, 1998).

In response to these phenomena, more sophisticated associative models have been devel-

oped in which the association between a cue and an outcome can be modified even in the

absence of that cue (e.g., Dickinson & Burke, 1996; Van Hamme & Wasserman, 1994;

Wasserman & Berglan, 1998). These models involve schemes for decreasing the strength of

association between a cue and outcome when the outcome occurs on trials where the cue is

not present. However, these models retain the basic principles of associative accounts: The

inferred strength of a relation is based purely on the contingencies that hold between cues

and outcomes, and the speed of learning is controlled by the extent to which outcomes are

unexpected and a free parameter that sets the learning rate.

1.2. Rational methods for estimating causal strength

A second class of formal models of causal learning share with associative models the idea

of estimating the strength of the relation between two variables, but rather than focusing on

trial-by-trial changes, they provide an estimate that uses only the probabilities with which

the effect occurs in the presence and absence of the cause. Such estimates are motivated by

various rational considerations based on different construals of the nature of causal rela-

tions. Two prominent proposals in this category are the DP model (Shanks, 1995; Ward &

Jenkins, 1965) and the Power PC model (Cheng, 1997, 2000). These models calculate an
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estimate of the strength of presumed causal relations given a set of data (Glymour, 2001;

Griffiths & Tenenbaum, 2005; Tenenbaum & Griffiths, 2001).

The DP model expresses the strength of a causal relation in terms of the efficacy of the

cause in bringing about the effect. Using C to denote the cause, and E the effect, with c+
and c) indicating occurrence and non-occurrence of the cause and e+ and e) the corre-

sponding values for the effect, DP is defined to be

DP ¼ pðeþjcþÞ � pðeþjc�Þ: ð1Þ

This quantity has a simple interpretation in terms of the change in the probability of the

effect produced by the cause, and it can also be shown to be the asymptotic weight associ-

ated with the cause when the Rescorla–Wagner model is applied to contingency data gener-

ated with these probabilities (Danks, 2003).

The Power PC model (Cheng, 1997) makes further assumptions about the nature of a cau-

sal relation, essentially asserting that each cause has an independent opportunity to bring

about the effect, and that its strength is the probability with which it succeeds in doing so.

Under these assumptions, the strength of a causal relation (or the ‘‘causal power’’ of the

cause) is defined by

power ¼ DP
1� pðeþjc�Þ : ð2Þ

The denominator can be interpreted as correcting DP to reflect the fact that changes in

the probability of the effect are more impressive when the range in which such changes can

be expressed is reduced. This approach can be shown to be equivalent to assuming that

causes interact via a probabilistic OR-gate (Glymour, 1998; Griffiths & Tenenbaum, 2005;

Tenenbaum & Griffiths, 2001), a point that we return to later in the article.

2. Prior knowledge and causal induction

Associative and rational models of strength estimation emphasize different aspects of

learning, but they agree in the fundamental assumptions that causal induction is a matter of

determining the strength of a relation, and that covariation between cause and effect provide

the information needed to solve this problem. In this section, we will argue that these models

fail to capture an important part of human causal learning: the effects of prior knowledge.

Analogs of associative learning tasks have been used as the basis for experiments in

causal learning with children (Gopnik et al., 2004). In one experiment, Sobel et al. (2004)

presented children with a backward blocking procedure, in which 3- and 4-year-olds were

introduced to the ‘‘blicket detector,’’ a device that lights up and plays music whenever cer-

tain objects are placed upon it. Children were shown two objects (A and B). These objects

activated the detector together, demonstrated twice. Then children observed that object

A activated the detector by itself. Children’s inferences as to whether each object was a

blicket were compared with a second condition, in which children observed two new objects
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(C and D) activate the detector together twice, and then object C fails to activate the detector

alone. On the backward blocking trials, children often claimed that object A was a blicket,

but object B was not. Children’s judgments were reversed on the other trials: Object C was

not a blicket, whereas object D was, and critically, children treated objects B and D differ-

ently even though their co-occurrence with activation of the detector was the same. Other

laboratories (McCormack, Butterfill, Hoerl, & Burns, 2009) have generated similar findings

for slightly older children, using other controls to ensure that children are indeed retrospec-

tively reevaluating the probability that objects have causal efficacy.

As a result of using a backward blocking design, these data suggest that simple models of

associative learning based on the Rescorla and Wagner (1972) model may have difficulty

accounting for children’s causal inferences. However, this study highlights another impor-

tant property of causal learning: Even young children can identify a causal relation from

small samples of data. Children were provided with only a handful of observations of cause

and effect, yet they were confident about which objects caused the detector to activate. It is

particularly constructive to compare these results with other retrospective revaluation exper-

iments (e.g., Kruschke & Blair, 2000; Larkin et al., 1998; Shanks, 1985), in which many

more observations were required in order for participants to be similarly clear in their judg-

ments about the underlying causal relations.

Why do we need only a handful of observations to learn a new causal relation in some

situations, but dozens or even hundreds in other situations? Neither associative nor rational

models of strength estimation provide a parsimonious answer to the question of what sample

size will be sufficient to infer a causal relation exists. Associative models allow the learning

rate to be a free parameter of the model, but this does not explain why the learning rate

should be high in one situation and low in another. The rational models of strength estima-

tion summarized above are based on the probability of the effect in the presence and

absence of the cause—something that remains the same regardless of sample size. As a con-

sequence, they draw the same conclusions from large samples and small samples, rather

than requiring different sample sizes in different situations.

One way to understand why people learn quickly in some contexts but slowly in others is

to appeal to prior knowledge. Consider the difference between flipping a light switch and

seeing a light go on, and taking a drug and finding out that a headache goes away. When we

flip the switch and the light comes on, we can be fairly sure that there is a causal relation,

because we expect that if such a relation exists the light will come on every time the switch

is flipped, and that there are few alternative causes that could make the light come on at that

moment. We might be more reluctant to infer a causal relation when a headache goes away

after taking a drug, because the relation is more probabilistic: Such a drug might not work

every time, and there are other factors that could cause a headache to disappear. The prior

knowledge that the mechanism involved is like a light switch rather than a biochemical pro-

cess means that small samples are enough to make us confident in the existence of a causal

relation. Often, however, this is not captured in existing formal models of causal induction.

Causal learning can also be fast when all that is required is a decision about whether or

not a causal relation exists, rather than producing an estimate of its strength. Flipping

a switch once and seeing the light come on is enough to establish a causal relation, but
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estimating exactly how probable it is that this will work would require much more experi-

ence. The distinction between causal structure—which relations exist—and causal strength

is an important aspect of understanding causal learning (Griffiths & Tenenbaum, 2005). This

distinction can give us some insight into how associative and rational strength estimation

accounts might have difficulty explaining rapid learning, since both approaches focus on

estimating strength as a proxy for learning causal structure.

A second interesting aspect of the backward blocking study is that at the end of the exper-

iment, children are sure of the status of object A as a cause, but often less certain about the

status of object B. This provides another opportunity for prior knowledge to influence chil-

dren’s judgments. Intuitively, whether object B is likely to be a blicket should depend on

how prevalent blickets seem to be: If blickets are rare, it is unlikely that B is a blicket, since

the observations provide no compelling evidence to the contrary; if blickets are common,

then it is more plausible that B might be a blicket.

To test whether children use this kind of prior knowledge, Sobel et al. (2004) examined

whether children’s judgments in a backward blocking task were affected by the base rate of

blickets. Children were first presented with a box of identical objects and were trained that

either two or ten of twelve objects randomly selected out of the box (the rare and common
conditions, respectively) activated the machine. Children were then given a backward block-

ing trial, with two new objects (A and B) pulled out of the box. Children observed that A

and B together made the machine go twice. Then they observed that object A made the

machine go by itself. They were asked whether each of the objects was a blicket.

Across both training conditions, children identified object A as a blicket nearly 100% of

the time. Information about the base rate of blickets did not affect the ability to reason about

unambiguous evidence. Treatment of object B (the object not placed on the machine indi-

vidually) differed between the two conditions in a way that was consistent with using prior

knowledge. When blickets were rare, 4-year-olds were unlikely to categorize the B object as

a blicket. When blickets were common, 4-year-olds were likely to do so.1

This experiment highlights another aspect of prior knowledge that informs causal induc-

tion: knowledge about the probability that a causal relation exists. When presented with

ambiguous evidence, this knowledge can help guide us to a conclusion. This kind of prior

knowledge is also not naturally captured within associative or rational models of strength

estimation. A simple proposal might be to set the initial strength of a relation to reflect this

kind of background information, but this leaves us with a new problem: How do we learn

what that initial strength should be? It also does not allow us to express the difference

between prior knowledge about the existence of causal relations and their strength. For

example, we want to be able to differentiate between situations where 100% of causes pro-

duce the effect 10% of the time and situations where 10% of causes produce the effect

100% of the time.

These experiments suggest that at least two kinds of prior knowledge play a role in causal

induction: prior knowledge about the nature of causal relations (and specifically whether

they are deterministic like light switches, or probabilistic like drugs), and prior knowledge

about the probability with which causal relations exist. This raises the question of how these

aspects of prior knowledge can be formalized and how they should be combined with
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covariational evidence in causal induction. Analyzing causal induction as a form of Bayes-

ian inference provides a way to answer this question.

3. Causal induction as Bayesian inference

Bayesian inference provides a natural way to capture the effects of prior knowledge on

causal induction, as it provides a rational account of how a learner should update his or her

beliefs in light of evidence. A Bayesian learner begins with a space of possible hypotheses,

H, where each hypothesis h 2 H is assigned a prior probability, p(h), indicating the proba-

bility that the learner assigns to that hypothesis before seeing any data. Given observed data,

d, the learner seeks to compute the posterior probability of each hypothesis, p(h|d), indicat-

ing the degree of belief in that hypothesis in light of the data. This is done using Bayes’ rule:

pðhjdÞ ¼ pðd jhÞpðhÞP
h02H

pðd jh0Þpðh0Þ ; ð3Þ

where p(d|h) is the ‘‘likelihood’’—the probability of the data d under a hypothesis h, which

reflects the probability distribution associated with h.

Bayes’ rule allows prior knowledge to influence learning in two ways. The first is through

the prior distribution, p(h), which can indicate that particular hypotheses are more likely to

be true than others. For example, when hypotheses describe the existence of causal relations,

certain relations could be considered more likely to exist than others. The second way in

which prior knowledge can be incorporated is through the likelihood, p(d|h). This specifies

how a hypothesis relates to data, which might be different depending on the knowledge that

the learner has about the process by which data are generated and the kinds of hypotheses

under consideration. In the context of causal learning, this provides a way to express differ-

ent assumptions about the nature of causal relations.

To translate the general framework of Bayesian inference into a model of causal induc-

tion, we need to select hypotheses that express different possible causal relations. In this

article, the hypotheses under consideration will be specified using causal graphical mod-

els, a formal framework for representing and reasoning about causal relations (e.g.,

Glymour, 2001; Pearl, 1988, 2000; Spirtes, Glymour, & Scheines, 2001). These models

naturally represent causal knowledge, allowing the correct kinds of inferences about

interventions and counterfactuals. In addition, as probabilistic models, they also lend

themselves easily to Bayesian learning methods (Friedman & Koller, 2003), and they

provide a way to formalize learning causal relations that follows the assumptions behind

previous psychological theories (e.g., Cheng, 1997), a point we discuss in more detail

later in the article.

A causal graphical model defines a probability distribution over a set of variables, based

upon a graphical structure in which variables are nodes and edges indicate a direct causal

relation (see, e.g., Fig. 1).
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The fundamental assumption relating the underlying cause–effect graph structure to the

observed probability distributions over variables is known as the causal Markov condition:

Each variable is expected to be statistically independent of its non-descendants (direct or

indirect effects) given its parents (direct causes).2 The causal Markov condition means that

the joint probability distribution over the set of variables in a causal graphical model can be

written as the product of a set of conditional probabilities, each indicating the probability of

that variable conditioned on its parents in the graph.

Each graphical structure is consistent with an infinite set of probabilistic models that

specify how the variables are related. A unique joint probability distribution is identified by

parameterizing the graph: defining the conditional probability distribution for each variable

given its parents. Some of the simplest parameterizations assign one parameter to each edge,

which can be thought of as a weight representing the strength of the corresponding causal

relation. More complex parameterizations are also possible, with interactive effects that

depend on the conjunctive configurations of multiple causes. The parameterization of a

graph also need not be probabilistic: It is possible to specify the states of variables as deter-

ministic functions of their causes. The form of the parameterization reflects assumptions

about the nature of the mechanism by which a cause produces an effect.

Causal graphical models provide a rich language for defining hypotheses related to causal

relations. They support a variety of ways in which we can define Bayesian models of causal

induction. For example, we can choose to fix the causal structure and take our hypotheses to

correspond to different parameter values, obtaining a Bayesian version of the rational

strength estimation models mentioned above (Lu, Yuille, Liljeholm, Cheng, & Holyoak,

2006, 2007, 2008). Alternatively, we can take our hypotheses to correspond to different cau-

sal structures, with Bayesian inference used to determine whether a causal relation actually

exists (Griffiths & Tenenbaum, 2005). In this article, we use the latter approach—known as

structure learning—although it may be possible to provide a similar analysis using hypothe-

ses that vary only in causal strength. We will return to this point in the General Discussion.

3.1. Capturing constraints from prior knowledge

The Bayesian approach to structure learning makes it possible to describe formally how a

learner should go about changing his or her beliefs in light of data. However, in order to

A B

E

A B

E

Graph 0 

A B

E

A B

E

Graph 1 Graph 2 Graph 3 

Fig. 1. Causal graphical models indicating the possible causal relations for events involving two objects and

one detector. A and B indicate the presence of objects A and B on the detector, and E indicates the activation of

the detector.
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apply Bayes’ rule, it is necessary to specify a hypothesis space, H, prior probabilities p(h)

for the relevant hypotheses, and a likelihood function p(d|h) relating data to hypotheses. We

will express the constraints that prior knowledge places on the hypotheses in two ways: by

examining the ontology of objects, attributes, and event types, and through a set of causal

principles relating these elements together. In this article, we consider how to define a

Bayesian model of causal learning for the kind of physical causal system instantiated in the

blicket detector. The focus of this model is on the kinds of prior knowledge that inform

inferences about such physical causal systems, and different models would be needed for

other kinds of causal learning. Models appropriate for the more typical task in adult causal

learning, with minimal prior knowledge and causes of variable strength, are presented in

Griffiths and Tenenbaum (2005) and Lu et al. (2006, 2007, 2008). A more detailed formal

account of how these constraints can be expressed for a variety of causal systems appears in

Griffiths and Tenenbaum (2007, 2009).

First, we define the variables that learners might consider when inferring causal relations.

A simple model of the blicket detector environment might identify two kinds of entities:

objects and detectors; two relevant attributes: being a blicket (a potential property of

objects) and being a blicket detector (a potential property of detectors); and two kinds of

events: an object being placed on a detector and a detector responding. Participants can

observe the objects and events, and they are told that the machine in front of them is a blic-

ket detector, but they must infer the remaining unseen attributes—which objects are

blickets.

Our model then incorporates constraints on causal learning in the form of three assump-

tions, which are pieces of prior knowledge that learners might possess about blickets and

blicket detectors: temporal priority, object independence, and the activation law. Temporal

priority states that an object being placed on the detector causes it to activate, and that the

detector’s activation does not cause the experimenter to place an object upon it. Object inde-

pendence holds that the identity of each object—whether it is a blicket—as well as its posi-

tion in space is independent of all other objects. Object positions are visibly manipulated in

the experiment but object identities are unknown, so each object is initially assigned a prior

probability, q, of being a blicket. The activation law holds that the blicket detector activates

if and only if one or more blickets are placed on top of it. This law further constrains possi-

ble causal structures: Only blickets can causally influence the state of the detector. Under a

strong interpretation of the activation law, this relation would be deterministic. A more real-

istic activation law could allow some small probability that the detector will fail to activate

when a blicket is placed on it. This is a possibility that affects the predictions of this

account, and one we explore in detail later in the article, but for simplicity, we will assume

for now that a detector is deterministic.

Using these assumptions, a Bayesian learner can define a constrained hypothesis space of

causal graphical models for scenarios involving the blicket detector. We will initially con-

centrate on the backward blocking paradigm, with two objects, A and B, and one detector.

There are four hypotheses consistent with these principles (shown in Fig. 1), but this set of

constraints can be used to generate hypothesis spaces for arbitrary numbers of objects.3 The

activation law specifies the parameterization of those graphs, and thus the likelihood p(d|h): E
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should be observed if and only if one or more of its causes is present (see Table 1). The

prior probability of each hypothesis, p(h), depends on the parameter q specified in the prin-

ciple of object independence, with probabilities of (1 ) q)2, q(1 ) q), q(1 ) q), and q2 for

Graphs 0–3, respectively (see the Appendix for a derivation of these quantities, and Table 2

for a summary). For smaller values of q, the prior probability increasingly favors causal

graphs with fewer edges—as it becomes less likely that an object is a blicket, it is also less

likely that there will be several blickets activating the machine.

The question of whether an object is a blicket can be formulated as a question of whether

a causal relation exists between placing that object on the detector and the detector activat-

ing. This can be answered by computing the probability that there is an edge between an

object being placed on the detector and the detector activating. For example, the probability

that object A is a blicket (i.e., A fi E) given data d can be written

pðA! EjdÞ ¼
X

h

pðA! EjhÞpðhjdÞ; ð4Þ

where p(A fi E|h) is 1 if a link exists between A and E in the causal structure associated

with hypothesis h, and 0 otherwise.4

Table 1

Probability of different events for each causal structure with deterministic activation law

Causal Structures

Event

e+|a+,b+ e+|a+,b) e)|a),b+

Graph 0 0 0 1

Graph 1 1 1 0

Graph 2 1 0 1

Graph 3 1 1 0

Note. The notation e|a,b indicates the state of the effect (activation of the detector) given the state of the

causes (objects A and B being on the detector), with + indicating presence and ) indicating absence.

Table 2

Posterior probabilities for Bayesian model of backward blocking (Experiment 1)

Prior Probability After AB Event After A Event

Causal structures

Graph 0 (1 ) q)2 0 0

Graph 1 q(1 ) q) (1 ) q) ⁄ (2 ) q) 1 ) q
Graph 2 q(1 ) q) (1 ) q) ⁄ (2 ) q) 0

Graph 3 q2 q ⁄ (2 ) q) q
Probability of being a blicket ⁄ containing super lead

Object A q 1 ⁄ (2 ) q) 1

Object B q 1 ⁄ (2 ) q) q

Note. The probability of an object being a blicket ⁄ containing super lead is computed by summing the proba-

bility of all causal structures in which a causal relationship exists between placing that object on the detector and

the detector activating. The AB event corresponds to e+|a+,b+, and the A event is e+|a+,b).
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The predictions of the Bayesian model for the backward blocking procedure are shown in

Table 2 (a detailed explanation of these predictions appears in the Appendix). According to

the model, the final probability that the ‘‘blocked’’ object (object B) activates the machine

(and hence, is a blicket), should be the prior probability of objects being blickets, q. If we

manipulate the value of q, we can manipulate the magnitude of the blocking effect and the

extent to which object B is judged to cause the detector to activate. Judgments about object

A should be independent of q and equal to 1 because its efficacy has been observed unam-

biguously and the detector is known to be a deterministic device (via the activation law).

This simple model produces predictions that are also consistent with the results of the

experiment manipulating the probability that objects are blickets in Sobel et al. (2004).

Assume the prior probability, q, of a block being a blicket is determined in part by

observations of the base rate of blickets among objects like object B. If many objects

similar to object B cause the effect, then a hypothesis in which object B causes the

effect will have a relatively high initial probability. If that probability is sufficiently

high, the observed data will not warrant a strong backward blocking response, and par-

ticipants will be likely to say that object B is a blicket. By contrast, if that initial proba-

bility is low, then the observed data will warrant a strong backward blocking response,

and participants will not say that object B is a blicket. This is exactly what Sobel et al.

found in their experiment, and Sobel and Munro (2009) demonstrated that children only

made this inference if they possess knowledge akin to the activation law we have

described.

This Bayesian model explains children’s ability to learn about the existence of

causal relations from small amounts of data. This account predicts that manipulating

prior knowledge about the probabilities with which causal relations exist (i.e., the base

rate of blocks being blickets) and the nature of those relations (i.e., that the detector

operates deterministically or with noise) should affect the conclusions reached by

learners. Importantly, these predictions are at odds with those of associative or rational

models of strength estimation. The predictions of such models depend only on the

covariation between cause and effect. Our Bayesian model predicts that different con-

clusions can result from the same covariational evidence when different prior knowl-

edge is used.

In the remainder of the article, we test the predictions that result from our Bayesian

model through a series of five experiments. The basic prediction is that adults and children

can draw conclusions about the existence of a causal relation from relatively few observa-

tions, and that the strength of these conclusions will depend on the ambiguity of the covari-

ational evidence and the nature of the prior knowledge to which they have access.

Experiment 1 shows that manipulating the base rate with which causal relations occur influ-

ences the extent to which adults are willing to believe a novel causal relation exists. Experi-

ments 2 and 3 show that the strength of the conclusions that adults and children reach is

influenced by ambiguity in the observed data. Experiments 4 and 5 show that the strength of

these conclusions is also affected by whether causal relations are assumed to be probabilistic

or deterministic.
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4. Experiment 1: Manipulating base rates in adults

Experiment 1 presented adult participants with a variant of the blicket detector backward

blocking paradigm used by Sobel et al. (2004) and asked them to make more frequent and

more precise judgments of causal efficacy than children were able to answer. Working with

an adult sample also enabled us to track the dynamics of learners’ causal inferences. Partici-

pants rated the probability that each object was efficacious at three points during the experi-

ment: (a) at the beginning of the trial before either object appears on the detector (the

baseline rating); (b) after both objects are placed on the detector and the detector activates

(the AB event); and (c) after one object is seen to activate the detector by itself (the A

event). These numerical judgments can be compared to the quantitative predictions of the

Bayesian model (outlined in Table 1, and described in detail in the Appendix).

4.1. Method

4.1.1. Participants
Sixty college students were recruited from two suburban-area universities. Participants

received course credit or were compensated $7 ⁄ h for their participation. Three additional

participants were tested but not included because of experimental error.

4.1.2. Materials
Twenty identical miniature golf pencils (approximately 3¢¢ long) were used. The pencils

were held in a large plastic cup. During the course of the experiment, two 4¢¢ · 8¢¢ · 1¢¢
boxes were used to sort the pencils. One had the word ‘‘Super pencils’’ printed on it. The

other had the words ‘‘Not super pencils’’ printed on it.

A ‘‘super-lead’’ detector was constructed using a desktop computer and a disguised cof-

fee maker. Except for the 4¢¢ diameter stainless steel plate on which a coffee pot normally

sits and a small black switch on the side, the coffee maker was colored exclusively white,

with no markings or labels visible. The power cord emerging from the back of the coffee

maker was plugged into the back of the computer; in reality, this connection was not func-

tional, but there was no way for participants to see this. During the experiment, the appara-

tus was always referred to as a ‘‘super-lead detector,’’ a ‘‘super-lead scanner,’’ or a ‘‘super

pencil detector.’’ One or more golf pencils could be placed on the detector’s stainless steel

plate to ‘‘scan’’ them for super lead.

Participants were tested on a computer running an interface program designed to display

the output of the super-lead detector. Participants observed a single window (6¢¢ · 4.5¢¢) on

the screen, with a single button (3.75¢¢ · 0.75¢¢) labeled ‘‘click to scan’’ and a blank frame

(3.75¢¢ · 1¢¢) below the scan button that indicated the output of the detector. When the scan

button was clicked with the mouse, the output frame would either light up with the words,

‘‘Super lead detected’’ or remain blank, depending on the precise position of the mouse

arrow within the ‘‘click to scan’’ button. If the mouse was over the text of the words ‘‘click

to scan,’’ the detector would remain blank when the mouse was clicked; at any other posi-

tion, a click would cause the words ‘‘Super lead detected!’’ to appear in the output box. The
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experimenter always controlled the mouse, which allowed him or her to control whether the

system would appear to detect super lead on any given scan.

4.1.3. Procedure
Participants were introduced to the experimental scenario and materials. The cup of pen-

cils was brought out, and participants were told that some of the pencils were just normal

pencils, whereas others were ‘‘super pencils,’’ with a special kind of lead called ‘‘super

lead.’’ The coffee maker ⁄ computer apparatus was introduced as a ‘‘scanner’’ that could

detect the super lead in super pencils.

The experimenter picked out one pencil at random from the cup, placed it on the detector,

and clicked the ‘‘scan’’ button. The detector activated, with the words ‘‘Super lead

detected!’’ appearing in the output frame of the computer screen. The experimenter said,

‘‘See, that’s a super pencil,’’ then placed the pencil in the box marked ‘‘Super pencils,’’ and

continued by saying, ‘‘Now let’s try this one.’’ The experimenter picked another pencil at

random from the cup, placed it on the detector, and clicked the ‘‘scan’’ button. This time

the detector did not activate. The experimenter said, ‘‘See, that’s not a super pencil. It’s just

a normal one,’’ and placed this second pencil in the box marked ‘‘Not super pencils.’’ The

two pencils were then demonstrated on the detector together, which activated. Participants

were instructed that the detector activated if at least one object on it contained super lead.

This demonstration paralleled Sobel et al.’s (2004) procedure. It also ensured that all partici-

pants were aware of the activation law.

Participants then took 10 pencils out of the cup, one at a time. Each pencil was placed on

the detector, scanned, and then sorted into the appropriate box by the participant. Partici-

pants were assigned to one of five groups, which reflect the base rate of super pencils that

they observed during the training. In group 1 ⁄ 6, one of the ten pencils activated the detector

(thus 2 of the 12 total for a base rate of 1 ⁄ 6). In group 1 ⁄ 3, three of ten activated the detector

(4 of 12 total). In group 1 ⁄ 2, five of ten did so (6 of 12 total). In group 2 ⁄ 3, seven of ten did

so (8 of 12 total). In group 5 ⁄ 6, nine of ten did so (10 of 12 total).

After this exposure, participants were asked to take out two new pencils from the cup

(referred to below as pencils A and B). They were asked to rate on a scale of 1–7 how likely

each was to be a super pencil. They were instructed that a score of 1 indicated that they were

confident that the object was not a super pencil, a score of 7 indicated that they were confident

that the object was a super pencil, and a score of 4 indicated that they were uncertain whether

it was a super pencil—that it was an even bet. After this baseline rating, the two pencils were

then scanned on the machine together, and super lead was detected (the ‘‘AB event’’). Partic-

ipants were again asked to rate how likely each object was a super pencil. Finally, pencil A

was placed on the machine alone, scanned, and super lead was detected (the ‘‘A event’’). Par-

ticipants were asked a third time to rate how likely each object was a super pencil.

4.2. Results and discussion

Figure 2 shows the mean ratings for how likely objects A and B were to be super pencils

at the three points during the experiment as well as the predictions of the Bayesian model
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for each of these ratings. Model predictions correspond to the posterior probabilities that

causal links exist between each object (A or B) and the detector’s activation (E):

p(A fi E|d) and p(B fi E|d), respectively, computed via Eq. 4 (shown above) given the

hypothesis space of causal structures shown in Fig. 1. We compared the Bayesian model’s

predictions with participants’ mean ratings both quantitatively, using a measure of goodness

of fit, and qualitatively, by checking whether participants’ ratings showed significant effects

that were specifically and distinctively predicted by the model.
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Fig. 2. Predictions of the Bayesian model for each condition (top graphs) and mean ratings of participants in

each condition (bottom graphs) in Experiment 1.
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To assess the quantitative fit of the model, we computed the linear correlation between

the model’s predictions and participants’ mean ratings of the probabilities of causal effica-

cies for 30 different judgments: each of two objects at three different points during the test-

ing phase of all five conditions (i.e., each of the data points shown in Fig. 2). The linear

correlation between model predictions and human ratings over these judgments was r = .97.

Note that this high correlation was achieved without the need for any free numerical param-

eters in the model. The only numerical parameter in the model is the prior probability q that

an object is a super pencil, and this parameter was set equal to the base rate of super pencils

that participants observed during the training phase of each condition. Hence, this model fit

is essentially parameter-free. For comparison, the correlation between people’s judgments

and the causal power of A and B, computed using Eq. 2 (the Power PC theory), is r = .325.5

This low correlation results from the fact that causal power does not take into account the

variation in judgments produced by changing the base rate with which causal relations exist

(see the General Discussion for details).

In addition to making quantitative predictions about the ratings provided by our partici-

pants, the Bayesian approach makes four qualitative predictions that collectively discrimi-

nate it from other accounts. The first qualitative prediction is that initial ratings (before

objects A or B are placed on the detector) should reflect the prior probability of encounter-

ing a super pencil. As prior probabilities are not used in associative or strength-based

approaches, this prediction is unique to the Bayesian model. Preliminary analysis revealed

no difference between the initial ratings of the A and B pencils overall, t(59) = 1.00, ns.

As a result, these ratings were averaged together. An analysis of variance showed that across

the five groups, these initial ratings significantly differed, F(4, 55) = 63.11, p < .001, partial

g2 = .82. Post hoc analysis revealed that each group’s ratings was significantly different

from the adjacent group (Group 1 ⁄ 6 was significantly lower than Group 1 ⁄ 3, Group 1 ⁄ 3 was

significantly lower than Group 1 ⁄ 2, etc.), all p values < .05 with Tukey LSD correction.

These results suggest that participants recognized that the base rate of super pencils differed

among the five conditions—as the base rate increased, so did participants’ initial ratings.

The second prediction of the Bayesian account is that after the AB event, ratings of

objects A and B should increase above their baseline levels, but this increase should be

smaller as the base rate of super pencils increases. Again, this prediction is unique to the

Bayesian model because the other accounts do not use base-rate information. The ratings

between the A and B pencils at this point in the trial did not significantly differ,

t(59) = 0.91, ns, so these ratings were averaged together, and compared with the average

initial ratings using a 2 (Initial vs. After AB event) · 5 (Condition) mixed analysis of vari-

ance. This analysis revealed a main effect of event; participants’ ratings increased overall

between the initial and AB event, F(1, 55) = 67.87, p < .001, partial g2 = .55. A main effect

of condition was also found; overall, ratings differed among the five conditions, F(4,

55) = 50.99, p < .001, partial g2 = .79. Critical to the prediction, a significant interaction

between condition and rating was also found, F(4, 55) = 17.33, p < .001, partial g2 = .56.

To examine this interaction, we computed difference scores between average ratings of

objects A and B after the AB event and ratings of these objects at the beginning of the trial.

The Bayesian model predicts that these difference scores should be higher as the base rate
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of super pencils decreases. Participants’ difference scores were significantly higher in the

1 ⁄ 6 condition than the 1 ⁄ 3 condition, t(22) = 2.03, p = .05, Cohen’s d = 0.83, and were sig-

nificant higher in the 1 ⁄ 3 than the 1 ⁄ 2 conditions, t(22) = 4.84, p < .001, Cohen’s d = 1.97.

Difference scores did not differ between the 1 ⁄ 2 condition and either the 2 ⁄ 3 or 5 ⁄ 6 condi-

tions, both t(22) values < 1.09, both p values ns. Specifically, the average ratings of the

A and B pencils were not significantly different from the average initial ratings of these

objects in the 1 ⁄ 2, 2 ⁄ 3, and 5 ⁄ 6 conditions. They were significantly different in the 1 ⁄ 6 and

1 ⁄ 3 conditions, t(11) = )10.32 and )5.53, respectively, both p values < .001, both Cohen’s

d values > 1.94.

The third prediction of the Bayesian account is that after object A activates the detector

by itself, ratings for it should be at ceiling. This prediction is not unique to the Bayesian

account—it might be possible for other accounts to make a similar prediction. For exam-

ple, a similar prediction could result from associative learning with a high learning rate,

computation of causal power from the contingencies of A and E, and deductive reasoning

under the assumption that occurrence of E in the presence of A indicates a dependency

between these variables. Nonetheless, if this prediction were inconsistent with the data, it

would provide evidence against the Bayesian account. That said, the prediction that ratings

for A should be at ceiling after activating the detector was borne out in the data. Across all

five conditions, every participant rated object A at ceiling levels at the end of the trial (i.e.,

7 of 7).

The final prediction is that at the end of the trial, ratings of object B should decrease back

to their baseline levels. Ratings did return to baseline levels; no significant differences were

found between the initial ratings of the objects and the ratings of object B at the end of the

trial for all conditions with one exception: In the 1 ⁄ 2 condition, ratings of object B were sig-

nificantly lower at the end of the trial than the initial ratings of the objects, t(11) = )2.57,

p = .026, Cohen’s d = 1.05, all other t(11) values < )1.56, all p values ns.

The present data are both quantitatively and qualitatively consistent with the predictions

produced by the hypothesis that human causal reasoning can be explained as a kind of

Bayesian inference, guided by appropriate domain knowledge. They are also inconsistent

with standard associative and rational strength estimation models. First, they illustrate a

rapidity of causal learning that is strikingly different from that seen in other backward

blocking studies (e.g., Kruschke & Blair, 2000; Larkin et al., 1998; Shanks, 1985). Rational

strength estimation models are insensitive to sample size, and while associative models

could fit the resulting data by changing the learning rate, they provide no explanation for

why the learning rate should be different between these two settings, while the Bayesian

approach naturally explains this difference in terms of appropriate prior knowledge. Second,

our results show that people’s judgments are sensitive to base rates, while both associative

and rational strength estimation models assume that only covariational evidence is used in

evaluating causal relations.

We provide a more detailed comparison to the predictions of alternative accounts in the

General Discussion, but one alternative is sufficiently compelling that we will consider it

here. This is the possibility that our participants might not be using base-rate information

to establish a prior probability and then integrating it with later evidence in a Bayesian
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way. Instead, they might simply use base-rate information as a heuristic after they have

determined that there is not enough evidence to make a deductively valid inference (a strat-

egy consistent with previous work emphasizing the deductive component of causal reason-

ing, e.g., Johnson-Laird, 1994; Goldvarg & Johnson-Laird, 2001). We refer to this

heuristic style of causal reasoning as ‘‘deduction, with a default to base rate,’’ or DBR for

short.

More precisely, the DBR heuristic would treat the backward blocking sequence as fol-

lows: Two objects are brought out and together they activate the machine. Since participants

were trained that individual objects labeled ‘‘super pencils’’ activate the detector, there are

one of three possible manners of resolving this event: Either object A is the only super

pencil, object B is the only super pencil, or they are both super pencils. Object A is then

demonstrated to unambiguously activate the machine, so it is definitely a super pencil.

Deductive reasoning now indicates that there is no relevant evidence for object B. In this

case, participants might explicitly revert to the base rate to make a probability judgment

about object B as a simple fallback heuristic rather than as the consequence of rational

Bayesian updating. If super pencils are common, they judge that it is a super pencil; and if

super pencils are rare, they judge that it is not. Although we do not know of experimental

support for this account, this approach seems consistent with modifications of deductive

inference accounts of blocking phenomena suggested by Lovibond and colleagues (e.g.,

Lovibond, Been, Mitchell, Bouton, & Frohardt, 2003; Mitchell, Killedar, & Lovibond,

2005; see also McCormack et al., 2009).

In Experiments 2 and 3, we contrasted the predictions of this account of causal reasoning

with the Bayesian approach by presenting learners with only ambiguous data. Adults and 4-

year-olds, respectively, were trained that super pencils or blickets were infrequent in the

same manner as in the 1 ⁄ 6 condition. They were then shown evidence in which no single

object was ever placed on the detector alone. DBR reasoning would not lead to correct judg-

ments in this case, because no unambiguous data are presented to support a deductive infer-

ence. These experiments also provide us with a further opportunity to explore rapid causal

learning, and to show how ambiguity in covariational evidence combines with prior knowl-

edge to determine how people evaluate a novel causal relation.

5. Experiment 2: Learning from ambiguous evidence in adults

In Experiment 2, a new set of adult participants were trained that ‘‘super pencils’’ were

rare and then shown three objects (A, B, and C). Objects A and B activated the machine

together. Then objects A and C activated the machine together. Participants were asked to

rate their belief that each object was a ‘‘super pencil’’ at three points during the trial: when

they were first brought out, after objects A and B activated the detector together, and after

objects A and C activated the detector together. This design ensured that participants

received only ambiguous evidence concerning the properties of each of the three objects,

and it follows in a tradition of similar procedures that have been conducted in the associa-

tive learning literature (e.g., Cole, Barnet, & Miller, 1995).
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With three objects that can potentially activate the detector, the hypothesis space defined

by the principles underlying our Bayesian model contains eight causal structures, shown in

Fig. 3 The prior and posterior probability distributions over these hypotheses after the AB

and AC events are shown in Table 3. The explanation for these distributions is similar to

that given for backward blocking in the Appendix. The AB event rules out Graph 0 and

Graph 3, and the AC event rules out Graph 2, but many candidate causal structures are con-

sistent with the data: A alone is a super pencil (Graph 1), A and B are super pencils (Graph

4), A and C are super pencils (Graph 5), B and C are super pencils (Graph 6), or all three

objects are super pencils (Graph 7). The actual posterior probabilities of these structures

depend upon the prior. If super pencils are rare (i.e., q is low), then structures with fewer

causal links will have higher initial prior probabilities, and ultimately higher posterior prob-

abilities.

The posterior probabilities shown in Table 3 express a set of qualitative predictions.

When asked to judge the probability that object A is a super pencil, participants should con-

sider the implications of all candidate causal structures consistent with the data, weighted

by their relative probabilities, in accord with Eq. 2. The only inconsistent models (with a

posterior probability of zero) are the ones in which there are no super pencils, or where

object B or C is the only super pencils (Graphs 0, 2, and 3) and so those models should be

eliminated.

Looking across the remaining models, the A fi E edge occurs in all but one consistent

model (i.e., Graph 6). The B fi E and C fi E edges are present in fewer consistent models,

but they do occur, so they also accrue some posterior probability value. Thus, at the end of

the trial, object A should be judged most likely to be a super pencil, but not at ceiling values,

since a model like Graph 6 has non-zero posterior probability. The probability that objects

B and C are super pencils should be higher than the base rate but lower than the probability
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Fig. 3. Causal graphical models indicating the possible causal relations for events involving three objects and

one detector. A, B, and C indicate the presence of objects A, B, and C on the detector, and E indicates the activa-

tion of the detector.
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that A is a super pencil. This is because B and C are super pencils in some of the possible

models.

A critical difference between the present experiment and Experiment 1 is that in Experi-

ment 1, all models in which object A was not a super pencil had a posterior probability of

zero, and hence the Bayesian model predicted ceiling performance. Here, that is not the

case, and the model specifically predicts below-ceiling performance. Similarly, in Experi-

ment 1 the model predicts that ratings for B at the end of the trial will fall back to the base

rate. In this experiment, ratings for B and C at the end of the trial should be higher than the

base rate. Critically, these predictions hold most strongly for a low base rate (i.e., q is low).

When q is high, we would still expect change in adults’ probability judgments in the same

pattern, but not to the same extent (because their baseline ratings would be higher). We thus

established a context in which super pencils are rare in order to maximize the strength of the

effect.

5.1. Method

5.1.1. Participants
Twenty-one college students were recruited from a suburban-area university’s psychol-

ogy subject pool, with the same demographics as in Experiment 1. One participant was

excluded for failure to understand the experimental instructions (see below), leaving a sam-

ple of twenty. Participants received course credit for their participation.

5.1.2. Materials
The same ‘‘super pencil’’ display and set of golf pencils as in Experiment 1 were used.

Table 3

Posterior probabilities for Bayesian model with ambiguous evidence (Experiments 2 and 3)

Prior Probability After AB Event After AC Event

Causal structures

Graph 0 (1 ) q)3 0 0

Graph 1 q(1 ) q)2 (1 ) q)2 ⁄ (2 ) q) (1 ) q)2 ⁄ (1 + q ) q2)

Graph 2 q(1 ) q)2 (1 ) q)2 ⁄ (2 ) q) 0

Graph 3 q(1 ) q)2 0 0

Graph 4 q2(1 ) q) q(1 ) q) ⁄ (2 ) q) q(1 ) q) ⁄ (1 + q ) q2)

Graph 5 q2(1 ) q) q(1 ) q) ⁄ (2 ) q) q(1 ) q) ⁄ (1 + q ) q2)

Graph 6 q2(1 ) q) q(1 ) q) ⁄ (2 ) q) q(1 ) q) ⁄ (1 + q ) q2)

Graph 7 q3 q2 ⁄ (2 ) q) q2 ⁄ (1 + q ) q2)

Probability of being a blicket ⁄ containing super lead

Object A q 1 ⁄ (2 ) q) 1 ⁄ (1 + q ) q2)

Object B q 1 ⁄ (2 ) q) q(2 ) q) ⁄ (1 + q ) q2)

Object C q q q(2 ) q) ⁄ (1 + q ) q2)

Note. The probability of an object being a blicket ⁄ containing super lead is computed by summing the proba-

bility of all causal structures in which a causal relationship exists between placing that object on the detector and

the detector activating. The AB event corresponds to e+|a+,b+,c), whereas the AC event is e+|a+,b),c+.
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5.1.3. Procedure
All participants were introduced to the super pencil detector in the same manner as

Experiment 1. All participants were given the same training as participants in the 1 ⁄ 6 condi-

tion of Experiment 1. Thus, all participants observed that only two of twelve pencils, chosen

at random, activated the detector.

In the test phase of this experiment, participants chose three pencils out of the box. The

experimenter labeled the pencils ‘‘A,’’ ‘‘B,’’ and ‘‘C,’’ in arbitrary order, to keep track of

individual objects through the remainder of the study. Participants were first asked to rate

how likely they thought each of the three objects was to be a super pencil. Two objects

(e.g., A and B) were placed on the detector, which activated (the AB event). Participants

were again asked to rate how likely each object was to be a super pencil. One of the pen-

cils that had just activated the machine (e.g., A) and the third pencil (e.g., C) were placed

on the detector together, which again activated (the AC event). Participants were again

asked to rate how likely each object was to be a super pencil. The ratings were always on

a scale of 0–10, with 0 indicating that the object is definitely not a super pencil, 10 indi-

cating that it definitely is, and 5 an even bet. The spatial configuration and arbitrary labels

of the three objects were counterbalanced across participants. For convenience, in this

article we will use the canonical labeling of objects given above, even though different

participants observed different objects in each role. (For instance, some participants saw

the ‘‘B’’ pencil or the ‘‘C’’ pencil placed on the detector twice, in a counterbalanced

fashion.)

Finally, participants were given a debriefing form in which they were asked to describe

how they made their judgments. One participant stated that her judgments were made at ran-

dom, based on the apparent sharpness of each pencil, and her data were excluded from the

analysis. All other participants referred to some form of intuitive statistical reasoning,

though they were unable to provide much detail.

5.2. Results and discussion

Preliminary analysis revealed no effect of spatial location on ratings at any point. There

was also no difference between ratings of the three objects at baseline, so these were aver-

aged. Preliminary analysis also revealed no difference between the ratings of objects A and

B after the AB trial or between objects B and C at the end of the procedure, so these data

were averaged. Fig. 4 shows participants’ ratings of the three objects at the various stages

across the AB–AC sequence, and the predictions of the Bayesian model, calculated in the

same manner as in Experiment 1.

As in Experiment 1, model predictions correspond to the posterior probabilities that cau-

sal links exist between each object (A, B, or C) and the detector’s activation (E):

p(A fi E|d), p(B fi E|d), and p(C fi E|d), respectively, computed via Eq. 4 and using the

hypothesis space of causal structures shown in Fig. 3. We again compared the Bayesian

model’s predictions with participants’ mean ratings both quantitatively, using a linear corre-

lation measure, and qualitatively, by checking whether participants’ ratings show significant

evidence for the effects predicted above.
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Linear correlation between the model’s predictions and people’s mean ratings of the

probabilities of causal efficacies was computed for nine different judgments: each of three

objects at three different points during the testing phase of the experiment (i.e., each of the

data points shown in Fig. 4). The linear correlation between model predictions and human

ratings over these nine judgments was r = .98. Again, this high correlation was achieved

without setting any free numerical parameters in the model, because the prior probability

q that an object is a super pencil could be set equal to the base rate of super pencils that par-

ticipants observed during the training phase of the experiment. For comparison, the correla-

tion between people’s judgments and the causal power of A and B, computed using Eq. 2, is

r = .768 (see the General Discussion for details).

The average rating of the three objects as super pencils before any of them were pre-

sented on the detector was 2.48 on a scale of 0–10. This was significantly less than the aver-

age rating of objects A and B after they were placed on the detector together, in the AB trial

(4.60), t(19) = )5.36, p < .001, Cohen’s d = 1.34.6 After the AC trial, in which objects A

and C are placed on the detector, the average rating of object A was 6.70. This rating was

significantly below ceiling level (10), one-sample t(19) = )6.13, p < .001, and was greater

than the average rating of objects B and C (3.43), which each had been placed on and acti-

vated the detector once, t(19) = 4.83, p < .001, Cohen’s d = 1.53. This rating was signifi-

cantly lower than ratings for objects A and B after the AB event, 3.43 versus 4.60,

t(19) = 2.67, p < .05, Cohen’s d = 0.70. These differences are all predicted by the Bayesian

model (see Table 3).

We showed that when adult learners were given only ambiguous data, they could inte-

grate probabilistic evidence and prior knowledge in an approximately Bayesian fashion to

infer unobservable causal relations with appropriate degrees of confidence.

The four levels of response, all greater than floor value and lower than ceiling value, are

predicted by the Bayesian model, and separate it from alternative accounts of causal infer-

ence. Further, these findings cast doubt on simpler heuristic approaches, such as the DBR

heuristic, in which causal reasoning is based on deductive logic and prior probabilities are

used only as a last resort.
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Fig. 4. Predictions of the Bayesian model for each condition (left) and mean ratings of adult participants in each

condition (right) in Experiment 2.
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6. Experiment 3: Learning from ambiguous evidence in children

Although previous research (Sobel et al., 2004) found that 4-year-olds are sensitive to a

base-rate manipulation using the backward blocking paradigm from Experiment 1, it is unclear

whether children have developed a Bayesian mechanism for causal inference. Children might

adoptsomeotherapproachtocausal learning,suchastheDBRheuristicdescribedinExperiment

1.Experiment3 tested4-year-oldsonaversionof theAB–ACparadigmfromExperiment2.

A complication comes from the fact that we cannot expect children to make stable fine-

grained numerical judgments of subjective probability as adults did. Our response measure

was the same yes ⁄ no question (Is it a blicket?) used in previous developmental studies. We

measured whether children’s judgments were qualitatively similar to those of adults.

We assumed that the number of times children said that an object was a blicket reflected

their subjective probability assessment of whether it was a blicket. This also meant that we

could not assess the child’s judgments at each step of the trial. To deal with this problem,

after the AB–AC sequence, we gave children another trial, in which they saw two new

objects (X and Y) activate the detector together and were asked to categorize each of them.

This trial was similar to making a rating about just the intermediate AB event in Experiment

2 (because children could only use the evidence of the base rate and the effects of X and Y

together). As in Experiment 2, we kept the base rate of objects having causal efficacy low.

6.1. Method

6.1.1. Participants
The final sample was composed of sixteen 4-year-olds (6 girls, M = 54.06 months,

range = 49–58 months), recruited from a suburban-area university preschool and from a list

of hospital births provided by an urban area university. Two additional children were tested,

but they were excluded for failing control questions (see below).

6.1.2. Materials
The ‘‘blicket detector’’ used by Sobel et al. (2004) was used here. The detector was

5¢¢ · 7¢¢ · 3¢¢, made of wood (painted gray) with a red Lucite top. It ‘‘activated’’ as soon as

particular objects (controlled by the experimenter) made contact with it and continued to

light up and play music as long as an object made contact with it. This provided a strong

impression that something about the object itself caused the effect.

Eighteen blue wooden cylindrical blocks were used. These blocks were held in a

12¢¢ · 12¢¢ · 4¢¢ white cardboard box. Two smaller 6¢¢ · 12¢¢ · 2¢¢ white cardboard boxes

were also used. One had the word ‘‘Blickets’’ printed on it. The other had the words ‘‘Not

blickets’’ printed on it. Two white metal knobs (approximately 1½¢¢ in diameter) and two

small metal tee-joints (approximately 1½¢¢ in length) were also used.

6.1.3. Procedure
Children were tested by an experimenter with whom they were familiar. Children were

first given a pretest. The two metal knobs and two tee-joints were placed in front of the
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child. Children were told that one of the metal knobs was a ‘‘dax’’ and were asked to give

the experimenter the other dax. After they responded, children were told that one of the

metallic tee-joints was a ‘‘wug’’ and were asked to give the experimenter the other wug.

The pretest ensured that children would extend novel names onto objects and would interact

with the experimenter. Children were then shown the blicket detector. They were told that it

was a ‘‘blicket machine’’ and that ‘‘blickets made the machine go.’’ The box of blocks was

brought out and children were told that blickets were infrequent: ‘‘I have this whole box of

toys and I want to know which ones are blickets. It’s a good thing we have this machine

because only a few of these are blickets. Most of these are not. It’s very important to know

which are which.’’ Two blocks were then taken out of the box and the experimenter said,

‘‘Let’s try these two.’’ The blocks were placed on the machine together and the machine

activated. The experimenter said, ‘‘Look, together they make it go. Now let’s try them one

at a time.’’ One of the two blocks was then placed on the machine and the machine acti-

vated. The experimenter said, ‘‘Wow. Look, this one makes the machine go by itself. It’s a

blicket. I have this box and it says ‘blickets’ on it. Let’s put the blicket in the blicket box.’’

The experimenter put the block that just activated the machine into the white box labeled

‘‘blickets.’’ The experimenter then said, ‘‘Now let’s try this other one.’’ The other object

was put on the machine and it did not respond. The experimenter said, ‘‘Wow. Look, it did

not make the machine go by itself. It is not a blicket. I have another box that says ‘Not blic-

kets’ on it. Let’s put this one in the ‘Not blicket’ box.’’

Next, the experimenter said, ‘‘Remember, when we did them together—together they

made the machine go.’’ This was demonstrated with the two blocks. ‘‘But this is because

the blicket made it go and the not blicket didn’t make it go.’’ Each block was demonstrated

individually with its proper effect on the machine. This provided children with information

about the activation law: To demonstrate that even if only one block on the machine was a

‘‘blicket,’’ the machine would activate.

Five pairs of blocks were taken out of the box and each was demonstrated on the

machine. Only one of the ten blocks made the machine go (randomly determined). After

each pair was demonstrated, children were asked which box each object went into. After the

children made their response, the experimenter confirmed it by asking, ‘‘Just to make sure,

is this one a blicket ⁄ not a blicket?’’ for each block. After 10 blocks were demonstrated, chil-

dren were asked to look at the ‘‘blicket’’ and ‘‘not blicket’’ boxes. Children were told that,

‘‘Most of the blocks we saw were not blickets. A few of them were, but almost all of the

ones we tried were not blickets.’’ This was done to remind children about the base rate of an

object being a blicket. This pretest and familiarization were identical to the procedure used

by Sobel et al. (2004) in their ‘‘rare’’ condition.

Children were then given the test trials. In the first trial, the AB–AC trial, three blocks

were taken out of the box (A, B, and C). Two of them (A and B) were placed on the detector

together, which activated. Then, one of those two blocks was placed on the detector with the

block that had not been placed on the detector (A and C). The detector again activated. Chil-

dren were then asked to categorize the block that was placed on the detector twice: ‘‘Which

box does this one go in?’’ as well as the other two blocks: ‘‘What about these? Which box

do these go in?’’ If children responded that they did not know, they were encouraged to take
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a guess. Children were never allowed to place individual blocks on the detector. The spatial

location of the blocks was counterbalanced.

Children were then given a Baseline trial. Two more blocks were brought out (X and Y).

They were placed on the machine together, which activated. Children were asked to place

these two blocks in the appropriate box.

Finally, a Control trial was done to ensure that children were on task. Two more blocks

were brought out. Each was placed on the machine, one at a time. One made it go and one

did not (randomly determined). Children were then asked to put the blocks into the appropri-

ate box. If the children did not correctly categorize these blocks, they were not included in

the analysis. Two children were excluded for this reason.

6.2. Results and discussion

We will refer to the block placed on the machine twice as block A, the block placed on

the machine with block A initially as block B, and the block placed on the machine with

block A afterward as block C. Table 4 shows the probability that children placed each block

in the blicket box. Children differed in their overall treatment of blocks A, B, and C at the

end of the AB–AC trial, Cochran’s Q(2, N = 16) = 6.22, p < .05. Subsequent analysis

showed that children did not differ in their treatment of blocks B and C, McNemar v2(1,

N = 16) = 0.25, ns, but they did differ in their treatment of block A and block C at the end

of the trial, McNemar v2(1, N = 16) = 4.17, p < .05 and differed in their treatment of block

A versus the combination of blocks B and C overall, Wilcoxon signed ranked test,

z = )2.13, p < .05, r = .38. Children did not differ in their treatment of block A and B at

the end of the trial, McNemar v2(1, N = 16) = 1.13, ns.
Children categorized both blocks X and Y as blickets 87% of the time and differed in

their overall treatment of blocks B, C, X, and Y (i.e., all the blocks only shown to be effec-

tive once, always with another block), Cochran’s Q(3, N = 16) = 10.13, p < .05. Specifi-

cally, they were more likely to categorize blocks X and Y as blickets than block C, both

McNemar v2(1, N = 16) values = 4.17, p < .05, and overall, they treated blocks X and Y

together differently from blocks B and C together, Wilcoxon signed ranked test, z = )2.43,

p < .05, r = .43. However, they did not treat block X or Y significantly different from block

B, both McNemar v2(1, N = 16) values = 1.50, ns. Overall, however, these results qualita-

tively match the predictions of the model, and overall they suggest that children integrated

the prior probability information into their judgments.

Table 4

Probability that children categorized each block as a blicket on the AB–AC and XY trials in Experiment 3

Object on Twice (A) Once, First (B) Once, Second (C)

AB–AC condition .87 (0.34) .63 (0.50) .50 (0.52)

Object on Left (X) Object on Right (Y)

XY condition .87 (0.34) .87 (0.34)

Note. Standard deviations are given in parentheses.
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These inferences are not easily reconcilable with the other alternatives we have consid-

ered. The DBR heuristic cannot explain why children were more likely to categorize object

A as a blicket than objects B or C, and were less likely to categorize B and C as blickets at

the end of the AB–AC trial than objects X and Y in the association trial. Children saw no

unambiguous data about any of these objects that would support deductive reasoning about

their efficacies and the base rate is approximately equal for all five objects. Similarly, while

most associative learning models can account for the preference of object A over objects B

and C, they fail to account for the fact that objects B and C are less likely to be categorized

as blickets in the AB–AC trial than are objects X and Y in the Baseline trial. The strengths

of association between these four objects and the detector’s activation should be equal,

because each object was observed to activate the detector once in the presence of another

object.7 By contrast, our Bayesian model correctly predicts all of the effects that we

observed.

We do not conclude from these data that children necessarily have the same mechanism

for causal inference as adults or are explicitly engaging in computations involving Bayes’

rule. Rather, these data suggest that young children might have the ability to take into

account information about the prior probability of particular kinds of causal relations when

making judgments from ambiguous evidence.

7. Manipulating the functional form of causal relations

Experiments 1–3 suggest that adults and children are sensitive to the prior probability of

existing causal relations, producing judgments that are quantitatively and qualitatively con-

sistent with the predictions of our Bayesian model. But there are other ways that prior

knowledge might influence new causal judgments. Our procedures require the learner to use

another piece of more abstract knowledge beyond recognizing the base rate of objects with

causal efficacy. We assume a deterministic activation law: A detector will only activate

when an object with causal efficacy is placed on it, and it will always do so. In the next two

experiments, we manipulate the participant’s prior knowledge about the deterministic or

probabilistic nature of the machine.

Assuming determinism allows adults and children to make strong inferences about

causal relations from small amounts of data. Consider the predictions of our Bayesian

model in a slightly different setting. Gopnik et al. (2001) presented preschoolers with

similar blicket detector tasks. On their one-cause trials, children observed one object (A)

that activated the detector by itself once. Then, children saw another object (B), placed

on the detector, which did not activate. After B was removed, both A and B were placed

on the detector together twice, and the detector activated both times. Having seen such a

pattern of activation, 3- and 4-year-olds were confident that A was a blicket, whereas B

was not.

We can apply our Bayesian model to these trials in exactly the same way as in Experi-

ment 1. The hypothesis space is identical and the assumptions outlined above provide a prior

probability and a likelihood for each hypothesis. Observing the sequence of events in the
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one-cause trial produces the predictions that object A is definitely a blicket, whereas object

B is definitely not, even with only four data points.

The key to drawing strong conclusions about the status of objects A and B is the deter-

ministic nature of the activation law. Because the detector activates when object A is placed

on it, Graph 0 and Graph 2 have a likelihood of 0. Likewise, because the detector does not

activate when B is placed on it, Graph 3 has a likelihood of 0. The only causal structure with

a non-zero likelihood is Graph 1, and consequently the posterior probability of that structure

is 1, provided q is between 0 and 1. Applying Eq. 4, we find that the probability that A is a

blicket is 1, whereas the probability that B is a blicket is 0.

The deterministic activation law assumes that the machine will always activate in the

presence of a blicket, and never activates in the absence of a blicket. But if the detec-

tor’s mechanism is probabilistic instead of deterministic, we should make different

assumptions. One way we can instantiate this intuition by stating that the detector acti-

vates with probability e when an object that is not a blicket is placed on it and activates

with probability 1 ) e when a blicket is placed on it, where e is a relatively small num-

ber. Under this theory, each object has an independent opportunity to activate the detec-

tor, meaning that if both objects are on the detector, there is a slightly higher

probability that the detector activates (see the Appendix for details). This way of com-

bining the causal strengths of the objects is known as a ‘‘noisy-OR’’ (Pearl, 1988), and

it is that assumed in the Power PC model (Cheng, 1997) as well as other models based

on Bayesian structure learning (Griffiths & Tenenbaum, 2005; Tenenbaum & Griffiths,

2001).

Suppose we assumed the faulty detector theory and then saw the one-cause or backward

blocking evidence. The probabilities of the evidence given that theory are shown in Table 5.

Because the detector is more likely to activate in the presence of a blicket, object A is likely

to be a blicket. However, the evidence against object B is no longer categorical, and some

chance remains that object B is a blicket, modulated by the prior probability q, and the prob-

abilistic parameter, e.
Allowing for a probabilistic mechanism in the detector raises a critical question: How

does a learner know whether to adopt the deterministic or probabilistic assumption? This

question can also be formulated as one of Bayesian inference, although the hypotheses

Table 5

Probability of different events for each causal structure with probabilistic activation law

Causal Structures

Event

e+|a+,b+ e+|a+,b) e)|a),b+

Graph 0 2e ) e2 e 1 ) e
Graph 1 1 – e + e2 1 ) e 1 ) e
Graph 2 1 ) e + e2 e e
Graph 3 1 ) e2 1 ) e e

Note. The notation e|a,b indicates the state of the effect (activation of the detector) given the state of the

causes (objects A and B being on the detector), with + indicating presence and ) indicating absence.
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involved are more abstract than specific causal structures. Now the relevant hypotheses are

instances of causal theories about the nature of the activation law or causal mechanism that

relates objects to the detector, which generate the specific causal models and priors that the

learner considers to interpret the observed events (Griffiths & Tenenbaum, 2007, 2009;

Tenenbaum, Griffiths, & Kemp, 2006; Tenenbaum, Griffiths, & Niyogi, 2007). For exam-

ple, the perfect detector theory and the faulty detector theory both constitute hypotheses

about the way that blicket detectors work, and both make predictions about the kind of

events that one might observe involving blicket detectors. Bayes’ rule can be used to select

the hypothesis that provides the best account of the observed data. This computation is a

kind of hierarchical Bayesian inference, and it is discussed in greater detail in the

Appendix.

If we assume that only two theories are under consideration, a deterministic theory and a

probabilistic theory, then the relevant Bayesian computations take on a particularly simple

and intuitive form. The deterministic theory predicts that a block will always activate the

machine, or else will never activate it. If the learner observes a single object activate the

detector, and then fail to activate the detector, this theory is ruled out. So when people see

this pattern of evidence, they should favor a faulty detector theory and make subsequent

causal inferences based on this approach.

The next two experiments make use of this Bayesian framework to explore how adults

(Experiment 4) and children (Experiment 5) use their observations to infer whether a causal

mechanism is deterministic or probabilistic and then use this knowledge to make inferences

about the causal efficacy of objects. We first present participants with data suggesting that a

device operates via a deterministic mechanism (the perfect detector theory) or a probabilis-

tic mechanism (the faulty detector theory). We then examine the inferences that participants

make about new causal relations.

These experiments provide a further opportunity to differentiate the Bayesian account of

causal structure learning from other accounts. The key prediction is that people will use

their prior knowledge about mechanisms to draw different causal conclusions from exactly

the same contingencies. Associative, causal strength, and deductive accounts (including the

DBR heuristic) make inferences based purely on covariation between causes and effects,

and thus they cannot explain such a difference.

8. Experiment 4: Manipulating functional form in adults

8.1. Method

8.1.1. Participants
The participants were 24 undergraduates recruited from a suburban-area university com-

munity.

8.1.2. Materials
A super-lead detector similar to the one used in Experiments 1 and 2 was used here.
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8.1.3. Procedure
Participants were introduced to the super-lead detector and pencils in the same manner as

in Experiments 1 and 2. They were then given a familiarization phase, in which they picked

out two sets of three pencils to be scanned individually. Five of the six pencils (randomly

determined) would activate the detector.

Participants were randomly assigned to one of two conditions. In the deterministic condi-

tion, pencils either always or never activated the detector, and if a pencil activated the detec-

tor, it was labeled as containing super lead. Each pencil was scanned three times. Five of the

six pencils activated the detector all three times and were labeled as containing super lead;

the other pencil failed to activate the detector all three times and was labeled as not contain-

ing super lead. In the probabilistic condition, pencils activated the detector on 100%, 66%,

33%, or 0% of trials. If a pencil ever activated the detector, the pencil was labeled as con-

taining super lead. One pencil activated the detector 100% of the time (three of three times),

two pencils activated the detector 66% of the time (two of three times), and two other pen-

cils activated the detector 33% of the time (one of three times). These pencils were all

labeled as containing super lead. The remaining sixth pencil failed to activate the detector

all three times and was labeled as not containing super lead. In the probabilistic condition,

when a pencil activated the detector probabilistically, it always failed to activate it first, and

then succeeded to do so. We did this to emphasize that objects that failed to activate the

machine might still have efficacy. After a pencil was labeled, it was placed to the side.

Pencils were never re-used with the same participant.

The test phase began immediately after the familiarization trials and was the same across

the deterministic and probabilistic conditions. Participants were given three types of test tri-

als (two of each type, six trials total). Each trial involved three pencils (A, B, and C), which

were taken out of the cup by the participant and placed on the table in front of the detector.

The spatial location of the three pencils was randomly determined, and the order of the type

of trial was counterbalanced across participants.

In the one-cause trials, pencil A was placed on the detector, which activated. It was

removed, and pencil B was placed on the detector, which did not activate. It was removed,

and pencils A and B were placed on the detector together, which activated. This was demon-

strated twice. Pencil C was then placed on the detector by itself. In one trial, it activated the

detector; in the other, it did not.

In the control-one trials, pencil A was placed on the detector three times by itself activat-

ing it all three times. Pencil B was placed on the detector once, which failed to activate.

Pencil C was placed on the detector twice: In one trial, it activated the machine, and on the

other it failed to activate the machine.

In the control-three trials, pencil A was placed on the detector three times by itself, acti-

vating it all three times. Pencil B was placed on the detector three times, never activating

the detector. Pencil C was placed on the detector once: In one trial, it activated the machine,

and on the other it failed to activate the machine.

After each trial, participants were asked to rate the probability that each pencil contained

super lead, using an 11-point scale from 0 to 10. Participants received the six trials in one of

six quasi-random orders. Following the Bayesian framework outlined above, there were two

T. L. Griffiths et al. ⁄ Cognitive Science 35 (2011) 1435



empirical questions. First, would people respond to pencil B in the one-cause trials differ-

ently across the deterministic and probabilistic conditions? In the deterministic condition,

this pencil should clearly not contain super lead; in the probabilistic condition, it might con-

tain super lead.

Second, we were interested in whether there would be an interaction between ratings of

pencil B between the control-one and control-three trials across the training conditions. For

a learner with the perfect detector theory, the evidence that pencil B contains super lead is

the same across the control-one and control-three trials. For a learner with the faulty detec-

tor theory, pencil B is more likely to contain super lead in the control-one trial than in the

control-three trial. In the control-one trial, it is possible that pencil B has causal efficacy and

just failed to activate the detector on the one opportunity it had to do so, whereas in the con-

trol-three trial the detector would have to fail three times in a row. These predictions are

shown in Fig. 5: The probability that pencil B contains super lead is higher in the control-

one trial than the control-three trial.

A third pencil, C, was always present (and either activated or failed to activate the detec-

tor) on every trial. This ensured that participants were not simply responding that only one

pencil contained super lead on each trial. In both conditions, C should be treated as a super

pencil if it activated the detector. In the deterministic condition, if C fails to activate the

detector, it should not be a super pencil. In the probabilistic condition, it should be like the

B object in the control-one trials.
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Fig. 5. Adults’ ratings of the likelihood that objects A and B are super pencils across the probabilistic and deter-

ministic conditions in Experiment 4 and the corresponding predictions of the Bayesian model.
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8.2. Results and discussion

Preliminary analyses revealed no differences between ratings for pencils A and B

between the two repetitions of the one-cause, control-one, or control-three trials. As a

result, the remainder of this analysis collapses the two repetitions together. The mean

ratings of the probability that pencils A and B contained super lead for each trial and both

conditions are shown in Fig. 5. A 3 (Trial: one-cause, control-one, control-three) · 2

(Object: A vs. B) · 2 (Condition: deterministic vs. probabilistic) mixed analysis of vari-

ance was performed. Trial and Object were within-subject factors; Condition was a

between-subject factor. A main effect of Trial was found, F(2, 44) = 22.02, p < .001, par-

tial g2 = .50, as was a main effect of Object, F(1, 22) = 1194.74, p < .001, partial g2 = .98.

A main effect of Condition was also found, F(1, 22) = 11.58, p < .01, partial g2 = .35. Sev-

eral two-way interactions were significant, but these were subsumed by a significant three-

way interaction among Trial, Object, and Condition, F(2, 44) = 9.09, p < .001, partial

g2 = .29.

To minimize the risk of Type I error, instead of performing all simple effect analyses, we

focused our subsequent analyses on the two empirical questions mentioned above. First, on

the one-cause trials, did people respond differently about pencil B between the deterministic

and probabilistic conditions? A t test showed that there was a statistically significant differ-

ence in responses between the two conditions, with a mean rating of 0.58 in the determinis-
tic condition and 3.75 in the probabilistic condition, t(22) = 5.19, p < .001, Cohen’s

d = 2.12. The higher level of ratings in the probabilistic condition is predicted by the Bayes-

ian model.

Second, was there an interaction between the way participants categorized object B in the

control-one and control-three trials across the two conditions? A 2 (Condition: deterministic
vs. probabilistic) · 2 (Trial: control-one vs. control-three) mixed analysis of variance was

performed on responses to the test question for pencil B. Trial was a within-subject factor;

condition was a between-subjects factor. There was a main effect of Trial, F(1, 22) = 36.47,

p < .001, partial g2 = .62, and of Condition, F(1, 22) = 26.46, p < .001, partial g2 = .55, as

well as a statistically significant interaction, F(1, 22) = 13.13, p < .01, partial g2 = .37. Par-

ticipants in the probabilistic condition rated pencil B as more likely to contain super lead in

the control-one trials than the control-three trials, with mean ratings of 4.25 and 0.92,

respectively, whereas participants in the deterministic condition gave mean ratings of 1.00

and 0.17. This effect was also predicted by the Bayesian model.

We can use the procedure outlined in the Appendix, in which Bayesian inference is

applied not just at the level of causal structures but also at the level of causal theories to

make quantitative predictions about the results of this experiment. To do so, we need to fix

values of q and e. We set q = 5 ⁄ 6, because in the familiarization phase, five of the six

objects were super pencils. We treated e as a free parameter but set it to e = 0.1, consistent

with a prior that favors effective detectors, for which e would be small. The resulting predic-

tions are also shown in Fig. 5. These settings of q and e result in an extremely close quanti-

tative fit, producing a linear correlation coefficient of r = .996 with the mean ratings. For

comparison, the correlation between people’s judgments and the causal power of A and B,
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computed using Eq. 2, is r = .956. As the Bayesian model has one free parameter, e,
whereas causal power has no free parameters, we examined the sensitivity of the Bayesian

model to manipulation of this parameter. As shown in Fig. 6, the Bayesian model produces

a higher correlation than causal power provided the probability of the detector activating in

the presence of a cause is high—a reasonable assumption about people’s expectations. More

important, only the probabilistic model predicts the effect of familiarization with the proba-

bilistic or deterministic detector on the rating of B.

The qualitative and quantitative correspondence between responses and the predictions of

the Bayesian model support the claim that people are systematically and selectively apply-

ing prior knowledge about causal mechanisms when they learn about new causal relations.

Learners seemed to be less certain about the status of pencil B when they assumed that the

detector was probabilistic. The experiment also indicates that people can acquire beliefs

about causal mechanisms from only a handful of examples (in our case, the behavior of the

detector with six pencils). These results are at odds with both the associative learning and

rational models of strength estimation, as they demonstrate that people reach different con-

clusions from exactly the same covariational information when they have different prior

knowledge about the nature of causal relations.

9. Experiment 5: Manipulating functional form in children

Our previous work with children suggested that their causal inferences are influenced by

base-rate effects (see also Schulz, Bonawitz, & Griffiths, 2007). But there are no studies

indicating whether children are also influenced by more abstract kinds of prior knowledge

such as information about the deterministic or probabilistic nature of causes. Experiment 5
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Fig. 6. Correlation of the Bayesian model with human responses as a function of the strength of the probabilistic

cause, corresponding to 1 ) e. For a range of values of e consistent with relatively strong causal relationships,

this correlation is greater than the correlation produced by causal power, shown with the dotted line.
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explores this question by replicating the procedure used in Experiment 4, using the blicket

detector paradigm.

9.1. Method

9.1.1. Participants
The participants were 24 four-year-olds (13 girls, M = 54.21 months, range = 49–

62 months) recruited from a local preschool and a list of hospital births. Five additional

participants were recruited, but they were excluded from the study: four because of experi-

mental error and one refused to participate.

9.1.2. Materials
The blicket detector used in Experiment 3 was used in this experiment. Twenty-four

unique wooden blocks were divided into eight sets of three. In each set, no block was the

same color or shape. Two small (approximately 2.5 cm in diameter) white porcelain knobs

and two small metallic tee-joints (approximately 3 cm in height) were also used.

9.1.3. Procedure
Children were administered the same warm-up as in Experiment 3 to ensure that chil-

dren would interact with the experimenter and accept that the experimenter would provide

novel labels for objects. Children were then introduced to the blicket detector and told that

it was a ‘‘blicket machine’’ and that ‘‘blickets make the machine go.’’ The remainder of

the procedure closely followed that of Experiment 4. Half of the children were randomly

assigned to the deterministic condition, and half of the children were assigned to the proba-
bilistic condition, and given analogous familiarization with the detector to that provided to

adults in Experiment 4. After each familiarization trial, children were asked to state

whether each object was a ‘‘blicket.’’ Corrective feedback was given if children answered

incorrectly.

The test phase began immediately after the familiarization trials, and took the same form

as that used in Experiment 4. Rather than providing ratings, each child gave a binary

response for each object on each trial: They were asked whether each object was a blicket.

9.2. Results and discussion

Only one child required corrective feedback on the familiarization trials which suggested

that children understood the basic structure of the procedure. In the trials where object C

activated the detector, children claimed it was a blicket 93% of the time, and no differently

between the deterministic and probabilistic conditions. In the trials where object C failed to

activate the detector, children claimed it was a blicket 7% of the time, and no differently

between the conditions. Preliminary analyses also revealed no differences in the frequency

of ‘‘yes’’ responses to the test question across the two one-cause, control-one, or control-

three trials for either the A or B object, all McNemar v2(1) < 2.29, all ns, so these data were

combined. These data are shown in Table 6.
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A 3 (Trial: one-cause, control-one, control-three) · 2 (Object: A vs. B) · 2 (Condition:

deterministic vs. probabilistic) mixed analysis of variance was performed. Trial and object

were within-subject factors; condition was a between-subject factor. A main effect of Trial

was found, F(2, 44) = 15.41, p < .001, partial g2 = .41, as was a main effect of Object, F(1,

44) = 196.75, p < .001, partial g2 = .90. A main effect of Condition was also found, F(1,

22) = 16.59, p = .001, partial g2 = .43. Several two-way interactions were significant, but

these were subsumed by a significant three-way interaction between Trial, Object, and Con-

dition, F(2, 44) = 9.98, p < .001, partial g2 = .31. This omnibus analysis revealed that

differences in how the objects were categorized among the trials and between the conditions

existed.

As in Experiment 4, our further analysis focused on the two empirical questions men-

tioned above. First, on the one-cause trials, did children respond differently about object B

between the deterministic and probabilistic conditions? Responses to object B did differ

between the two conditions, t(22) = 7.60, p < .001, Cohen’s d = 3.10. Children were more

likely to say object B was a blicket in the probabilistic condition (79% of the time) than in

the deterministic condition (8% of the time). This suggests that the children recognized the

difference between the two environments and reasoned accordingly.

Second, was there an interaction between children’s’ categorization judgments about

object B in the control-one and control-three trials across the two conditions? A 2 (Condi-

tion: deterministic vs. probabilistic) · 2 (Trial: control-one vs. control-three) mixed analysis

of variance was performed on responses to the test question for object B in these trials. Trial

was a within-subjects factor; condition was a between-subjects factor. No main effect or sig-

nificant interactions were found, unlike adults in Experiment 1, who showed a main effect

of trial type as well as an interaction with condition. On average, children say that object B

is a blicket only approximately 15% of the time on these trials across the two conditions.

The failure to find significant differences in the inferences about object B in the control-
one and control-three conditions is inconsistent with our Bayesian model. However, this

could reflect a genuine developmental difference: This task presented the most subtle infer-

ences and the most taxing demands (with six test trials each involving three objects) of any

blicket detector experiment we have run, and it would not be surprising if we have pushed

Table 6

Frequency of children’s ‘‘yes’’ responses to the test question in Experiment 5

Deterministic Condition Probabilistic Condition

One-cause trials

Object A 2.00 (0.00) 1.83 (0.58)

Object B 0.17 (0.39) 1.58 (0.00)

Control-one trials

Object A 1.50 (0.52) 1.92 (0.29)

Object B 0.08 (0.29) 0.42 (0.67)

Control-three trials

Object A 1.75 (0.62) 1.83 (0.39)

Object B 0.42 (0.67) 0.33 (0.49)

Note. Maximum response = 2; standard deviations are given in parentheses.
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4-year-olds beyond their abilities to approximate ideal Bayesian causal learners. However,

the differences in results could also point to a disparity between the methods used with

adults and children. Experiment 5 required children to make categorical responses (i.e.,

choosing whether each object is a blicket). By contrast, Experiment 4 allowed adults to use

a more gradual rating scale. This methodological difference was unavoidable given our goal

of obtaining quantitative judgments from adults that could provide a strong test of our mod-

el’s subtle quantitative predictions. The coarser all-or-none responses required of children in

Experiment 5 might have prevented these more subtle differences from emerging. Critically,

though, the all-or-none response measure was sensitive enough to show that children recog-

nized the difference in the one-cause trials between the two conditions—suggesting that

they were able to infer the general nature of the detector mechanism and to use that infer-

ence appropriately to guide some of their inferences about specific causal links.

10. General discussion

Five experiments tested the hypothesis that human causal induction approximates rational

Bayesian computations guided by appropriate forms of abstract prior knowledge. We tested

two general predictions of this account. First, people are able to learn extremely quickly

when they have appropriate prior knowledge, and the strength of the conclusions that they

draw is determined by that knowledge—with high base rates and deterministic causes, they

quickly become confident that causal relations exist—and by the extent to which the events

they observe are ambiguous. Second, the nature of the conclusions that people reach is

determined not just by covariation between cause and effect, but by how this covariation is

interpreted in the light of prior knowledge. People’s knowledge about the base rate that

specific causal relations exist for a class of objects should influence how they interpret evidence

about those objects. The graded effects of prior knowledge should be more pronounced with

ambiguous evidence. Further, the nature of the mechanism underlying a causal rela-

tion—such as whether that mechanism is probabilistic or deterministic—should also influ-

ence causal judgments. These predictions set the Bayesian approach apart from other

approaches to causal induction in which the evaluation of causal relations depends only on

covariation between cause and effect. The results of our experiments suggest that people

can make sophisticated and rational use of probabilistic reasoning in learning about causal

systems.

In the remainder of the article, we consider some of the implications of these results. First,

we discuss whether these findings can be accounted for by other models. We then briefly

outline some of the possible developmental implications of our findings. Finally, we turn to

the limitations of our analysis and point out some possible directions for future work.

10.1. Can other models of causal learning account for these findings?

We will contrast the account offered by our Bayesian approach with several major

competing traditions: models based on associative learning, rational estimators of causal
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strength parameters, and hybrids of deductive reasoning and simpler statistical heuris-

tics.

10.1.1. Associative models
The present data present a challenge to accounts of causal learning based on associative

mechanisms. While associative models might predict some of the trends we found, they do

not predict the spectrum of learners’ judgments across different levels of ambiguity in the

evidence: from all-or-none inferences in the backward blocking paradigm (Experiment 1) to

more graded predictions in the AB–AC paradigm (particularly in Experiment 2). However,

the greatest challenges for these models come from the effects of prior knowledge observed

in our experiments. As the contingencies between the prospective causes and the effect

remained the same in all conditions of our experiments, a model of causal learning that is

purely based on such contingencies cannot reproduce the effects we have observed.

We view this as an ‘‘in principle’’ argument—that associative models, generally con-

strued, fail to capture our results because people’s inferences vary when contingencies do

not. It may be possible to modify these models in ways that make it possible to capture our

results, at the cost of some parsimony. For example, we see ‘‘belief revision’’ models (e.g.,

Catena, Maldonado, & Candido, 1998; Hogarth & Einhorn, 1992) as the most similar to the

Bayesian framework we have proposed here. However, these models still fail to capture

aspects of the present data. For instance, Catena et al. (1998) suggest that the belief in the

efficacy of a cause on a given trial is a function of whatever new evidence is observed on a

given trial and the belief about that efficacy from previous trials, modulated by a learning

parameter. In our experiments, the conclusions that adults and children reach are signifi-

cantly changed by information about the overall probability that causal relations exist and

whether or not those relations are deterministic, which are then applied to novel causes that

have not been previously encountered. These inferences seem more sophisticated than those

captured by existing ‘‘belief revision’’ models, although we could imagine modifications to

these models that would fit the data. We place the burden of proof on advocates of such

models to modify these accounts parsimoniously. Potential avenues to explore are providing

an account of the effects of base rates in terms of shared features between the blocks used in

establishing the base rates and the blocks used in subsequent inferences, and explaining why

learning rate should be affected by information about whether causes are deterministic or

probabilistic. We have not attempted to test these more complex models simply because the

space of possible extensions to existing associative models is vast. We suspect that there are

configurations of factors that would be able to predict the results of our experiments.

Whether such a model is as parsimonious as the Bayesian account we have offered is an

open question.

One final point worth exploring about associative models is that, in general, they were

designed to make judgments from contingency information presented in trial-by-trial experi-

ments, which is different from the inferences we asked of adults and children here. The

assumption that the ‘‘activation law’’ makes is that there is a deterministic relation between

objects containing super lead and activating the detector (or analogously being a blicket and

activating the blicket machine). We do not directly test whether adults and ⁄ or children can
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make inferences about the strength of a causal relation based on differences in contingency

information (as in, e.g., Wasserman et al., 1993). We do, however, suggest that adults’

inferences change as they are exposed to new data—for example, in Experiments 1 and 2,

adults make different ratings about the likelihood of the objects having causal efficacy as

they are exposed to each new data point presented in the test trial. Moreover, Danks, Grif-

fiths, and Tenenbaum (2003) have demonstrated that a similar Bayesian model to the one

we have presented here can account for differences in contingency information.

10.1.2. Power PC model

The power PC model (Cheng, 1997) and its extension to multiple causes (Cheng, 2000;

Glymour & Cheng, 1998; Novick & Cheng, 2004) share a deep commonality with the

Bayesian model we have presented here: One underlying assumption of both models is that

the interaction of multiple causes is essentially disjunctive. This means that an effect will

occur if one or more of its potential causes are active. In fact, the power PC model can be

thought of as a special case of inference over a causal graphical model, in which one

assumes that the causal graphs to be learned have particular structure and parameterizations

(see Glymour, 2001). In the Bayesian model, this assumption is embodied in the activation

law: The blicket detector activates if one or more blickets are placed on top of it. In the

power PC model, this assumption is embodied in the noisy-OR function that determines

the probability of an effect conditioned on the presence or absence of potential causes

(Glymour, 2001; Griffiths & Tenenbaum, 2005; Tenenbaum & Griffiths, 2001). Each

cause is associated with a single strength parameter that determines how likely the effect is

to occur if that cause—and only that cause—is active. The noisy-OR parameterization

specifies how these strengths add up nonlinearly to determine the probability of the effect

when multiple causes are active. When all causal strengths are equal to the maximal value

of 1, the noisy-OR is equivalent to a logical OR function, and instantiates the assumption

behind the activation law. When the strengths are weaker than this maximal value, the

presence of each additional cause increases the probability of the effect in proportion to its

strength.

However, there are several key differences between our model and power PC. One is that

our model attributes to learners a representation of the prior probability that a causal relation

of a given type will hold. These priors may be calibrated based on the base rates of causal

relations in the world, when learners have access to reliable base-rate data, but may also

reflect other sources of background knowledge. When calculating causal power, power PC

relies on a calculation of the probability of the effect given the absence of the candidate

cause, assuming that all of the potential causes are independent. This reflects a measure of

the base rate of the effect occurring, but not in the same manner as the Bayesian model. On

this interpretation, the causal power of any individual object is undefined before it has been

placed on the detector. For all of the test objects in both of the present procedures, once they

have been placed on the detector, their estimated causal powers should always be 1, because

the detector always activates in the presence of the test objects. As such, power PC fails to

predict a difference between the base-rate conditions in Experiment 1, producing a
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correlation of r = .325, or the graded performance observed in Experiments 2 and 3, giving

a correlation of r = .768 with the data from Experiment 2. Power PC gives better results for

the manipulation of mechanisms used in Experiments 4 and 5, giving a correlation of

r = .956 with the data form Experiment 4. However, it achieves this correlation without cap-

turing the effect of familiarization with a probabilistic or deterministic detector on people’s

judgments.

A more charitable application of power PC to our experiments might assume that an

object’s default causal power—before it has been observed on the detector—is estimated to

be the average causal power of the objects observed during training (which would be equiv-

alent to the base rate of objects activating the detector). This improves the performance of

the power PC model in Experiment 1, giving a correlation of r = .521; performance on

Experiments 2–5 is unaffected. Overall, however, these fits are still markedly worse than

our Bayesian account.

A power PC account could be modified to include prior knowledge about causal power

without losing its rational basis by using a maximum a posteriori probability estimate of the

causal strength parameters (or the posterior mean), instead of a maximum-likelihood esti-

mate, or considering the posterior mean, as in Danks et al. (2003). Such a modification

would allow the model to account for some but not all aspects of the data in these experi-

ments. It would generate judgments that are modulated by the base rate of the effect, and

that show some form of discounting, but that still do not fit the particular pattern of our

results. The key difference between this model and our Bayesian account is in allowing

objects to possess causal powers that vary continuously between 0 and 1. In our Bayesian

account, an object is either a blicket (equivalent to possessing a causal power of 1) or is not

a blicket (equivalent to possessing a causal power of 0). This assumption is critical to

explaining how adults and children can draw inferences from such small samples: If inter-

mediate values are allowed, many more observations would be needed to determine the true

causal power of an object.

A recent variation on the Power PC theory instantiates some of the key assumptions that

are embodied in our account of the knowledge guiding people’s inferences about the blicket

detector. Building on the work of Griffiths and Tenenbaum (2005), Lu et al. (2006, 2007,

2008) proposed that Bayesian inference over both causal structures and their strength can be

used to evaluate causal relations. Instead of using a uniform prior over the strength of

causes, making each value of the causal power equally probable, as was done by Griffiths

and Tenenbaum (2005), Lu et al. (2006, 2007, 2008) used a ‘‘necessary and sufficient’’

prior, favoring values of causal power closer to 0 and 1. They also added several additional

terms to their prior, specific to modeling blicket detector tasks, which strongly favor objects

as strong causes for the detector and weak strengths for background causes. These priors

build into their model biases similar to the kinds of prior knowledge used in our model, and

it may be possible to account for some of our results within their framework, since it shares

the key elements of rational statistical inference and priors reflecting knowledge about the

nature of causal relations. However, to account for the various manipulations we describe

here, their priors would have to change accordingly, and it is not clear how natural the

resulting account would be.
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10.1.3. Heuristic accounts
Finally, we consider an alternative heuristic account, in which learners make deductive

inferences given unambiguous information but default to using base rates when no other

information is available (the DBR heuristic). The DBR heuristic can explain children’s

judgments in previous research and adults’ performance in Experiment 1. Here, inferences

about the B object are generated by incorporating base-rate information with the deductive

inference—given that two objects were chosen at random, and one is a super pencil, what is

the likelihood that the other is a super pencil, given their base rate? There was some support

for this approach in the 1 ⁄ 2 condition in Experiment 1: Participants’ inferences about the B

object were slightly less than baseline (the Bayesian model predicts baseline performance).

Participants might have reasoned that since the base rate of super pencils was 0.5, and one

of these two objects clearly is a super pencil, the other must not be.

The procedure used in Experiments 2 and 3, however, was designed to test whether this

alternative to the Bayesian account best described adults’ and children’s inferences. In

this procedure, no single object is ever unambiguously demonstrated as a cause, making

such deductive inference impossible. The only way that the DBR heuristic could account for

learners’ inferences is if they chose to treat object A as a super pencil based on the data, and

reason about object B and C based on base-rate information. Adults’ graded inferences in

Experiment 2 are clearly inconsistent with this account, but on the surface, this might pre-

dict children’s response pattern in Experiment 3. Children seem to treat object A as a

blicket and reduce their judgments about B and C appropriately (given that the base rate is

low). However, this possibility is unlikely, given their treatment of objects X and Y—which

are both often considered blickets. That is, the modal interpretation children make when

shown two objects activate the detector together is that both objects are blickets—they do

not deduce that only one is a blicket, and that the other must not be (a much more valid

interpretation of these data, given the DBR heuristic).

The DBR heuristic also fails to account for the differences produced by providing evi-

dence that the blicket detector employs a probabilistic or deterministic mechanism in Exper-

iments 4 and 5. The success of the DBR heuristic in accounting for the results of

Experiment 1 follows largely from the assumption that causal relations are deterministic,

since this establishes a situation in which it is possible to obtain unambiguous evidence for

the existence of a causal relation. As a consequence, the heuristic is not as useful when cau-

sal relations are probabilistic, and it does not demonstrate the sensitivity to the difference

between probabilistic and deterministic causal mechanisms exhibited by our participants in

Experiments 4 and 5.

10.2. Implications for understanding the development of causal reasoning

Causal reasoning has been a topic of much interest in developmental psychology (e.g.,

Bullock et al., 1982; Carey, 2009; Leslie & Keeble, 1987; Shultz, 1982). While our goal

was not to systematically explore the development of causal reasoning, our use of similar

procedures with adults and children provides an opportunity to highlight some aspects of

causal reasoning that seem similar in these two groups, and some that seem to change over
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time. Our formal framework also provides a starting point for a more detailed developmen-

tal exploration of how different aspects of children’s knowledge about physical causal sys-

tems develop.

The results of Experiments 3 and 5 show that 4-year-olds behave in a way that is consis-

tent with several of the predictions of our Bayesian model: They learn from small samples,

are sensitive to the base rates with which causal relations exist, combine base-rate informa-

tion with observed evidence, and seem to reason differently about probabilistic and deter-

ministic causal systems, as well as recognizing which kind of system they are dealing with

in a specific context. However, Experiment 5 also revealed a way in which children seem to

deviate from the predictions of our Bayesian model, not treating an object that fails to acti-

vate the detector once (in the control-one condition) differently from one that fails to

activate the detector three times (in the control-three condition), and not modulating their

interpretation of this evidence by whether the detector is deterministic or probabilistic.

The lack of a significant difference between the control-one and control-three conditions

in Experiment 5 is a surprising finding. The statistical inference required to recognize the

difference between these cases is one that appears in other aspects of learning: use of indi-

rect negative evidence. When the detector is probabilistic, having more opportunities to

observe that a block fails to activate it provides stronger evidence against it being a cause,

in the same way that the evidence that a construction does not belong to a language

increases as a child obtains more linguistic input without hearing that construction. Use of

indirect negative evidence plays an important role in many accounts of language acquisition

(Pinker, 1979), and experiments in word learning with 4-year-olds suggest that they can use

such evidence in a way that is consistent with a Bayesian model (Xu & Tenenbaum,

2007a,b). Further work thus needs to be done to determine whether the null effect observed

in our experiment is the result of a lack of a domain-general ability to make such inferences,

a result of limits on working memory, or simply a consequence of our experimental design.

10.3. Limitations and future directions

Our goal in this article was to present a detailed test of the predictions of a specific

Bayesian model of causal learning, allowing us to explore how prior knowledge influences

the conclusions that adults and children reach about causal structure. By adopting such a

specific focus, our analysis has several limitations, which provide opportunities for further

research.

First, we focused on a specific kind of causal system—a physical system that acts as a

‘‘detector’’ of a causal property. This approach has both strengths and weaknesses. The

strength is that we were able to examine aspects of prior knowledge specific to this kind of

system, rather than using a more generic setting in which prior knowledge might be more

diffuse. The weakness is that our analysis is limited to this case, with the expectation that

other models and other forms of prior knowledge will be necessary in other cases. We

expect future work to extend the scope of this Bayesian approach to causal induction beyond

the blicket detector paradigm. While we have used this paradigm as the basis for an in-depth

exploration of the predictions of this account, the basic principle of using prior knowledge
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to guide statistical inferences about causal relations is one that can be applied more gener-

ally and should be tested more broadly. Some recent work has already pushed the bound-

aries of this approach. Sobel and Munro (2009) have shown that children’s inferences about

psychological states nicely fits with this Bayesian model, and Schulz et al. (2007) illustrated

how a similar approach can be used to investigate the effects of intuitive theories on causal

learning across the biological and psychological domains. Kushnir and Gopnik (2007) simi-

larly found that children were more willing to override spatial contiguity assumptions in a

probabilistic than a deterministic context, and they also suggested a Bayesian process of

integrating prior knowledge and current evidence. Griffiths and Tenenbaum (2007, 2009)

provide a formal framework intended to make it possible to extend the kind of analysis we

present here to other, richer, causal systems.

One consideration that arises in extending this approach to other causal systems is the

question of how far we might expect the correspondence between Bayesian models and

human behavior to persist as hypotheses about causal structure become more complex.

A limitation of the work we present here, and the related work summarized in the previous

paragraph, is that even our experiments with adults involve reasoning about a small number

of causes with no unknown factors. It is an open question whether people will continue to

behave in a way that is consistent with Bayesian inference in the face of much more com-

plex data, since such rational models assume perfect memory for the data and a large

hypothesis space. Recent work examining adult causal learning in more complex settings

suggests that people might take a more ‘‘piecemeal’’ approach to assembling causal struc-

tures (Fernbach & Sloman, 2009).

A second limitation of our analysis is that we have focused on only one level at which

computational models of causal reasoning might be defined—the computational level. As a

consequence, our Bayesian model makes clear our assumptions about the prior knowledge

that informs people’s inferences, but it does not make precise predictions about cognitive

processing steps that might implement or approximate these computations. Connecting the

computational and algorithmic levels is a general challenge for Bayesian models of cogni-

tion (Bonawitz & Griffiths, 2010; Sanborn, Griffiths, & Navarro, 2010), but it seems particu-

larly relevant in the case of causal learning. Further elaboration of the model in this

direction could provide some insight into the developmental trajectory of causal learning, or

the more complex conditions under which adults sometimes fail to make successful causal

inferences in the real world.

Finally, a concern that naturally arises when new computational models are introduced is

whether those models are falsifiable. In particular, the Bayesian approach has a great deal of

flexibility in the assumptions that are made about priors and hypothesis spaces, seeming to

create the opportunity to fit a wide range of results. In considering this question, it is worth

making a distinction between the Bayesian approach to modeling and a specific Bayesian

model. The Bayesian approach, like other broad computational frameworks such as produc-

tion systems (Anderson, 1993) or connectionism (Rumelhart, McClelland, & The PDP

Research Group, 1986), is not something we should expect to directly test empirically. The

criteria for evaluating such frameworks are whether they lead to useful insights about cogni-

tion. However, specific models we should expect to be able to falsify. A model makes
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commitments about hypothesis spaces and priors that lead to direct predictions, and behav-

ior inconsistent with these predictions provides evidence against that model. The model we

present here—with a set of principles that determine the hypothesis space and prior—is cer-

tainly falsifiable. In all of our experiments, there are quite reasonable alternative patterns of

data that would be inconsistent with our model that could have emerged but did not (e.g.,

not attending to base rates in Experiment 1, judging all objects to be effective in Experi-

ments 2 and 3, treating object B as ineffective across both conditions in Experiments 4 and

5). Further work will be needed to determine the explanatory scope of this model, but we do

not anticipate that there will be any difficulty in falsifying it in contexts where it is not

appropriate.

10.4. Conclusion

Combining prior knowledge with observed data is a critical part of causal learning and

the key to being able to make rapid causal inferences. Bayes’ theorem provides the basis for

a rational analysis of such inferences and a framework for characterizing the prior knowl-

edge that makes them possible. We have presented five experiments testing a Bayesian

model of causal learning in children and adults. This model interprets observed data by

applying rational statistical inference mechanisms to a hypothesis space of candidate causal

structures, a space based on knowledge about the kinds of mechanisms relating causes to

effects and the prior probabilities of encountering causal relations of various types. The

model makes precise predictions about a range of effects, including use of base-rate infor-

mation, maintenance of graded degrees of belief, and the effects of exposure to evidence

that the mechanism underlying a causal relation is probabilistic or deterministic. These pre-

dictions were confirmed both quantitatively in adults and qualitatively in child learners. We

view these results as a first step toward a more complete account of the prior knowledge that

informs human causal reasoning across the wide range of domains in which it takes place.

Notes

1. Developmental differences were also found: 3-year-olds did not respond in this man-

ner—they did not seem sensitive to the rare-common manipulation. Sobel et al.

(2004) discuss a number of potential reasons for this developmental difference, and

preliminary evidence (Sobel & Munro, 2009) suggests that 3-year-olds’ inferences are

also consistent with a Bayesian account constrained by different pieces of prior knowl-

edge.

2. We refer the reader to Glymour (2003) or Gopnik et al. (2004) for relatively accessi-

ble descriptions of causal graphical models and the causal Markov condition. Glymour

(2001) and Pearl (2000) provide a more in-depth description of these topics.

3. In fact, the hypothesis space for any blicket detector experiment has to involve arbi-

trary numbers of objects, since new objects with unknown causal powers could be

introduced at any point. This does not present a problem for our model: Since we
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assume that the probability that each object is a blicket is independent of all other

objects, unobserved objects do not influence conclusions about observed objects.

Consequently, we can work with a hypothesis space in which we represent only the

causal relations among the observed objects. More formally, each hypothesis can be

considered to correspond to an equivalence class of all hypotheses that include

unobserved objects in which these are the causal relations involving observed

objects.

4. The approach we take in this section is formally equivalent to another Bayesian analy-

sis, in which we have a random variable indicating whether each object is a blicket

and perform probabilistic inference to identify the categories of these objects. Since

belonging to the category of blickets corresponds exactly with having the ability to

cause the detector to activate, the hypothesis space over causal structures is equivalent

to the hypothesis space over category memberships. A Bayesian analysis more along

these lines is presented by Griffiths and Tenenbaum (2007).

5. Where we report causal power in the experiments, it was computed using the con-

tingency table for each potential cause with the effect separately, aggregated over

all trials. When there were no observations of the effect in the absence of the cause,

this probability was taken to be zero, and undefined values of causal power were

also set to zero. Used in this way, the model does not naturally predict blocking

(either forward or backward) in the strong sense that the Bayesian model does, since

it still estimates a positive causal power for B. However, the causal power of B is

less than that of A since the trials on which the effect occurred in the presence of A

alone increase the probability of the effect in the absence of B. We include this

simple model primarily to illustrate that predicting the results of the experiments is

non-trivial and to provide a quantitative comparison for the reported correlations.

6. Interestingly, the average rating of object C at this point was 1.90, which tended to be

lower than the baseline response: t(19) = 1.91, p < .10. This tendency could reflect a

version of the ‘‘gambler’s fallacy’’: If super pencils are rare and the probability that

two of the three objects are super pencils increases, then the third object may be

judged less likely to be a super pencil than its baseline probability dictates as a kind of

correction. Alternatively, this decrease could simply reflect a pragmatic inference that

participants make: Given the task setup, most likely at least one object is a super pen-

cil and at least one object is not. Given the increased evidence for the other two

objects being super pencils, the third object is most likely to be the non-super pencil.

We will not pursue this effect here, other than to note that it is not nearly as strong as

the other effects we report, and that its origin is an interesting question for future

work.

7. This is particularly true for object B, which should have exactly the same associative

strength as objects X and Y. On many associative models, object C should have

slightly lower associative strength than object B, since object C was paired with object

A, which already accrued associative strength when it was first placed on the detector

with object B.
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Appendix

The hypotheses shown in Fig. 1 represent parameterized causal graphical models relating

three variables: the presence of object A on the detector (A), the presence of object B on the

detector (B), and the activation of the detector (D). The deterministic activation law speci-

fies the parameterization of these causal graphical models, with the probability that the

detector activates being given by

pðeþ jA;BÞ ¼ 1� ð1� AÞðA!EÞð1� BÞðB!EÞ; ðA1Þ

where we assume that A and B take on the values 1 when true and 0 when false, and A fi E
and B fi E denote the presence of a link from A and B to E, respectively. The resulting

probability is 1 if one of the causes of E is present and 0 otherwise.

The prior probability of each of the four hypotheses follows from the principle of object

independence, and is given in Table 2. As stated in Eq. 4, the probability that object A is

a blicket is equal to the probability that the A fi E link exists, and likewise for object B.

These probabilities are equal to the sum of the probabilities of all hypotheses in which that

link exists. It is straightforward to check that the prior probability that A and B are blic-

kets is equal to q, in accord with the principle of object independence, as recorded in

Table 2.

The backward blocking paradigm has two stages. The first stage consists of some number

of AB events, in which both A and B are placed on the detector and the detector activates.

We can encode this the event e+|a+,b+, indicating that E was present when A and B were

set to be present. We need not model the probabilities of A and B, since these variables were

set to their values by an external intervention (Pearl, 2000). Taking such an event as our data

d, we need to compute the probability of d under each hypothesis h in order to apply Bayes’
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rule (Eq. 3). It follows from the activation law that p(d|h) = 1 if the graph corresponding to

h contains at least one of A fi E and B fi E, and 0 otherwise. Consequently, applying Ba-

yes’ rule simply involves identifying which hypotheses are consistent with the data, and

computing posterior probabilities by re-normalizing the prior probabilities of each of those

hypotheses by the sum of the prior probabilities of the members of that set. Three hypothe-

ses are consistent with the event e+|a+,b+: Graph 1, Graph 2, and Graph 3. The sum of the

prior probabilities of these hypotheses is

qð1� qÞ þ qð1� qÞ þ q2 ¼ qð2� qÞ:

Dividing the prior probability of each hypothesis by this quantity gives the posterior

probabilities shown in Table 2. The posterior probability of A and B being blickets can

be computed by summing over those graphs in which the appropriate causal relations

exists. These posterior probabilities remain the same regardless of the number of instances

of e+|a+,b+ in d, as the set of hypotheses consistent with such events remains

unchanged.

In the second stage of the backward blocking paradigm, participants see an A event, in

which A is placed on the detector alone and the detector activates. In terms of our variables,

this is the event e+|a+,b). Following the activation law, such an event has probability 1 if a

causal structure contains A fi E, and probability 0 otherwise. If d consists of the two events

e+|a+,b+ and e+|a+,b), then p(d|h) is the product of the probability of each of these two

events under h, which is also 1 if a causal structure contains A fi E, and 0 otherwise. Only

two hypotheses contain A fi E—Graph 1 and Graph 3—so the posterior probability is the

prior probability re-normalized over this set. The sum of the prior probability of these

hypotheses is q(1 ) q) + q2 = q, and dividing the prior probabilities by this amount yields

the posterior probabilities shown in Table 2.

While we have focused on the case of two objects, similar principles can be used to com-

pute posterior probabilities for the hypotheses for three objects shown in Fig. 3: the activa-

tion law rules out all hypotheses inconsistent with the observed data, and the posterior

probabilities are a re-normalized version of the prior probabilities. This procedure was used

to compute the posterior probabilities shown in Table 3.

Under a probabilistic activation law, in which non-blickets activate the detector with

probability e and blickets activate the detector with probability 1 ) e, the probability of the

detector activating is given by

pðeþ jA;BÞ ¼ 1� eNblicketð1� eÞNtotal�Nblicket ; ðA2Þ

where Ntotal is the total number of objects on the detector and Nblicket is the number of these

that are blickets. It is straightforward to check that this yields the probabilities given in

Table 5. The predictions of the model were obtained by applying Bayes’ rule, calculating

the probabilities of the events in the one cause, one control, and three control conditions

under the four hypothetical causal structures, and combining them with the same prior as

used for the deterministic detector.
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We can also use Bayesian inference to choose between qualitatively different causal theo-

ries. If we use TP to denote the ‘‘perfect detector’’ theory and TF to denote the ‘‘faulty detec-

tor’’ theory, then we can apply Bayes’ rule, with

pðTPjdÞ ¼
pðdjTPÞpðTPÞ

pðdjTPÞpðTPÞ þ pðdjTFÞpðTFÞ
; ðA3Þ

where the likelihood, p(d|T), indicates the probability of some sequence of events under the-

ory T, and the prior, p(T), represents the a priori plausibility of that theory. The likelihood is

computed by summing over all possible causal structures,

pðdjTÞ ¼
X

h2H
pðdjh;TÞpðhjTÞ; ðA4Þ

where p(d|h, T) and p(h|T) are just the likelihood and prior used in computing the posterior

distribution over causal structures assuming a particular theory. For the ‘‘perfect detector’’

and ‘‘faulty detector’’ theory, the outcome of this inference depends on whether the

observed data obey the activation law under any of the candidate causal structures. If every

trial respects the deterministic activation law for some candidate causal structure, the ‘‘per-

fect detector’’ theory will ultimately win out, as the ‘‘faulty detector’’ theory predicts fail-

ures on at least some trials. However, if there is ever an observation which is inconsistent

with the deterministic activation law applied to any candidate causal structure—such as

observing a single object that both activates and fails to activate the detector—the ‘‘perfect

detector’’ theory will immediately be assigned likelihood 0 (and hence posterior probability

0), and the ‘‘faulty detector’’ theory will immediately obtain a posterior probability of 1.
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