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A key challenge for cognitive psychology is the investigation of
mental representations, such as object categories, subjective prob-
abilities, choice utilities, and memory traces. In many cases, these
representations can be expressed as a non-negative function
defined over a set of objects. We present a behavioral method for
estimating these functions. Our approach uses people as compo-
nents of a Markov chain Monte Carlo (MCMC) algorithm, a sophis-
ticated sampling method originally developed in statistical physics.
Experiments 1 and 2 verified the MCMC method by training partic-
ipants on various category structures and then recovering those
structures. Experiment 3 demonstrated that the MCMC method
can be used estimate the structures of the real-world animal shape
categories of giraffes, horses, dogs, and cats. Experiment 4 com-
bined the MCMC method with multidimensional scaling to demon-
strate how different accounts of the structure of categories, such as
prototype and exemplar models, can be tested, producing samples
from the categories of apples, oranges, and grapes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Determining how people mentally represent different concepts is one of the central goals of cog-
nitive psychology. Identifying the content of mental representations allows us to explore the corre-
spondence between those representations and the world, and to understand their role in cognition.
Psychologists have developed a variety of sophisticated techniques for estimating certain kinds of
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mental representations, such as the spatial or featural representations underlying similarity judg-
ments, from behavior (e.g., Shepard, 1962; Shepard & Arabie, 1979; Torgerson, 1958). However, the
standard method used for investigating the vast majority of mental representations, such as object
categories, subjective probabilities, choice utilities, and memory traces, is asking participants to make
judgments on a set of stimuli that the researcher selects before the experiment begins. In this paper,
we describe a novel experimental procedure that can be used to efficiently identify mental represen-
tations that can be expressed as a non-negative function over a set of objects, a broad class that in-
cludes all of the examples mentioned above.

The basic idea behind our approach is to design a procedure that produces samples of stimuli that
are not chosen before the experiment begins, but are adaptively selected to concentrate in regions
where the function in question has large values. More formally, for any non-negative function f ðxÞ
over a space of objects X, we can define a corresponding probability distribution pðxÞ / f ðxÞ, being
the distribution obtained when f ðxÞ is normalized over X. Our approach provides a way to draw sam-
ples from this distribution. For example, if we are investigating a category, which is associated with a
probability distribution or similarity function over objects, this procedure will produce samples of ob-
jects that have high probability or similarity for that category. We can also use the samples to compute
any statistic of interest concerning a particular function. A large number of samples will provide a
good approximation to the means, variances, covariances, and higher moments of the distribution
pðxÞ. This makes it possible to test claims about mental representations made by different cognitive
theories. For instance, we can compare the samples that are produced with the claims about subjective
probability distributions that are made by probabilistic models of cognition (e.g., Anderson, 1990;
Ashby & Alfonso-Reese, 1995; Oaksford & Chater, 1998).

The procedure that we develop for sampling from these mental representations is based on a meth-
od for drawing samples from complex probability distributions known as Markov chain Monte Carlo
(MCMC; an introduction is provided by Neal (1993)). In this method, a Markov chain is constructed in
such a way that it is guaranteed to converge to a particular distribution, allowing the states of the Mar-
kov chain to be used in the same way as samples from that distribution. Transitions between states are
made using a series of local decisions as to whether to accept a proposed change to a given object,
requiring only limited knowledge of the underlying distribution. As a consequence, MCMC can be ap-
plied in contexts where other Monte Carlo methods fail. The first MCMC algorithms were used for
solving challenging probabilistic problems in statistical physics (Metropolis, Rosenbluth, Rosenbluth,
Teller, & Teller, 1953), but they have become commonplace in a variety of disciplines, including sta-
tistics (Gilks, Richardson, & Spiegelhalter, 1996) and biology (Huelsenbeck, Ronquist, Nielsen, & Boll-
back, 2001). These methods are also beginning to be used in modeling of cognitive psychology (Farrell
& Ludwig, 2008; Griffiths, Steyvers, & Tenenbaum, 2007; Morey, Rouder, & Speckman, 2008; Navarro,
Griffiths, Steyvers, & Lee, 2006).

In standard uses of MCMC, the distribution pðxÞ from which we want to generate samples is known
– in the sense that it is possible to write down at least a function proportional to pðxÞ – but difficult to
sample from. Our application to mental representations is more challenging, as we are attempting to
sample from distributions that are unknown to the researcher, but implicit in the behavior of our par-
ticipants. To address this problem, we designed a task that will allow people to act as elements of an
MCMC algorithm, letting us sample from the distribution pðxÞ associated with the underlying repre-
sentation f ðxÞ. This task is a simple two-alternative forced choice. Much research has been devoted
to relating the magnitude of psychological responses to choice probabilities, resulting in mathematical
models of these tasks (e.g., Luce, 1963). We point out an equivalence between a model of human
choice behavior and one of the elements of an MCMC algorithm, and then use this equivalence to de-
velop a method for obtaining information about different kinds of mental representations. This allows
us to harness the power of a sophisticated sampling algorithm to efficiently explore these represen-
tations, while never presenting our participants with anything more exotic than a choice between
two alternatives.

While our approach can be applied to any representation that can be expressed as a non-negative
function over objects, our focus in this paper will be on the case of object categories. Grouping objects
into categories is a basic mental operation that has been widely studied and modeled. Most successful
models of categorization assign a category to a new object according to the similarity of that object to
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the category representation. The similarity of all possible new objects to the category representation
can be thought of as a non-negative function over these objects, f ðxÞ. This function, which we are inter-
ested in determining, is a consequence of not only category membership, but also of the decisional
processes that extend partial category membership to objects that are not part of the category
representation.

Our method is certainly not the first developed to investigate categorization. Researchers have in-
vented many methods to investigate the categorization process: some determine the psychological
space in which categories lie, others determine how participants choose between different categories,
and still others determine what objects are members of a category. All of these methods have been
applied in simple training experiments, but they do not always scale well to the large stimulus spaces
needed to represent natural stimuli. Consequently, the majority of experiments that investigate hu-
man categorization models are training studies. Most of these training experiments use simple stimuli
with only a few dimensions, such as binary dimensional shapes (Shepard, Hovland, & Jenkins, 1961),
lengths of a line (Huttenlocher, Hedges, & Vevea, 2000), or Munsell colors (Nosofsky, 1987; Roberson,
Davies, & Davidoff, 2000), though more complicated stimuli have also been used (e.g., Posner & Keele,
1968). Research on natural perceptual categories has focused on exploring the relationships of cate-
gory labels (Storms, Boeck, & Ruts, 2000; Rosch & Mervis, 1975; Rosch, Mervis, Gray, Johnson, &
Boyes-Braem, 1976), with a few studies examining members of a perceptual category using simple
parameterized stimuli (e.g., Labov, 1973).

It is difficult to investigate natural perceptual categories with realistic stimuli because natural
stimuli have a great deal of variability. The number of objects that can be distinguished by our
senses is enormous. Our MCMC method makes it possible to explore the structure of natural cat-
egories in relatively large stimulus spaces. We illustrate the potential of this approach by esti-
mating the probability distributions associated with a set of natural categories, and asking
whether these distributions are consistent with different models of categorization. An enduring
question in the categorization literature is whether people represent categories in terms of exem-
plars or prototypes (Smith & Minda, 1998; Nosofsky & Zaki, 2002; Minda & Smith, 2002; Storms
et al., 2000; Nosofsky, 1988; Nosofsky & Johansen, 2000; Zaki, Nosofsky, Stanton, & Cohen, 2003;
Smith, Patalano, & Jonides, 1998; Heit & Barsalou, 1996). In an exemplar-based representation, a
category is simply the set of its members, and all of these members are used when evaluating
whether a new object belongs to the category (e.g., Medin & Schaffer, 1978; Nosofsky, 1986).
In contrast, a prototype model assumes that people have an abstract representation of a category
in terms of a typical or central member, and use only this abstract representation when evaluat-
ing new objects (e.g., Posner & Keele, 1968; Reed, 1972). These representations are associated
with different probability distributions over objects, with exemplar models corresponding to a
nonparametric density estimation scheme that admits distributions of arbitrary structure and pro-
totype models corresponding to a parametric density estimation scheme that favors unimodal dis-
tributions (Ashby & Alfonso-Reese, 1995). The distributions for different natural categories
produced by MCMC could thus be used to discriminate between these two different accounts
of categorization.

The plan of the paper is as follows. The next section describes MCMC in general and the Metrop-
olis method and Hastings acceptance rules in particular. We then describe the experimental task we
use to connect human judgments to MCMC, and outline how this task can be used to study the men-
tal representation of categories. Experiment 1 tests three variants of this task using simple one-
dimensional stimuli and trained distributions, while Experiment 2 uses one of these variants to
show that our method can be used to recover different category structures from human judgments.
Experiment 3 applies the method to four natural categories, providing estimates of the distributions
over animal shapes that people associate with giraffes, horses, cats, and dogs. Experiment 4 com-
bines the MCMC method with multidimensional scaling in order to explore the structure of natural
categories in a perceptual space. This experiment illustrates how the suitability of a simple proto-
type model for describing natural categories could be tested by combining these two methodologies.
Finally, in the General Discussion we discuss how MCMC relates to other experimental methods, and
describe some potential problems that can be encountered in using MCMC, together with possible
solutions.
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2. Markov chain Monte Carlo

Generating samples from a probability distribution is a common problem that arises when working
with probabilistic models in a wide range of disciplines. This problem is rendered more difficult by the
fact that there are relatively few probability distributions for which direct methods for generating
samples exist. For this reason, a variety of sophisticated Monte Carlo methods have been developed
for generating samples from arbitrary probability distributions. Markov chain Monte Carlo (MCMC)
is one of these methods, being particularly useful for correctly generating samples from distributions
where the probability of a particular outcome is multiplied by an unknown constant – a common sit-
uation in statistical physics (Newman & Barkema, 1999) and Bayesian statistics (Gilks et al., 1996).

A Markov chain is a sequence of random variables where the value taken by each variable (known
as the state of the Markov chain) depends only on the value taken by the previous variable (Norris,
1997). We can generate a sequence of states from a Markov chain by iteratively drawing each variable
from its distribution conditioned on the previous variable. This distribution expresses the transition
probabilities associated with the Markov chain, which are the probabilities of moving from one state
to the next. An ergodic Markov chain, having a non-zero probability of reaching any state from any
other state in a finite and aperiodic number of iterations, eventually converges to a stationary distribu-
tion over states. That is, after many iterations the probability that a chain is in a particular state con-
verges to a fixed value, the stationary probability, regardless of the initial value of the chain. The
stationary distribution is determined by the transition probabilities of the Markov chain.

Markov chain Monte Carlo algorithms are schemes for constructing Markov chains that have a par-
ticular distribution (the ‘‘target distribution”) as their stationary distribution. If a sequence of states is
generated from such a Markov chain, the states towards the end of the sequence will arise with prob-
abilities that correspond to the target distribution. These states of the Markov chain can be used in the
same way as samples from the target distribution, although the correlations among the states that re-
sult from the dynamics of the Markov chain will reduce the effective sample size. The original scheme
for constructing these types of Markov chains is the Metropolis method (Metropolis et al., 1953),
which was subsequently generalized by Hastings (1970).
2.1. The Metropolis method

The Metropolis method specifies a Markov chain by splitting the transition probabilities into two
parts: a proposal distribution and an acceptance function. A proposed state is drawn from the proposal
distribution (which can depend on the current state) and the acceptance function determines the
probability with which that proposal is accepted as the next state. If the proposal is not accepted, then
the current state is taken as the next state. This procedure defines a Markov chain, with the probability
of the next state depending only on the current state, and it can be iterated until it converges to the
stationary distribution. Through careful choice of the proposal distribution and acceptance function,
we can ensure that this stationary distribution is the target distribution.

A sufficient, but not necessary, condition for specifying a proposal distribution and acceptance
function that produce the appropriate stationary distribution is detailed balance, with
pðxÞqðx�jxÞaðx�; xÞ ¼ pðx�Þqðxjx�Þaðx; x�Þ ð1Þ
where pðxÞ is the stationary distribution of the Markov chain (our target distribution), qðx�jxÞ is the
probability of proposing a new state x� given the current state x, and aðx�; xÞ is the probability of
accepting that proposal. We can motivate detailed balance by first imagining that we are running a
Markov chain in which we draw a new proposed state from a uniform distribution over all possible
proposals and then accept the proposal with some probability. The transition probability of the Mar-
kov chain is equal to the probability of accepting this proposal. We would like for the states of the
Markov chain to act as samples from a target distribution. A different way to think of this constraint
is to require the ratio of the number of visits of the chain to state x to the number of visits of the chain
to state x� to be equal to the ratio of the probabilities of these two states under the target distribution.
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A sufficient, but not necessary, condition for satisfying this requirement is to enforce this constraint
for every transition probability. Formally we can express this equality between ratios as
pðxÞ
pðx�Þ ¼

aðx; x�Þ
aðx�; xÞ ð2Þ
Now, to generalize, instead of assuming that each proposal is drawn uniformly from the space of
parameters, we assume that each proposal is drawn from a distribution that depends on the current
state, qðx�jxÞ. In order to correct for a non-uniform proposal we need to multiply each side of Eq. (2) by
the proposal distribution. The result is equal to the detailed balance equation.

The Metropolis method specifies an acceptance function which satisfies detailed balance for any
symmetric proposal distribution, with qðx�jxÞ ¼ qðxjx�Þ for all x and x�. The Metropolis acceptance
function is
aðx�; xÞ ¼min
pðx�Þ
pðxÞ ;1

� �
ð3Þ
meaning that proposals with higher probability than the current state are always accepted. To apply
this method in practice, a researcher must be able to determine the relative probabilities of any two
states. However, it is worth noting that the researcher need not know pðxÞ exactly. Since the algorithm
only uses the ratio pðx�Þ=pðxÞ, it is sufficient to know the distribution up to a multiplicative constant.
That is, the Metropolis method can still be used even if we only know a function f ðxÞ / pðxÞ.

2.2. Hastings acceptance functions

Hastings (1970) gave a more general form for acceptance functions that satisfy detailed balance,
and extended the Metropolis method to admit asymmetric proposal distributions. The key observation
is that Eq. (1) is satisfied by any acceptance rule of the form
aðx�; xÞ ¼ sðx�; xÞ
1þ pðxÞ

pðx�Þ
qðx�jxÞ
qðxjx�Þ

ð4Þ
where sðx�; xÞ is a symmetric in x and x� and 0 6 aðx�; xÞ 6 1 for all x and x�. Taking
sðx�; xÞ ¼
1þ pðxÞ

pðx�Þ
qðx�jxÞ
qðxjx�Þ ; if pðx�Þ

pðxÞ
qðxjx�Þ
qðx�jxÞ P 1

1þ pðx�Þ
pðxÞ

qðxjx�Þ
qðx�jxÞ ; if pðx�Þ

pðxÞ
qðxjx�Þ
qðx�jxÞ 6 1

8<
: ð5Þ
yields the Metropolis acceptance function for symmetric proposal distributions, and generalizes it to
aðx�; xÞ ¼min
pðx�Þ
pðxÞ

qðxjx�Þ
qðx�jxÞ ;1

� �
ð6Þ
for asymmetric proposal distributions. With a symmetric proposal distribution, taking sðx�; xÞ ¼ 1
gives the Barker acceptance function
aðx�; xÞ ¼ pðx�Þ
pðx�Þ þ pðxÞ ð7Þ
where the acceptance probability is proportional to the probability of the proposed and the current
state under the target distribution (Barker, 1965). While the Metropolis acceptance function has been
shown to result in lower asymptotic variance (Peskun, 1973) and faster convergence to the stationary
distribution (Billera & Diaconis, 2001) than the Barker acceptance function, it has also been argued
that neither rule is clearly dominant across all situations (Neal, 1993).

2.3. Summary

Markov chain Monte Carlo provides a simple way to generate samples from probability distribu-
tions for which other sampling schemes are infeasible. The basic procedure is to start a Markov chain
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at some initial state, chosen arbitrarily, and then apply one of the methods for generating transitions
outlined above, proposing a change to the state of the Markov chain and then deciding whether or not
to accept this change based on the probabilities of the different states under the target distribution.
After allowing enough iterations for the Markov chain to converge to its stationary distribution
(known as the ‘‘burn-in”), the states of the Markov chain can be used to answer questions about
the target distribution in the same way as a set of samples from that distribution.
3. An acceptance function from human behavior

The way that transitions between states occur in the Metropolis–Hastings algorithm already has
the feel of a psychological task: two objects are presented, one being the current state and one the pro-
posal, and a choice is made between them. We could thus imagine running an MCMC algorithm in
which a computer generates a proposed variation on the current state and people choose between
the current state and the proposal. In this section, we consider how to lead people to choose between
two objects in a way that would correspond to a valid acceptance function.

3.1. From a task to an acceptance function

Assume that we want to gather information about a mental representation characterized by a non-
negative function over objects, f ðxÞ. In order for people’s choices to act as an element in an MCMC
algorithm that produces samples from a distribution proportional to f ðxÞ, we need to design a task that
leads them to choose between two objects x� and x in a way that corresponds to one of the valid accep-
tance functions introduced in the previous section. In particular, it is sufficient to construct a task such
that the probability with which people choose x� is
aðx�; xÞ ¼ f ðx�Þ
f ðx�Þ þ f ðxÞ ð8Þ
this being the Barker acceptance function (Eq. (7)) for the distribution pðxÞ / f ðxÞ.
Eq. (8) has a long history as a model of human choice probabilities, where it is known as the Luce

choice rule or the ratio rule (Luce, 1963). This rule has been shown to provide a good fit to human data
when participants choose between two stimuli based on a particular property (Bradley, 1954; Clarke,
1957; Hopkins, 1954), though the rule does not seem to scale with additional alternatives (Morgan,
1974; Rouder, 2004; Wills, Reimers, Stewart, Suret, & McLaren, 2000). When f ðxÞ is a utility function
or probability distribution, the behavior described in Eq. (8) is known as probability matching and is
often found empirically (Vulkan, 2000). The ratio rule has also been used to convert psychological re-
sponse magnitudes into response probabilities in many models of cognition such as the Similarity
Choice Model (Luce, 1963; Shepard, 1957), the Generalized Context Model (Nosofsky, 1986), the Prob-
abilistic Prototype Model (Ashby, 1992; Nosofsky, 1987), the Fuzzy Logical Model of Perception (Oden
& Massaro, 1978), and the TRACE Model (McClelland & Elman, 1986).

There are additional simple theoretical justification for using Eq. (8) to model people’s response prob-
abilities. One justification is to use the logistic function to model a soft threshold on the log odds of two
alternatives (cf. Anderson, 1990; Anderson & Milson, 1989). The log odds in favor of x� over x under the
distribution pðxÞwill be K ¼ log pðx�Þ

pðxÞ . Assuming that people receive greater reward for a correct response
than an incorrect response, the optimal solution to the problem of choosing between the two objects is to
deterministically select x� whenever K > 0. However, we could imagine that people place their thresh-
olds at slightly different locations or otherwise make choices non-deterministically, such that their
choices can be modeled as a logistic function on K with the probability of choosing x� being
1=ð1þ expf�KgÞ. An elementary calculation shows that this yields the acceptance rule given in Eq. (8).

Another theoretical justification is to assume that log probabilities are noisy and the decision is
deterministic. The decision is made by sampling from each of the noisy log probabilities and choosing
the higher sample. If the additive noise follows a Type I Extreme Value (e.g., Gumbel) distribution,
then it is known that the resulting choice probabilities are equivalent to the ratio rule (McFadden,
1974; Yellott, 1977).
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The correspondence between the Barker acceptance function and the ratio rule suggests that we
should be able to use people as elements in MCMC algorithms in any context where we can lead them
to choose in a way that is well-modeled by the ratio rule. We can then explore the representation
characterized by f ðxÞ through a series of choices between two alternatives, where one of the alterna-
tives that is presented is that selected on the previous trial and the other is a variation drawn from an
arbitrary proposal distribution. The result will be an MCMC algorithm that produces samples from
pðxÞ / f ðxÞ, providing an efficient way to explore those parts of the space where f ðxÞ takes large values.

3.2. Allowing a wider range of behavior

Probability matching, as expressed in the ratio rule, provide a good description of human choice
behavior in many situations, but motivated participants can produce behavior that is more determin-
istic than probability matching (Vulkan, 2000; Ashby & Gott, 1988). Several models of choice, partic-
ularly in the context of categorization, have been extended in order to account for this behavior
(Ashby & Maddox, 1993) by using an exponentiated version of Eq. (8) to map category probabilities
onto response probabilities,
aðx�; xÞ ¼ f ðx�Þc

f ðx�Þc þ f ðxÞc
ð9Þ
where c raises each term on the right side of Eq. (8) to a constant. The parameter c makes it possible to
interpolate between probability matching and purely deterministic responding: when c ¼ 1 partici-
pants probability match, and when c ¼ 1 they choose deterministically.

Eq. (9) can be derived from an extension to the ‘‘soft threshold” argument given above. If responses
follow a logistic function on the log posterior odds with gain c, the probability of choosing x� is
1=ð1þ expfcKgÞ where K is defined above. The case discussed above corresponds to c ¼ 1, and as c
increases, the threshold moves closer to a step function at K ¼ 0. Carrying out the same calculation
as for the case where c ¼ 1 in the general case yields the acceptance rule given in Eq. (9).

The acceptance function in Eq. (9) contains an unknown parameter, so we will not gain as much
information about f ðxÞ as when we make the stronger assumption that participants probability match
(i.e. fixing c ¼ 1). Substituting Eq. (9) into Eq. (1) and assuming a symmetric proposal distribution we
can show that the exponentiated choice rule is an acceptance function for a Markov chain with sta-
tionary distribution
pðxÞ / f ðxÞc ð10Þ
Thus, using the weaker assumptions of Eq. (9) as a model of human behavior, we can estimate f ðxÞ up
to a constant exponent. The relative probabilities of different objects will remain ordered, but cannot
be directly evaluated. Consequently, the distribution defined in Eq. (10) has the same peaks as the
function produced by directly normalizing f ðxÞ, and the ordering of the variances for the dimensions
is unchanged, but the exact values of the variances will depend on the parameter c.
4. Categories

The results in the previous section provide a general method for exploring mental representations
that can be expressed in terms of a non-negative function over a set of objects. In this section, we con-
sider how this approach can be applied to the case of categories, providing a concrete example of a
context in which this method can be used and an illustration of how tasks can be constructed to meet
the criteria for defining an MCMC algorithm. We begin with a brief review of the methods that have
been used to study mental representations of category structure. In the following discussion it is
important to keep in mind that performance in any task used to study categories involves both the
mental representations with which the category members, or category abstractions, are held in mem-
ory, and the processes that operate on those representations to produce the observed data. In this arti-
cle our aim is to map the category structure that results from both the representations and processes
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acting together. Much research in the field has of course been aimed at specifying the representations,
the processes, or both, as described briefly in the review that follows.

4.1. Methods for studying categories

Cognitive psychologists have extensively studied the ways in which people group objects into cat-
egories, investigating issues such as whether people represent categories in terms of exemplars or pro-
totypes (Smith & Minda, 1998; Nosofsky & Zaki, 2002; Minda & Smith, 2002; Storms et al., 2000;
Nosofsky, 1988; Nosofsky & Johansen, 2000; Zaki et al., 2003; Smith et al., 1998; Heit & Barsalou,
1996). Many different types of methodologies have been developed in an effort to distinguish the ef-
fects of prototypes and exemplars, and to test other theories of categorization. Two of the most com-
monly used methods are multidimensional scaling (MDS; (Shepard, 1962; Torgerson, 1958)) and
additive clustering (Shepard & Arabie, 1979). These methods each take a set of similarity judgments
and find the representation that best respects these judgments. MDS uses similarity judgments to con-
strain the placement of objects within a similarity space – objects judged most similar are placed close
together and those judged dissimilar are place far apart. Additive clustering works in a similar manner,
except that the resulting representation is based on discrete features that are either shared or not
shared between objects. These two methodologies are used in order to establish the psychological
space for the stimuli in an experiment, assisting in the evaluation of categorization models. MDS
has been applied to many natural categories, including Morse code (Rothkopf, 1957) and colors
(Nosofsky, 1987). Traditional MDS does not scale well to a large number of objects because all pairwise
judgments must be collected, but alternative formulations have been developed to deal with large
numbers of stimuli (Hadsell, Chopra, & LeCun, 2006; de Silva & Tenenbaum, 2003; Goldstone, 1994).

Discriminative tests are a second avenue for comparing theories about categorization. In these tests,
participants are shown a single object and asked to pick the category to which it belongs. The choices that
are made reflect the structures of all the categories under consideration and can be analyzed to deter-
mine the decision boundaries between categories. This is perhaps the most commonly used method
for distinguishing between many different types of models (e.g., Nosofsky, Gluck, Palmeri, McKinley,
& Glauthier, 1994; Ashby & Gott, 1988), and it has been combined with MDS to provide a more diagnostic
test (e.g. Nosofsky, 1986, 1987). In addition, discriminative tests can be applied to naturalistic stimuli
with large numbers of parameters. In psychophysics, the response classification technique is a discrim-
inative test that has been used to infer the decision boundary that guides perceptual decisions between
two stimuli (Ahumada & Lovell, 1971). This methodology has been applied to visualize the decision
boundary between images with as many as 10,000 pixels (Gold, Murray, Bennett, & Sekuler, 2000).

A third method for exploring category structure is to evaluate the strength of category membership
for a set of the objects. In categorization studies, this goal is generally accomplished by asking partic-
ipants for typicality ratings of stimuli (e.g., Storms et al., 2000; Bourne, 1982). This procedure was orig-
inally used to justify the existence of a category prototype (Rosch & Mervis, 1975; Rosch, Simpson, &
Miller, 1976), but typicality ratings have also been used to support exemplar models (Nosofsky, 1988).
Typicality ratings are difficult to collect for a large set of stimuli, because a judgment must be made for
every object. In situations in which there are a large number of objects and few belong to a category,
this method will be very inefficient. The key claim of this paper is the idea that the MCMC method can
provide the same insight into categorization as given by typicality judgments, but in a form that scales
well to the large numbers of stimuli needed to explore natural categories.

4.2. Representing categories

Computational models of categorization quantify different hypotheses about how categories are
represented. These models were originally developed as accounts of the cognitive processes involved
in categorization, and specify the structure of categories in terms of a similarity function over objects.
Subsequent work identified these models as being equivalent to schemes for estimating a probability
distribution (a problem known as density estimation), and showed that the underlying representations
could be expressed as probability distributions over objects (Ashby & Alfonso-Reese, 1995). We will
outline the basic ideas behind two classic models – exemplar and prototype models – from both of
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these perspectives. While we will use the probabilistic perspective throughout the rest of the paper,
the equivalence between these two perspectives mean that our analyses carry over equally well to
the representation of categories as a similarity function over objects.

Exemplar and prototype models share the basic assumption that people assign stimuli to categories
based on similarity. Given a set of N � 1 stimuli x1; . . . ; xN�1 with category labels c1; . . . ; cN�1, these
models express the probability that stimulus N is assigned to category c as
pðcN ¼ cjxnÞ ¼
gN;cbcP

c0
gN;c0bc0

ð11Þ
where gN;c is the similarity of the stimulus xN to category c and bc is the response bias for category c.
The key difference between the models is in how gN;c , the similarity of a stimulus to a category, is
computed.

In an exemplar model (e.g., Medin & Schaffer, 1978; Nosofsky, 1986), a category is represented by
all of the stored instances of that category. The similarity of stimulus N to category c is calculated by
summing the similarity of the stimulus to all stored instances of the category. That is,
gN;c ¼
X
ijci¼c

gN;i ð12Þ
where gN;i is a symmetric measure of the similarity between the two stimuli xN and xi. The similarity
measure is typically defined as a decaying exponential function of the distance between the two stim-
uli, following Shepard (1987). In a prototype model (e.g., Reed, 1972), a category c is represented by a
single prototypical instance. In this formulation, the similarity of a stimulus N to category c is defined
to be
gN;c ¼ gN;pc
ð13Þ
where pc is the prototypical instance of the category and gN;pc
is a measure of the similarity between

stimulus N and the prototype pc , as used in the exemplar model. One common way of defining the pro-
totype is as the centroid of all instances of the category in some psychological space, i.e.,
pc ¼
1

Nc

X
ijci¼c

xi ð14Þ
where Nj is the number of instances of the category (i.e. the number of stimuli for which ci ¼ c). There
are obviously a variety of possibilities within these extremes, with similarity being computed to a sub-
set of the exemplars within a category, and these have been explored in more recent models of cate-
gorization (e.g., Love, Medin, & Gureckis, 2004; Vanpaemel, Storms, & Ons, 2005).

Taking a probabilistic perspective on the problem of categorization, a learner should believe stim-
ulus N belongs to category c with probability
pðcN ¼ cjxNÞ ¼
pðxN jcN ¼ cÞpðcN ¼ cÞP
c0pðxNjcN ¼ c0ÞpðcN ¼ c0Þ ð15Þ
with the posterior probability of category c being proportional to the product of the probability of an
object with features xN being produced from that category and the prior probability of choosing that
category. The distribution pðxjcÞ, which we use as shorthand for pðxNjcN ¼ cÞ, reflects the learner’s
knowledge of the structure of the category, taking into account the features and labels of the previous
N � 1 objects. Ashby and Alfonso-Reese (1995) observed a connection between this Bayesian solution
to the problem of categorization and the way that choice probabilities are computed in exemplar and
prototype models (i.e. Eq. (11)). Specifically, gN;c can be identified with pðxNjcN ¼ cÞ, while bc corre-
sponds to the prior probability of category c, pðcN ¼ cÞ. The difference between exemplar and proto-
type models thus comes down to different ways of estimating pðxjcÞ.

The definition of gN;c used in an exemplar model (Eq. (12)) corresponds to estimating pðxjcÞ as the
sum of a set of functions (known as ‘‘kernels”) centered on the xi already labeled as belonging to cat-
egory c, with
pðxN jcN ¼ cÞ /
X
ijci¼c

kðxN; xiÞ ð16Þ
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where kðx; xiÞ is a probability distribution centered on xi.1 This is a method that is widely used for
approximating distributions in statistics, being a simple form of nonparametric density estimation
(meaning that it can be used to identify distributions without assuming that they come from an under-
lying parametric family) called kernel density estimation (e.g., Silverman, 1986). The definition of gN;c used
in a prototype model (Eq. (13)) corresponds to estimating pðxjcÞ by assuming that the distribution asso-
ciated with each category comes from an underlying parametric family, and then finding the parameters
that best characterize the instances labeled as belonging to that category. The prototype corresponds to
these parameters, with the centroid being an appropriate estimate for distributions whose parameters
characterize their mean. Again, this is a common method for estimating a probability distribution, known
as parametric density estimation, in which the distribution is assumed to be of a known form but with
unknown parameters (e.g., Rice, 1995). As with the similarity-based perspective, there are also probabi-
listic models that interpolate between exemplars and prototypes (e.g., Rosseel, 2002).

4.3. Tasks resulting in valid MCMC acceptance rules

Whether they are represented as similarity functions (being non-negative functions over objects),
or probability distributions, it should be possible to use our MCMC method to investigate the structure
of categories. The critical step is finding a question that we can ask people that leads them to respond
in the way identified by Eq. (8) when presented with two alternatives. That is, we need a question that
leads people to choose alternatives with probability proportional to their similarity to the category or
probability under that category. Fortunately, it is possible to argue that several kinds of questions
should have this property. We consider three candidates.

4.3.1. Which stimulus belongs to the category?
The simplest question we can ask people is to identify which of the two stimuli belongs to the cat-

egory, on the assumption that this is true for only one of the stimuli. We give a Bayesian analysis of
this question in Appendix A, showing that stimuli should be selected in proportion to their probability
under the category distribution pðxjcÞ under some minimal assumptions. It is also possible to argue for
this claim via an analogy to the standard categorization task, in which Eq. (8) is widely used to de-
scribe choice probabilities. In the standard categorization task, people are shown a single stimulus
and asked to select one of two categories. In our task, people are shown two stimuli and asked to iden-
tify which belongs to a single category. Just as people make choices in proportion to the similarity be-
tween the stimulus and the category in categorization, we expect them to do likewise here.

4.3.2. Which stimulus is a better example of the category?
The question of which stimulus belongs to the category is straightforward for participants to interpret

when it is clear that one stimulus belongs to the category and the other does not. However, if both stimuli
have very high or very low values under the probability distribution, then the question can be confusing.
An alternative is to ask people which stimulus is a better example of the category – asking for a typicality
rating rather than a categorization judgment. This question is about the representativeness of an example
for a category. Tenenbaum and Griffiths (2001) provide evidence for a representativeness measure that is
the ratio of the posterior probabilities of the alternatives. In Appendix A, we show that under the same
assumptions as those for the previous question, answers to this question should also follow the Barker
acceptance function. As above, this question can also be justified by appealing to similarity-based mod-
els: Nosofsky (1988) found that a ratio rule combined with an exemplar model predicted response prob-
abilities when participants were asked to choose the better example of a category from a pair of stimuli.

4.3.3. Which stimulus is more likely to have come from the category?
An alternative means of relaxing the assumption that only one of the two stimuli came from the

category is to ask people for a judgment of relative probability rather than a forced choice. This ques-
tion directly measures pðxjcÞ or the corresponding similarity function. Assuming that participants
1 The constant of proportionality is determined by
R

kðx; xiÞdx, being 1
Nc

if
R

kðx; xiÞ dx ¼ 1 for all i, and is absorbed into bc to
produce direct equivalence to Eq. (12).
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apply the ratio rule to these quantities, their responses should yield the Barker acceptance function for
the appropriate stationary distribution.

4.4. Summary

Based on the results in this section, we can define a simple method for drawing samples from the
probability distribution (or normalized similarity function) associated with a category using MCMC.
Start with a parameterized set of objects and start with an arbitrary member of that set. On each trial,
a proposed object is drawn from a symmetric distribution around the original object. A person chooses
between the current object and the proposed new object, responding to a question about which object
is more consistent with the category. Assuming that people’s choice behavior follows the ratio rule
given in Eq. (8), the stationary distribution of the Markov chain is the probability distribution pðxjcÞ
associated with the category, and samples from the chain provide information about the mental rep-
resentation of that category. As outlined above, this procedure can also provide information about the
relative probabilities of different objects when people’s behavior is more deterministic than probabil-
ity matching. To explore the value of this method for investigating category structures we conducted a
series of four experiments. The first two experiments examine whether we can recover artificial cat-
egory structures produced through training, while the other two experiments apply it to estimation of
the distributions associated with natural categories.

5. Experiment 1

To test whether our assumptions about human decision making were accurate enough to use
MCMC to sample from people’s mental representations, we trained people on a category structure
and attempted to recover the resulting distribution. A simple one-dimensional categorization task
was used, with the height of schematic fish (see Fig. 1) being the dimension along which category
structures were defined. Participants were trained on two categories of fish height – a uniform distri-
bution and a Gaussian distribution – being told that they were learning to judge whether a fish came
from the ocean (the uniform distribution) or a fish farm (the Gaussian distribution). Once participants
were trained, we collected MCMC samples for the Gaussian distributions by asking participants to
judge which of two fish came from the fish farm using one of the three questions introduced above.
The three questions conditions were used to find empirical support for the theoretical conclusion that
all three questions would allow samples to be drawn from a probability distribution. Assuming par-
ticipants accurately represent the training structure and use a ratio decision rule, the samples drawn
will reflect the structure on which participants were trained for each question condition.

5.1. Method

5.1.1. Participants
Forty participants were recruited from the Brown University community. The data from four par-

ticipants were discarded due to computer error in the presentation. Two additional participants were
discarded for reaching the upper or lower bounds of the parameter range. These participants were
replaced to give a total of 12 participants using each of the three MCMC questions. Each participant
was paid $4 for a 35 min session.
Fig. 1. Examples of the largest and smallest fish stimuli presented to participants during training in Experiments 1 and 2. The
relative size of the fish stimuli are shown here; true display sizes are given in the text.
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5.1.2. Stimuli
The experiment was presented on a Apple iMac G5 controlled by a script running in Matlab using

PsychToolbox extensions (Brainard, 1997; Pelli, 1997). Participants were seated approximately 44 cm
away from the display. The stimuli were a modified version of the fish stimuli used in Huttenlocher
et al. (2000). The fish were constructed from three ovals, two gray and one black, and a gray circle
on a black background. Fish were all 9.1 cm long with heights drawn from the Gaussian and uniform
distributions in training. Because the display did not allow a continuous range of fish heights to be dis-
played, the heights varied in steps of 0.13 cm. Examples of the smallest and largest fish are shown in
Fig. 1. During the MCMC trials, fish were allowed to range in height from 0.03 cm to 8.35 cm.
5.1.3. Procedure
Each participant was trained to discriminate between two categories of fish: ocean fish and fish

farm fish. Participants were instructed, ‘‘Fish from the ocean have to fend for themselves and as a re-
sult they have an equal probability of being any size. In contrast, fish from the fish farm are all fed the
same amount of food, so their sizes are similar and only determined by genetics.” These instructions
were meant to suggest that the ocean fish were drawn from a uniform distribution and the fish farm
fish were drawn from a Gaussian distribution, and that the variance of the ocean fish was greater than
the variance of the fish farm fish.

Participants saw two types of trials. In a training trial, either the uniform or Gaussian distribution
was selected with equal probability, and a single sample (with replacement) was drawn from the se-
lected distribution. The uniform distribution had a lower bound of 2.63 cm and an upper bound of
5.75 cm, while the Gaussian distribution had a mean of 4.19 cm and a standard deviation of
0.39 cm. The sampled fish was shown to the participant, who chose which distribution produced
the fish. Feedback was then provided on the accuracy of this choice. In an MCMC trial, two fish were
presented on the screen. Participants chose which of the two fish came from the Gaussian distribution.
Neither fish had been sampled from the Gaussian distribution. Instead, one fish was the state of a Mar-
kov chain and the other fish was the proposal. The state and proposal were unlabeled and they were
randomly assigned to either the left or right side of the screen. Three MCMC chains were interleaved
during the MCMC trials. The start states of the chains were chosen to be 2.63 cm, 4.20 cm, and
5.75 cm. Relative to the training distributions, the start states were over-dispersed, facilitating assess-
ment of convergence. The proposal was chosen from a symmetric discretized pseudo-Gaussian distri-
bution with a mean equal to the current state and standard deviation equal to the training Gaussian
standard deviation. The probability of proposing the current state was set to zero.

The question asked on the MCMC trials was varied between participants. During the test phase,
participants were asked, ‘‘Which fish came from the fish farm?”, ‘‘Which fish is a better example of
a fish from the fish farm?”, or ‘‘Which fish was more likely to have come from the fish farm?”. Twelve
participants were assigned to each question condition. All participants were trained on the same
Gaussian distribution, with mean l ¼ 4:19 cm and standard deviation r ¼ 3:9 mm.

The experiment was broken up into blocks of training and MCMC trials. The experiment began with
120 training trials, followed by alternating blocks of 60 MCMC trials and 60 training trials. Training
and MCMC trials were interleaved to keep participants from forgetting the training distributions. After
a total of 240 MCMC trials, there was one final block of 60 test trials. These were identical to the train-
ing trials, except participants were not given feedback. The final block provided an opportunity to test
the discriminative predictions of the MCMC method.
5.2. Results and discussion

Participants were excluded if the state of any chain reached the edge of the parameter range or if
their chains did not converge to the stationary distribution. We used a heuristic for determining con-
vergence to the stationary distribution: every chain had to cross another chain.2 For the participants
2 Many heuristics have been proposed for assessing convergence (Brooks & Roberts, 1998; Mengersen, Robert, & Guihenneuc-
Jouyaux, 1999; Cowles & Carlin, 1996). The heuristic we used is simple to apply in a one-dimensional state space.
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that were retained, the first 20 trials were removed from each chain. Fig. 2 provides justification for
removing the first 20 trials, as each example participant (one from each question condition) required
about this many trials for the chains to converge. The remaining 60 trials from each chain were pooled
and used in further analyses.

The acceptance rates of the proposals should be reasonably low in MCMC applications. A high
acceptance rate generally results from proposal distributions that are narrow compared to the cate-
gory distribution and thus do not explore the space well. Very low acceptance rates occur if the pro-
posals are too extreme and the low acceptance rate also causes the algorithm to explore the space
more slowly. A rate of 20–40% is often considered a good value (Roberts, Gelman, & Gilks, 1997). In
this experiment, participants accepted between 33% and 35% of proposals in the three conditions. A
more extensive exploration of the effects of acceptance rates is presented in the General Discussion.

The chains for one example participant per condition are shown in Fig. 2. The right side of the figure
compares the training distribution to two estimates of the stationary distribution formed from the
samples: a nonparametric kernel density estimate, and a parametric estimate made by assuming that
the stationary distribution was Gaussian. The nonparametric kernel density estimator used a Gaussian
kernel with width optimal for producing Gaussian distributions (Bowman & Azzalini, 1997), although
we should note that this kernel does not necessarily produce Gaussian distributions. The parametric
density estimator assumed that the samples come from a Gaussian distribution and estimates the
parameters of the Gaussian distribution that generated the samples. Both density estimation methods
show that the samples do a good job of reproducing the Gaussian training distributions. A more quan-
titative measure of how well the participants reproduced the training distribution is to evaluate the
means and standard deviations of the samples relative to the training mean and standard deviation.
The averages over participants are shown in Fig. 3. Over all participants, the mean of the samples is
not significantly different from the training mean and the standard deviation of the samples is not sig-
nificantly different from the standard deviation of the training distribution for any of the questions.
The t-tests for the mean and standard deviation for each question are shown in Table 1.

The final testing block provided an opportunity to test the predictions of samples collected by the
MCMC method for a separate set of discriminative judgments. The fish farm distribution was assumed
to be Gaussian with the parameters determined by the mean and standard deviation of the MCMC
samples. The uniform distribution on which participants were trained was assumed for the ocean fish
category. The category with the higher probability for each fish size was used as the prediction,
Fig. 2. Markov chains produced by participants in Experiment 1. The three rows are participants from the three question
conditions. The panels in the first column show the behavior of the three Markov chains per participant. The black lines
represent the states of the Markov chains, the dashed line is the mean of the Gaussian training distribution, and the dot–dashed
lines are two standard deviations from the mean. The second column shows the densities of the training distributions. These
training densities can be compared to the MCMC samples, which are described by their kernel density estimates and Gaussian
fits in the last two columns.



Fig. 3. Results of Experiment 1. The bar plots show the mean of l and r across the MCMC samples produced by participants in
all three question conditions. Error bars are one standard error. The black dot indicates the actual value of l and r for each
condition, which corresponds closely with the MCMC samples.
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consistent with assuming that participants make optimal decisions. The discriminative responses
matched the prediction on 69% of trials, which was significantly greater than the chance value of
50%, z ¼ 17:7; p < 0:001.

6. Experiment 2

The results of Experiment 1 indicate that the MCMC method can accurately produce samples from
a trained structure for a variety of questions. In the second experiment, the design was extended to
test whether participants trained on different structures would show clear differences in the samples
that they produced. Specifically, participants were trained on four distributions differing in their mean
and standard deviation to observe the effect on the MCMC samples.

6.1. Method

6.1.1. Participants
Fifty participants were recruited from the Brown University community. Data from one participant

was discarded for not finishing the experiment, data from another was discarded because the chains
reached a boundary, and the data of eight others were discarded because their chains did not cross.
After discarding participants, there were 10 participants in the low mean and low standard deviation
condition, 10 participants in the low mean and high standard deviation condition, nine participants in
the high mean and low standard deviation condition, and 11 participants in the high mean and high
standard deviation condition.

6.1.2. Stimuli
Stimuli were the same as Experiment 1.

6.1.3. Procedure
The procedure for this experiment is identical to that of Experiment 1, except for three changes.

The first change is that participants were all asked the same question, ‘‘Which fish came from the fish
farm?” The second difference is that the mean and the standard deviation of the Gaussian were varied
in four between-participant conditions. Two levels of the mean, l ¼ 3:66 cm and l ¼ 4:72 cm, and
two levels of the standard deviation, r ¼ 3:1 mm and r ¼ 1:3 mm, were crossed to produce the four
Table 1
Statistical significance tests for question conditions in Experiment 1.

Question Statistic df t p

Which? Mean 11 0.41 0.69
Std. Dev. 11 �1.46 0.17

Better example? Mean 11 0.00 1.00
Std. Dev. 11 0.72 0.48

More likely? Mean 9 �0.95 0.37
Std. Dev. 9 �0.22 0.83
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between-participant conditions. The uniform distribution was the same across training distributions
and was bounded at 2.63 cm and 5.76 cm. The final change was that the standard deviation of the pro-
posal distribution was set to 2.2 mm in this experiment.

6.2. Results and discussion

As in the previous experiment, it took approximately 20 trials for the chains to converge, so only
the remaining 60 trials per chain were analyzed. The acceptance rates in the four conditions ranged
from 38% to 45%. The distributions on the right-hand side of Fig. 4 show the training distribution
and the nonparametric and parametric estimates of the stationary distribution produced from the
MCMC samples. The distributions estimated for the participants shown in this figure match well with
the training distributions. The mean, l, and standard deviation, r, was computed from the MCMC
samples produced by each participant. The average of these estimates for each condition is shown
in Fig. 5. As predicted, l was higher for participants trained on Gaussians with higher means, and r
was higher for participants trained on Gaussians with higher standard deviations. These differences
were statistically significant, with a one-tailed Student’s t-test for independent samples giving
tð38Þ ¼ 7:36, p < 0.001 and tð38Þ ¼ 2:01, p < 0.05 for l and r, respectively. The figure also shows that
the means of the MCMC samples corresponded well with the actual means of the training distribu-
tions. The standard deviations of the samples tended to be higher than the training distributions,
which could be a consequence of either perceptual noise (increasing the effective variation in stimuli
associated with a category) or choices being made in a way consistent with the exponentiated choice
rule with c < 1. Perceptual noise seems to be implicated because both standard deviations in this
experiment (which were overestimated) were less than the standard deviation in the previous exper-
iment (which was correctly estimated). The prediction of the MCMC samples for discriminative trials
was determined by the same method used in Experiment 1. The discriminative responses matched the
prediction on 75% of trials, significantly greater than the chance value of 50%, z ¼ 24:5, p < 0.001.

7. Experiment 3

The results of Experiments 1 and 2 suggest that the MCMC method can accurately reproduce a
trained structure. Experiment 3 used this method to gather samples from the natural (i.e., untrained)
Fig. 4. Markov chains produced by participants in Experiment 2. The four rows are participants from each of the four
conditions. The panels in the first column show the behavior of the three Markov chains per participant. The black lines
represent the states of the Markov chains, the dashed line is the mean of the Gaussian training distribution, and the dot–dashed
lines are two standard deviations from the mean. The second column shows the densities of the training distributions. These
training densities can be compared to the MCMC samples, which are described by their kernel density estimates and Gaussian
fits in the last two columns.



Fig. 5. Results of Experiment 2. The bar plots show the mean of l and r across the MCMC samples produced by participants in
all four training conditions. Error bars are one standard error. The black dot indicates the actual value of l and r for each
condition, which corresponds with the MCMC samples.
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categories of giraffes, horses, cats, and dogs, representing these animals using nine-parameter stick
figures (Olman & Kersten, 2004). These stimuli are less realistic than full photographs of animals,
but have a representation that is tuned to the category, so that perturbations of the parameters will
have a better chance of producing a similar animal than pixel perturbations. The complexity of these
stimuli is still fairly high, hopefully allowing the capture of a large number of interesting aspects of
natural categories. The samples produced by the MCMC method were used to examine the mean ani-
mals in each category, what variables are important in defining membership of a category, and how
the distributions of the different animals are related.

The use of natural categories also provided the opportunity to compare the results of the MCMC
method with other approaches to studying category representations. These stick figure stimuli were
developed by Olman and Kersten (2004) to illustrate that classification images, one of the discrimina-
tive approaches introduced earlier in the paper, could be applied to parameter spaces as well as to pix-
el spaces. Discriminative methods like classification images can be used to determine the decision
bound between categories, but the results of discrimination judgments should not be used to estimate
the parameters characterizing the mean of a category. The experiment empirically highlights why dis-
criminative judgments should not be used for this purpose, and serves as a complement to the theo-
retical argument given in the discussion. In addition, we analyzed the results to determine whether it
would have been feasible to use typicality judgments on a random subset of examples to identify the
underlying category structure. Collecting typicality judgments is efficient when most stimuli belong to
a category, but can be inefficient when a category distribution is non-zero in only a small portion of a
large parameter space. The MCMC method excels in the latter situation, as it uses a participant’s pre-
vious responses to choose new trials.
7.1. Method

7.1.1. Participants
Eight participants were recruited from the Brown University community. Each participant was

tested in five sessions, each of which could be split over multiple days. A session lasted for a total
of one to one-and-a-half hours for a total time of five to seven-and-a-half hours. Participants were
compensated with $10 per hour of testing.
7.1.2. Stimuli
The experiment was presented on a Apple iMac G5 controlled by a script running in Matlab using

PsychToolbox extensions (Brainard, 1997; Pelli, 1997). Participants were seated approximately 44 cm
away from the display. The nine-parameter stick figure stimuli that we used were developed by Ol-
man and Kersten (2004). The parameter names and ranges are shown in Fig. 6. From the side view,
the stick figures had a minimum possible width of 1.8 cm and height of 2.5 mm. The maximum pos-
sible width and height were 10.9 cm and 11.4 cm, respectively. Each stick figure was plotted on the
screen by projecting the three dimensional description of the lines onto a two dimensional plane from
a particular viewpoint. To prevent viewpoint biases, the stimuli were rotated on the screen by incre-



Fig. 6. Range of stick figures shown in Experiment 3 by parameter. The top line for each parameter is the range in the
discrimination session, while the bottom line is the range in the MCMC sessions. Lengths are relative to the fixed body length of
one.
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mentally changing the azimuth of the viewpoint, while keeping the elevation constant at zero. The
starting azimuth of the pair of stick figures on a trial was drawn from a uniform distribution over
all possible values and the period of rotation was fixed at 6 s. The perceived direction of rotation is
ambiguous in this experiment.

7.1.3. Procedure
The first four sessions of the experiment were used to sample from a participant’s category distri-

bution for four animals: giraffes, horses, cats, and dogs. Each session was devoted to a single animal
and the order in which the animals were tested was counterbalanced across participants. On each
trial, a pair of stick figures was presented, with one stick figure being the current state of the Markov
chain and the other the proposed state of the chain. Participants were asked on each trial to pick
‘‘Which animal is the ______”, where the blank was filled by the animal tested during that session. Par-
ticipants made their responses via keypress. The proposed states were drawn from a multivariate dis-
cretized pseudo-Gaussian with a mean equal to the current state and a diagonal covariance matrix.
Informal pilot testing showed good results were obtained by setting the standard deviation of each
variable to 7% of the range of the variable. Proposals that went beyond the range of the parameters
were automatically rejected and were not shown to the participant.

To assess convergence, three independent Markov chains were run during each session. The start-
ing states of the Markov chains were the same across sessions. These starting states were at the ver-
tices of an equilateral triangle embedded in the nine-dimensional parameter space. The coordinates of
each vertex were either 20% of the range away from the minimum value or 20% of the range away
from the maximum value for each parameter. Participants responded to 999 trials in each of the first
four sessions, with 333 trials presented from each chain. The automatically rejected out-of-range trials
did not count against the number of trials in a chain, so more samples were collected than were pre-
sented. The number of collected trials ranged from 1252 to 2179 trials with an average of 1553 trials.

The fifth and final session was a 1000 trial discrimination task, reproducing the procedure that
Olman and Kersten (2004) used to estimate the structure of visual categories of animals. On each trial,
participants saw a single stick figure and made a forced response of giraffe, horse, dog, or cat. Stimuli
were drawn from a uniform distribution over the restricted parameter range shown in Fig. 6. This
range was used in Olman and Kersten (2004), and provided a higher proportion of animal-like stick
figures at the expense of not testing portions of the animal distributions. Unlike in the MCMC sessions,
the stimuli presented were independent across trials.

7.2. Results and discussion

In order to determine the number of trials that were required for the Markov chains to converge to
the stationary distribution, the samples were projected onto a plane. The plane used was the best pos-
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sible plane for discriminating the different animal distributions for a particular participant, as calcu-
lated through linear discriminant analysis (Duda, Hart, & Stork, 2000). Trials were removed from the
beginning of each chain until the distributions looked as if they had converged. Removal of 250 trials
appeared to be sufficient for most chains, and this criterion was used for all chains and all participants.
The acceptance rate of the proposals across subjects and conditions ranged between 14% and 31%.
Averaged across individuals, it ranged from 21% to 26%, while averaged across categories, acceptance
rates ranged from 19% to 27%. Fig. 7 shows the chains of the giraffe condition of Participant 3 projected
onto the plane that best discriminates the categories. The largest factor in the horizontal component
was neck length, while the largest factor in the vertical component was head length. The left panel
shows the starting points and all of the samples for each chain. The right panel shows the remaining
samples after the burn-in was removed. From this figure, we can see that the giraffe and horse distri-
butions are relatively distinct, while the cat and dog distributions show more overlap.

Displaying a nine-dimensional joint distribution is impossible, so we must look at summaries of the
distribution. A basic summary of the animal distributions that were sampled is the mean over sam-
ples. The means for all combinations of participants and quadrupeds are shown in Fig. 8. As support
for the MCMC method, these means tend to resemble the quadrupeds that participants were ques-
tioned about. While the means provide face validity for the MCMC method, the distributions associ-
ated with the different categories contain much more interesting information. Samples from each
animal category are shown in Fig. 7, which give a sense of variation within a category. Also, the mar-
ginal distributions shown in Fig. 9 give a more informative picture of the joint distribution than the
means. The marginal distributions were estimated by taking a kernel density estimate along each
parameter for each of the quadrupeds on the data pooled over participants. The Gaussian kernel used
had its width optimized for estimating Gaussian distributions (Bowman & Azzalini, 1997). In Fig. 9 we
can see that neck length and neck angle distinguish giraffes from the other quadrupeds. Horses gen-
erally have a longer head length than the other quadrupeds. Dogs have a somewhat distinct head
length and head angle. Cats have the longest tails, shortest head length, and a narrowest foot spread.

The data summaries along one or two dimensions may exaggerate the overlap between categories.
It is possible that the overlap differs between participants or the distributions are even more separated
in the full parameter space. In order to examine how much the joint distributions overlap, a multivar-
iate Gaussian distribution was fit to each set of animal samples. Using these distributions for each
Fig. 7. Markov chains and samples from Participant 3 in Experiment 3. The left panel displays the three chains from the giraffe
condition. The discs represent starting points, the dotted lines are discarded samples, and the solid lines are retained samples.
The right panel shows the samples from all of the animal conditions for Participant 3 projected onto the plane that best
discriminates the classes. The quadrupeds in the bubbles are examples of MCMC samples.



Fig. 8. Means across samples for all participants and all quadrupeds in Experiment 3. The rows of the figure correspond to
giraffes, horses, cats, and dogs, respectively. The columns correspond to the eight participants.
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quadruped, We calculated how many samples from each quadruped fell within the 95% confidence re-
gion of each animal distribution. Table 2 shows the number of samples that fall within each distribu-
tion averaged over participants. The diagonal values are close to the anticipated value of 95%. Between
quadrupeds, horses and giraffes share a fair amount of overlap and dogs and cats share a fair amount
of overlap. Between these two groups, cats and dogs overlap a bit less with horses than they do with
each other. Also, cats and dogs overlap very little with giraffes. There is an interesting asymmetry be-
tween the cat and dog distributions. The cat distribution contains 14% of the dog samples, but the dog
distribution only contains 3.7% of the cat samples.

The discrimination session allows us to compare the outcome of the MCMC method with that of a
more standard experimental task. The mean animals from all of the MCMC trials and from all of the
discrimination trials (both pooled over participants) are shown in Fig. 10. The discrimination judg-
ments were made on stimuli drawn randomly from the parameter range used by Olman and Kersten
(2004). The mean stick figures that result from these discrimination trials look reasonable, but MCMC
pilot results showed that the marginal distributions were often pushed against the edges of the
parameter ranges. The parameter ranges were greatly expanded for the MCMC trials as shown in
Fig. 6, resulting in a space that was approximately 3800 times the size of the discrimination space.
Over all participants and animals, only 0.4% of the MCMC samples fell within the restricted parameter
range used in the discrimination session. This indicates that the true category distributions lie outside
this restricted range, and that the mean animals from the discrimination session are actually poor
examples of the categories – something that would have been hard to detect on the basis of the dis-
crimination judgments alone. This result was borne out by asking people whether they thought the
mean MCMC animals or the corresponding mean discrimination animals better represented the target
category. A separate group of 80 naive participants preferred most mean MCMC animals over the cor-
responding mean discrimination animals. Given a forced choice between the MCMC and discrimina-
tion mean animals, the MCMC version was chosen by 99% of raters for giraffes, 73% of raters for horses,
25% of raters for cats, and 69% of raters for dogs.

With an added assumption the results from the MCMC method can be used to predict discrimina-
tive judgments. The MCMC samples estimate the category densities and it is straightforward to use
this information to predict discrimination judgments if optimal decision bounds between categories
are assumed. Multivariate Gaussian distributions were estimated for each category and for each stim-
ulus shown in the discrimination session. These four probabilities were normalized and then the pre-



Table 2
Proportion of samples that fall within quadruped 95% confidence regions (averaged over participants) in Experiment 3.

Distribution Samples

Giraffe Horse Cat Dog

Giraffe 0.954 0.048 0.006 0.000
Horse 0.097 0.960 0.046 0.058
Cat 0.000 0.044 0.936 0.143
Dog 0.021 0.044 0.037 0.954

Fig. 9. Marginal kernel density estimates for each of the nine stimulus parameters, aggregating over all participants in
Experiment 3. Examples of a parameter’s effect are shown on the horizontal axis. The middle stick figure is given the central
value in the parameter space. The two flanking stick figures show the extremes of that particular parameter with all other
parameters held constant.
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diction was the category with the maximum probability from four animal distributions, consistent
with an optimal decision. Using this method, the predictions matched human responses on 32% of tri-
als, significantly higher than the chance value of 25%, z ¼ 14:5; p < 0:001. (Other assumptions, such as
probability matching to make predictions or using Gaussian kernels to construct the distribution pro-
duced very similar results.) The discrimination results were confined to a small region of the param-
eter space in which few MCMC samples were drawn, which may have contributed to the weakness of
the prediction.

In a large space, randomly selecting trials for typicality judgments will be inefficient when the cat-
egory regions are small and spread out. This is exactly the situation encountered in Experiment 3. The



Fig. 10. Mean quadrupeds across participants for the MCMC and discrimination sessions in Experiment 3. The rows of the figure
correspond to the data collection method and the columns to giraffes, horses, cats, and dogs, respectively.
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projection of the samples from the nine-dimensional parameter space onto a plane, as in Fig. 7, exag-
gerates the size of the relevant region for a category relative to the whole parameter space. The vol-
ume of the space occupied by the different categories can be measured by constructing convex hulls
around all of the post-burn-in samples from each participant for each animal. Convex hulls connect
the most extreme points in a cloud to form a surface that has no concavities and contains all of the
points (Barnett, 1976). Dividing the volume of the space taken up by each animal (averaged over par-
ticipants) by the total volume of the parameter space result in the very small ratios shown in Table 3:
the categories take up only a tiny part of the nine-dimensional space of stick figures. This analysis de-
pends on the bounds of the parameters: selecting a much larger space than necessary would artifi-
cially decrease the volume ratios. We tested whether these ratios are artificially decreased by
computing the size of the least enclosing hypercube for all of the samples pooled across participants
and animal conditions. The ratio of this hypercube to the total parameter space was 0.99, negating the
criticism that the parameter space was larger than necessary. The MCMC method thus efficiently
honed in on the small portion of the space where each category was located, while typicality judg-
ments on a random subset of examples would have been mostly uninformative.
8. Experiment 4

In this experiment, we outline how the MCMC method can be used to test models of categorization
with natural categories. We do not provide a definitive result, but instead outline how difficulties in
applying the MCMC method to testing models of natural categories might be overcome. Theoretically,
we are able to test categorization models, such as prototype and exemplar models, because they make
different predictions about the distribution over objects associated with categories. As outlined above,
prototype models produce unimodal distributions, while exemplar models are more flexible, approx-
imating a distribution with a mixture of kernels centered on each example. The MCMC method pro-
duces samples from this distribution, which can be used to distinguish these models. Categorization
models are usually tested with training experiments, but the efficiency of the MCMC method in
exploring complex parameter spaces allows for the testing of categorization models using more real-
istic stimuli and natural categories. Using this method, we can examine whether the distributions
associated with natural categories more closely resemble those predicted by prototype or exemplar
models. More precisely, we can test whether these distributions have properties that rule out a pro-
totype model, as an exemplar model can emulate a prototype model given an appropriate set of exem-
plars. For example, an exemplar model with two exemplars that are very near one another would be
Table 3
Proportion of parameter space occupied by individual participant samples in Experiment 3.

Giraffe Horse Cat Dog

0.00004 0.00006 0.00003 0.00002
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indistinguishable from a unimodal distribution. As a result, the test is strong in only one direction: a
multimodal distribution is evidence against a simple prototypical category representation. In the other
direction we would only be able to claim that the prototype model could fit the data, but not provide
direct evidence that the exemplar model is unable to do so.

In Experiment 3, there was a suggestion of multiple modes in the marginal distribution of tail angle
for several animal shape categories. However, beyond any arguments about the strength of the results,
the design of the experiment did not have all of the controls necessary to provide strong evidence
against the prototype model. Most importantly, the current experiment demonstrates how to test
for category multimodality in a psychological space, instead of testing in an experimenter-defined
parameter space. Categorization models are defined over a psychological space (Reed, 1972; Nosofsky,
1987), and it is possible that a transformation from one space to another would change the shape of
the function. In order to assess multimodality, the samples must be projected to a psychological space
and then the probability distributions can be assessed there.

Multidimensional scaling (MDS) is the standard method used to create a psychological space, and
was used in this experiment to project the MCMC samples into a psychological space. Classical MDS is
most commonly applied MDS method in psychological experiments, but it was impractical in this sit-
uation because a very large number of pairwise similarity judgments would have been needed to con-
struct a scaling solution for the MCMC samples. Instead, an MDS variant known as Dimensionality
Reduction by Learning an Invariant Mapping (DrLIM; Hadsell et al., 2006) was used. DrLIM has not
been used in psychological experiments to our knowledge, but was chosen because its advantages
over classical MDS. First, it utilizes neighborhood judgments instead of requiring all pairwise similar-
ity judgments between examples. Neighborhood judgments can be made more quickly than the full
set of pairwise similarity judgments – while the similarity of an item to every other item needs to
be implicitly determined in order to find its neighbors, participants need only respond with the target
item’s neighbors. Second, DrLIM uses these neighborhood judgments to train an explicit function that
maps the parameter space onto the similarity space. Classical MDS ignores the parameters of the items
and does not produce an explicit mapping function. As a result, DrLIM can use the neighborhood judg-
ments collected for a small set of stimuli in order to produce a solution for all of the stimuli in the en-
tire parameter space.

The following experiment demonstrates how to test the simple prototype model using the catego-
ries of apples, grapes, and oranges. These categories are basic-level categories (Rosch et al., 1976; Liu,
Golinkoff, & Sak, 2001), like the animal categories (Snodgrass & Vanderwart, 1980), the level at which
the prototype model is defined (Rosch et al., 1976). However, there is reason to expect a stronger re-
sult of multimodality with these categories: the stimuli were colored shapes and varieties of apples
and grapes have different colors.

8.1. Method

8.1.1. Participants
Eight participants were recruited from the Indiana University community. Each participant was

tested in two phases, with the second phase allowed to extend over multiple days. Participants com-
pleted the experiment in five to seven sessions with a total time ranging from five to seven-and-a-half
hours and were compensated $10 per hour.

8.1.2. Stimuli
The experiment was presented in a darkened room on a Apple eMac controlled by a script running

in Matlab using PsychToolbox extensions (Brainard, 1997; Pelli, 1997). The display was calibrated
using a Spyder2 colorimeter to the sRGB standard with a D65 temperature point. Observers were
seated approximately 44 cm away from the display. Stimuli were six-parameter shapes with three
parameters determining the shape and three parameters determining the color. The three shape
parameters were the radii of the circles, the horizontal distance between circle centers, and the ver-
tical distance between circle centers as shown in Fig. 11. The range was [0,0.5] for the radii, [0,1]
for the horizontal distance, and [�0.866,0.866] for the vertical distance. The maximum values for each
of these parameters produced a shape with maximum size: 2.5 cm in the MDS session and 7.5 cm in



Fig. 11. Shape parameters used in constructing fruit stimuli in Experiment 4. The r, h, and v correspond to the radii, horizontal,
and vertical parameters. Black lines are for reference only and were not visible as the shape was a single monochromatic color. A
green sprig was placed at the top of each stimulus to signify where the vine would attach. (For interpretation of color mentioned
in this figure legend the reader is referred to the web version of the article.)
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the MCMC sessions. Negative values of the horizontal and vertical parameters resulted in the changes
in the relative position of the circle centers (e.g., a negative vertical parameter resulted in an internal
structure of two circles above a single circle). The three color parameters corresponded to the three
parameters in the CIE Lab standard. The allowable range for it L was [0,100], while the ranges for a
and b were [�100,100]. Each stimulus was topped by a green sprig (sRGB value of [34,139,34]) with
a height and width 1/10th and 1/40th that of the maximum fruit size, respectively. Each fruit stimulus
was placed on a ‘‘dinner plate” constructed of three circles: two white and one black. The three circles
were overlayed to produce a white plate with a black ring. The plate was 1.3512 times the maximum
fruit size with an inner white region radius that was 90% of the total plate radius. These values were
chosen so that largest possible stimulus would not touch the black ring on the plate. A schematic ruler
was always present on the screen, indicating that participants should behave as if the plates were
10 in. in diameter.
8.1.3. Procedure
There were two phases: an MDS session and an MCMC session that interleaved three basic-level

categories (apples, grapes, and oranges). The MDS session consisted of 90 trials of neighborhood judg-
ments. On each trial one of the stimuli was used as the target and participants chose the neighbors
from all of the remaining stimuli. Participants were instructed to think of the shapes as fruit and to
make their neighbor judgments on that basis. These stimuli were picked so that they would include
the most common fruit. Table 4 shows the factors and levels that were crossed to make the 90 stimuli.
(For a shape parameter x, x ¼ sx0.) A screen capture of this phase of the experiment is shown in Fig. 12.
The number of potential neighbors exceeded the number of stimuli that could be comfortably dis-
played on a single screen, so several pages of stimuli were used, with a maximum of 32 stimuli per
page. The locations of the potential neighbors were randomized on each trial to reduce the possible
bias caused by the ordering of the potential neighbors. Participants were allowed to navigate back
and forth between the pages to choose the nearest neighbors to the target stimulus (by putting those
stimuli on the neighbor plates). Once all of the pages had been viewed and five nearest neighbors had
been selected, the END button appeared and participants were allowed to end the trial whenever they
were satisfied with their choices.

A series of MCMC sessions followed the MDS session. Each MCMC trial displayed two stimuli on
plates and participants were asked to respond via keypress to the stimulus that was a better example
of a particular category. One stimulus was the current state of a Markov chain and the other was the
proposed state. Whichever stimulus was selected became the new state of the chain. For each tested
category, three chains were interleaved. Three chains for each of the three basic-level categories (ap-



Table 4
Stimulus properties crossed to produce multidimensional scaling stimulus set in Experiment 4.

Color ðL; a; bÞ Shape ðr0; h0; v 0Þ Size (s)

Red (53.24,80.09,67.20) Circle (0.5,0,0) Small (0.33)
Cardinal (42.72,62.89,28.48) Fat circle (0.5,0.3,0) Large (0.67)
Forest green (50.59,�49.59,45.02) Very fat circle (0.5,1,0)
Yellow (97.14,�21.56,94.48) Stawberry-shaped (0.5,1,0.866)
Brown (40.44,27.50,50.14) Pear-shaped (0.5,1,�0.866)
Eggplant (34.88,64.05,�30.59)
Orange (74.93,23.93,78.95)
Peach (91.95,1.80,27.19)
Tan (74.98,5.02,24.43)

Fig. 12. Sample screen from the session collecting nearest neighbor data in Experiment 4. Participants selected the stimuli that
they considered the nearest neighbors of each stimulus.
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ples, grapes, and oranges) were all interleaved randomly with one another. There were 667 trials per
chain yielding 2001 trials presented per basic-level category. The number of samples was often far
greater than the number of presented trials because all proposals outside of the parameter ranges
were automatically rejected. The number of samples in a category condition for a participant ranged
from 3572 to 7416 with an average of 4650. The proposal distribution and chain start points were the
same across all categories and participants. The proposal distribution was a mixture with a 0.8 weight-
ing on a diagonal-covariance Gaussian with standard deviations equal to 7% of each parameter’s range,
a 0.1 weight on a uniform distribution across all shape parameters, and a 0.1 weight on a uniform
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distribution across all color parameters. (When proposing on a subset of parameters the other param-
eters remained fixed.) The uniform distributions were used in order to make large jumps between
potentially isolated peaks in the subjective probability distributions. The large jumps were proposed
separately for shape and color parameters because these dimensions are psychologically separable
(Garner & Felfoldy, 1970).

8.2. Multidimensional scaling analysis

This section provides details on the method used to analyze the neighborhood data and the scaling
results. DrLIM is a MDS method that uses neighborhood judgments to find the best function to map
stimuli from a parameter space to a similarity space. The best function is selected by finding the
parameters for a class of functions that best minimize a particular loss function. This loss function in-
creases as the distance between items that are neighbors increases and as the distance between items
that are not neighbors decreases. Non-neighbors only impact the loss function within a certain mar-
gin. The exact loss function is
Fig. 13
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where W is the set of parameters, Y is the response (neighbors are 0 and non-neighbors are 1), ~X1 and
~X2 are the two members of the pair, m is the margin outside of which the non-neighbors do not con-
tribute to the loss function, and DW is the Euclidean distance between the function’s outputs given ~X1

and ~X2 as inputs and parameters W.
In order to allow as large a class of nonlinear functions as possible, a feedforward artificial neural

network (ANN) with a hidden layer was used. The number of inputs was equal to the number of
parameters of the stimuli and the number of outputs determined the dimensionality of the similarity
space. (Values on these outputs give the coordinates of the items in the similarity space.) To produce a
distance measure between items, a siamese ANN was used, meaning that a single set of parameters
governed the behavior of the pair of networks required to produce the distance between a pair of
items. Pairs of stimuli were considered neighbors when if either of the stimuli was the target, the
other was chosen to be one of its five nearest neighbors.

The network structure is shown in Fig. 13. Thirty hidden nodes were used and network weights
were updated via stochastic gradient descent. Weights were initially drawn from a uniform distribu-
tion with a range of [�0.7,0.7]. Training error was backpropogated through the network with a total
gradient equal to the sum of the gradients of the network for each input, multiplied by the gradient of
. Illustration of the structure of the artificial neural network used to implement the DrLIM method for the
mensional scaling analysis in Experiment 4. An input layer feeds the parameters forward to a hidden layer and then
ut layer for each of the stimuli. The output layer in this illustration is for a two dimensional solution. A pair of stimuli are
ugh the network (parameters are the same in the two networks) and the values of the outputs are fed into a distance

n, and then into a loss function based on a participant’s neighborhood judgments.
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the loss function, and a learning rate parameter. The gradient of the loss function was DW for neigh-
bors, �ðm� DWÞ for non-neighbors within the margin, and zero for non-neighbors outside the margin.
The margin was set to 0.3. The learning rate parameter was equivalent to dividing the total gradient by
the number of training pairs. The network was trained for 80 epochs on each run and 30 runs with
new random starting weights were used to avoid local minimums in the loss function. This simulation
was repeated for each participant for each possible number of output dimensions (one to six).

The neighborhood judgments of an example participant, Participant 7, are shown in Fig. 14. These
judgments show a strong influence of color, while shape is also be a factor. Across different colors,
some were considered better neighbors than others, in particular peach and tan were close neighbors.
These neighborhood judgments and those of the other participants were the input into the DrLIM
method described above. The values of the loss function for each of the participants for each possible
number of dimensions in the solution are shown in Fig. 15. The loss function tended to decrease with
more dimensions, and the small departures from monotonicity are due to the difficulty in finding the
best weights for each output dimension. An inspection of this figure reveals an elbow point at about
three dimensions, but the remainder of the analyses will use the two dimensional solution to simplify
the presentation.

The variability across participants in neighborhood judgments is illustrated by plots of the MDS
stimuli onto the best two dimensional solutions in Fig. 16. The MDS solution for Participant 7 reflects
the trends in the neighborhood judgments (Fig. 14): a strong clustering by color, but with a contribu-
tion of shape as well. This pattern was common across participants, with only Participant 5 showing a
very different pattern. Shape is the strongest cue for Participant 5 and size also appears to be more
important than color. Participant 4 shows the same basic color clustering as Participant 7, but with
the colors divided into groups. Participant 2 shows this phenomenon as well, but in this case only
the green fruit shapes are isolated.

While the scaling solution presented here satisfies the loss function used in DrLIM, there are many
possible ways to define what is meant by a good scaling solution. Research in dimensionality reduc-
tion has produced many different algorithmic approaches to this problem and these approaches can
Fig. 14. Neighborhood judgments made by Participant 7 in Experiment 4. The center of each cluster was the target and the five
surrounding shapes were the neighbors selected by the participant on that trial.



Fig. 15. Value of the loss function optimized by the DrLIM algorithm for multidimensional scaling in Experiment 4, as a function
of dimension. Each line represents an individual participant.
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produce different solutions (Hadsell et al., 2006; Hinton & Salkhutdinov, 2006; Roweis & Saul, 2000;
Tenenbaum, de Silva, & Langford, 2000). In order to make strong claims about models it will be impor-
tant for the neighborhood judgments to lead to consistent representations under a variety of plausible
assumptions.
8.3. Results and discussion

The key analysis step in testing whether a prototype model is a good description of the selected
categories is to determine the number of clusters in the MCMC samples. A larger and more compre-
hensive investigation of these category structures could use a variety of methods for determining
the number of clusters, including fitting mixture models to the data. In one mixture model approach,
a certain number of components (or clusters) is assumed and then the parameters that produce the
maximum likelihood of the data are found. The maximum likelihoods from different numbers of clus-
ters are then compared using a model selection criterion, such as the Bayesian Information Criterion
(Schwartz, 1978). More thoroughly Bayesian options exist as well, such as inferring a distribution over
the number of clusters by using a Dirichlet process mixture model (Antoniak, 1974; Ferguson, 1983;
Neal, 1998). Since our goal here is primarily to illustrate how the MCMC approach could be used to
address questions about prototype and exemplar models, we will restrict ourselves to a qualitative
analysis of the data.

Inspection of the data suggested that the procedure used in this preliminary experiment did not
provide enough samples for the MCMC algorithm to explore the entire stationary distribution. Accep-
tance rates across subjects and questions ranged from 2.5% to 15%, which indicates that the proposal
distribution may have been too wide. Discarding the first half of the samples from each chain results in
the left column of Fig. 17. Each panel shows the states of the three Markov chains sampling from one
of Participant 7’s categories, plotted on the best two dimensional MDS solution. The three chains show
a fair amount of convergence: each region of the samples seems to involve at least two chains. How-
ever, the ideal would be for every chain to have a presence in each cluster of samples. The samples
pooled across chains for each category are shown in the right column. The separation between sam-
ples shown in Fig. 17 suggests that they were drawn from a multimodal distribution, but simulations
showed that similar numbers of clusters could have been produced from three non-converged chains
sampling from a category distribution with a single mode.



Fig. 16. Two dimensional scaling solutions for the stimuli presented during the neighborhood task in Experiment 4. Panels
correspond to individual participants. The locations of individual fruit stimuli reflect their locations in the recovered
psychological space.
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This experiment outlines the procedures necessary for the MCMC method to produce evidence
against a simple prototype model of natural categories. An advanced MDS method was adapted to
use for human experiments for the purpose of determining an explicit mapping between the stimulus
space and the psychological space. Basic-level categories were tested using the MCMC method. While
this experiment was primarily intended to illustrate how the MCMC method can be used to explore
theoretical questions about the representation of category structures, the preliminary results provide
some suggestion of multimodality. Further, more comprehensive, experiments will be required to ob-
tain definitive evidence as to whether these categories have structures that are inconsistent with pro-
totype models.
9. General discussion

We have developed a Markov chain Monte Carlo method for exploring probability distributions
associated with different mental representations. This method allows people to act as a component
of an MCMC algorithm, constructing a task for which choice probabilities follow a valid acceptance
function. By choosing between the current state and a proposal according to these assumptions, peo-
ple produce a Markov chain with a stationary distribution that is informative about their mental rep-
resentations. Our experiments illustrate how this approach can be used to investigate the mental
representation of category structures. The results of Experiments 1 and 2 indicate that the MCMC
method accurately uncovers differences in mental representations that result from training people



Fig. 17. States of the Markov chains and samples for Participant 7 in Experiment 4, plotted on the best two dimensional MDS
solution. In the first column, each of the three chains for a fruit condition are displayed in a different color. Dotted lines are
discarded samples, solid lines are retained samples, and the black discs are the starting points for each chain. The second
column shows the samples that were retained in each fruit condition. (For interpretation of color mentioned in this figure
legend the reader is referred to the web version of the article.)
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on categories with different structures. However, the potential of the method lies in being able to dis-
cover the structures that people associate with categories that they have learned through interacting
with the world. Experiment 3 collected samples from natural categories of animals over a nine-dimen-
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sional stick figure space. These samples illustrated the differences between the representations of
these animals along the parameters of the stimuli, giving more insight into the representations than
could be gleaned by finding the discrimination boundary alone. Experiment 4 illustrated a test of a
central question about representation of natural categories. Multidimensional scaling was combined
with MCMC to probe the category structure of apples, grapes, and oranges. The results provided a
demonstration of how to test a models of natural categories and open up the possibilities of future
empirical investigations with this method.

In the remainder of the paper, we consider the impact of relaxing the assumptions we have made
about human decision making, how the MCMC method relates to other methods that have been used
for exploring mental representations, and provide some cautions and recommendations for users of
this method. The latter draw on both our experience in running these experiments and the theoretical
properties of MCMC, and are intended to make it easier for other researchers to use the MCMC method
to explore psychological questions. We close with a brief discussion of the implications of our results,
and some possible future directions.

9.1. Relaxing the assumptions

To match human decision making to the MCMC algorithm, we made several strong assumptions
about human decisions:

1. Participants use a ratio rule to make decisions.
2. Category representations are unchanged throughout the experiment.
3. Decisions are based only on the current stimulus pair.

We have already addressed sensitivity to the first of these assumptions, showing that the algorithm
will produce meaningful results for behavior that is more or less deterministic than probability match-
ing. In the remainder of this section, we address the other two assumptions. The implications of relax-
ing the second assumption are considered in the section on category drift and the robustness of the
method to violations of the third assumption are considered in the context effects section.

9.1.1. Category drift
As the MCMC analysis is based on the assumption that the category distribution remains constant

over time, a concern in the experiments was to make sure that participants’ categories were not influ-
enced by the test trials. In a pilot version of Experiment 1, training and test trials were not interleaved,
instead all of the training trials were presented at the beginning of the experiment. Data from an
example participant from the pilot experiment is shown in Fig. 18. The Markov chains converge,
but once they converge the chains tend to move together. This result, if not simply due to chance,
is due to changes in the underlying category structure. If the distribution we are drawing samples
from is not constant, then the samples will reflect a combination of all of the states of the dynamic
distribution, not the stationary distribution that is assumed. In Experiments 1 and 2, we attempted
to reduce category drift through interleaving blocks of training and test trials. This strategy seemed
effective as the behavior in Fig. 18 was not observed. This caution is necessary for natural categories
as well. If the categories participants have formed are fragile, then they could change throughout a
MCMC test session through the influence of test trials. And if the stimuli have more than one dimen-
Fig. 18. Markov chain states for a pilot participant that illustrates category drift. The chains converge and then move together
over time.
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sion, it will be much more difficult to identify category drift by examining whether the Markov chains
are traveling together.

9.1.2. Context effects
Two types of context effects are considered in this section: context effects arising from between-

trial dependencies and context effects that are constant over the course of the experiment. Sequential
effects are nearly ubiquitous in cognitive science, with examples including representations of spatial
or temporal intervals (Gilden, Thornton, & Mallon, 1995), serial position effects in free recall (e.g., Mur-
dock, 1962; Raaijmakers & Shiffrin, 1981), and priming (Schooler, Shiffrin, & Raaijmakers, 2001;
Howes & Osgood, 1954). However, MCMC was developed for the digital computer and assumes that
decisions depend only on the current stimuli and are not influenced by any previous trials. In the
MCMC task, there are a multiple plausible between-trial dependencies that could arise. Participants
could grow attached to (or tired with) a particular stimulus and change the probability of accepting
a new stimulus.

We can attempt to model these context effects with a more general decision rule. Instead of Eq. (7),
we will use a rule that assumes participants can remember which example was presented on a pre-
vious trial. This rule assumes that participants have a fixed chance of ignoring the category probabil-
ities of the stimuli and instead are biased to choose either the state of the Markov chain or the
proposal of the Markov chain,
Fig. 19.
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where g is the probability of making a biased choice, and b is the probability of choosing the proposal
when making a biased choice. Interestingly, if participants are biased towards remaining in the same
state, the stationary distribution does not change. We can see this in Eq. (18) if b ¼ 0. In this case the
acceptance probability of a new state is scaled downward by 1� g and the acceptance function still
satisfies the detailed balance equation (Eq. (1)). Simulations verified this result, as shown in Fig. 19.
The left panel shows one million states from an unbiased decision rule that is sampling from a mixture
of Gaussians distribution. The middle panel shows one million states from a decision rule that flips a
fair coin and either uses the ratio rule or remains in the current state. These simulations illustrate how
the stationary distribution does not change when participants are biased towards the current state as
in Eq. (18).

The outcome is not as faithful to the stationary distribution for participants who can remember the
previous choice, and are then biased towards choosing the new stimulus. This bias can be modeled by
States of a Markov chain for unbiased and biased decision rules. The states are shown in a histogram with the expected
from the true stationary distribution plotted as a dashed curve over the bars. The left panel is the unbiased decision, the
panel is a decision biased by always choosing the current state on half of the trials (b ¼ 0 and g ¼ 0:5), and the right

s a decision by always choosing the proposal on the half the trials (b ¼ 1 and g ¼ 0:5).
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setting b ¼ 1 in Eq. (18). We do not have analytical results for this case, but the right panel in Fig. 19
shows simulated results from a mixture of two Gaussians. The modes of the distribution seem to be
fairly unbiased, while the variance of each of the Gaussian components seems to have increased. As
the exact spread of the distribution cannot be determined if participants are using an exponentiated
decision rule (Eq. (9)), it does not seem like a simple bias toward the proposed state will much harm
the interpretation of the results. Context effects arising from between-trial dependencies can certainly
take a more complicated form than Eq. (18), but the simulations for a simple form of bias show that
the method has some robustness to between-trial dependencies.

These bias effects are undesirable, even if they do not change the asymptotic results. This reason is
that the convergence of the Markov chain will be slowed because fewer trials are informative. An
experimental method for mitigating these effects is to interleave multiple Markov chains from multi-
ple categories. Multiple chains introduce variety into the stimuli participants judge during any short
period of time and chains from different categories increase that variety greatly. This diversity should
help counter any fatigue or affinity participants build up toward a stimulus or set of stimuli.

Context effects that remain constant during an experiment can come from a large variety of sources
including the internal and external conditions of the experiment (Criss & Shiffrin, 2004). Instructions
in particular can have effects that are unforeseen by the researcher (McKoon & Ratcliff, 2001). In the
MCMC experiments, the previous categories on which a participant has been tested may influence a
participant’s conception of other category structures. The label used for the category could have an
effect as well (for instance, cats versus felines), though Experiment 1 shows that the results are robust
to the form of the question. There is no way to produce a context-free experiment, so the samples
gathered using the MCMC method must be considered with respect to the context of the experiment.

9.2. Other methods for studying mental representations

The results of Experiments 3 and 4 demonstrate that the MCMC method can be used to explore cat-
egories that people have built up through real-world experience. However, this is certainly not the
only method that has been developed to gain insight into people’s concepts and categories. In this sec-
tion, several existing methods of gathering and analyzing categorization data are reviewed and com-
pared to the MCMC method.

9.2.1. Multidimensional scaling and additive clustering
Multidimensional scaling (MDS; Shepard, 1962; Torgerson, 1958) and additive clustering (AC;

Shepard & Arabie, 1979) have been effectively used in many domains to convert judgments of similar-
ity into a psychological structure. Similarity judgments are assumed to reflect the distances between
stimuli in a mental space. MDS uses the relationship between similarity and distance to construct a
space for the stimuli that best respects people’s similarity judgments, while AC constructs a featural
representation. As demonstrated in Experiment 4, MDS can be used as a complementary method to
the MCMC method. MDS/AC are methods for representing the stimuli, while MCMC determines the
probability distribution. As a result, samples gathered by MCMC can be projected from the original
parameter space into the psychological space derived by MDS. This transformation gives the MCMC
samples additional significance and allows researchers to test categorization models, such as the pro-
totype model, that are defined within a psychological space.

The judgments made during an MDS or AC trial share properties with the judgments made during
an MCMC trial. MDS and AC data are collected by one of two methods: directly, by rating the similarity
or dissimilarity of pairs of stimuli (e.g., Navarro & Lee, 2004), or indirectly, by counting the confusions
between pairs of stimuli (e.g., Rothkopf, 1957; Nosofsky, 1987). The MCMC task also requires judg-
ments between pairs of stimuli – specifically which stimulus is a better example of a particular cate-
gory. Both of these tasks depend on an instructional context. In Experiment 4, the MDS context was
fruit, while the MCMC context was a particular fruit category. The difference between the tasks is that
participants are asked about different aspects of the stimulus pair. MDS/AC data are the psychological
distances between a pair of stimuli, while MCMC data are the members of each pair that are the better
examples. Even if asked in the same context, these questions will produce different information, which
are suitable for different applications.
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9.2.2. Discriminative methods
A discriminative choice is defined here as a decision between a set of category labels for a single

stimulus. These data are used by discriminative methods, such as the estimation of classification
images (Ahumada & Lovell, 1971; Gold et al., 2000; Li, Levi, & Klein, 2004; Olman & Kersten, 2004; Vic-
tor, 2005; Tjan & Nandy, 2006), to make inferences about category structures. Classification images
provide a way to estimate the boundaries between categories in high-dimensional stimulus spaces.
In a typical classification image experiment, participants classify stimuli that have had noise added.
A common choice for visual stimuli is to draw samples from pixel-wise independent Gaussian distri-
butions with a mean equal to one of the images participants are asked to find. Participants are pre-
sented this noisy stimulus and asked to make a forced choice as to the identity of the noiseless
image. Based on the combination of the actual stimulus and the response made, a classification image
is a hyperplane that separates the responses into different classes (Murray, Bennett, & Sekuler, 2002).

Discriminative methods make different assumptions about human categorization than the MCMC
method, and for the purposes of predicting discriminative judgments, can be best understood using
the distinction between discriminative and generative approaches to classification that is used in ma-
chine learning (Jordan, 1995; Ng & Jordan, 2001). Following this distinction, discriminative methods
implicitly view human categorization as involving some function that maps stimuli directly to cate-
gory labels, and attempt to estimate the parameters of that process. This approach provides informa-
tion about how a judgment is made about two or more alternatives, and it is useful when the question
of interest is how people make these discriminations, and what features of the stimuli are relevant.
However, other information, such as the mean and variance of the category, is lost when using dis-
criminative methods.

Experiment 3 showed empirically that the mean of a set of discriminative judgments does not pro-
vide a good estimate of the natural category mean. In training studies the exemplars are known, and
the category means for a particular model can be estimated from the exemplars so this problem does
not arise. However, in general, this approach faces a significant obstacle: discriminative trials do not
contain the information necessary to determine a category mean unless very restrictive assumptions
are made about the structure of a category. Fig. 20 shows the probability distributions associated with
two sets of categories. While these categories look very different, they lead to the same predictions
about discriminative responses. The left panel shows two pairs of Gaussian distributions that have
the same optimal decision boundary, but different means and variances. Using the ratio rule of Eq.
(8), the response probabilities for choosing the distribution of each pair with the higher mean were
computed and are displayed in the right panel. Despite the difference in category centers, the response
Fig. 20. Discriminative choices do not determine category means. The left panel shows two sets of Gaussian distributions with
equal within-set variance and an optimal decision boundary at zero. The right panel shows the response probabilities for the
right-hand category for each pair of distributions. Despite different means in the left panel, the response probabilities in the
right panel are equal.
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probabilities for the two sets of distributions in a discriminative paradigm are exactly the same. The
multivariate analysis in Appendix B extends this result, showing that the means of the categories that
can mimic a particular discriminative response function do not have to be proportional to the original
means. These results demonstrate that it is not possible to determine category means from discrim-
inative data, unless even stronger assumptions than optimal boundaries, Gaussian distributions,
and equal covariance are made.

In contrast, the MCMC method corresponds to a generative view of discriminative judgments,
assuming that each category is represented as a probability distribution over objects, and that catego-
rization is the consequence of using Bayes’ rule to work back from these distributions to a decision as
to how to categorize new objects. The samples gathered approximate the actual distributions them-
selves, allowing us to learn more about the categories than if a discriminative model had been used.
A researcher can perform any test on these distributions, participant to there being enough data to
support the test. The advantage of the generative nature of the MCMC method is that additional infor-
mation is obtained, such as estimates of category means and variability as in Experiment 3.

Discriminative judgments can be predicted using the probability distributions estimated by MCMC,
by making assumptions about the decision process that participants use. The discrimination predic-
tions based on MCMC judgments and optimal decision boundaries were compared to actual discrim-
ination judgments in Experiments 1–3. The match was above chance, but was far from perfect. In
general, if the experimenter is only interested in a very particular and limited set of information about
category discriminations, then the lack of flexibility of the discriminative model can be an advantage.
Fewer trials will be necessary to produce the same results, assuming the assumptions made by the dis-
criminative model are correct (Jordan, 1995; Ng & Jordan, 2001). Classification images provide an
example of the efficiency of discriminative methods in collecting boundary information, having been
successfully applied to estimating linear boundaries between images of 10,000 pixels (e.g., Gold et al.,
2000). The MCMC method has the advantage of revealing gradient information, but would be imprac-
tical for estimating a decision boundary in this situation. Its strength is in providing a much richer
picture of the structure of a category than information about the boundaries that determine discrim-
ination judgments.

9.2.3. Typicality ratings
Typicality ratings are a useful tool for determining how well objects represent a category. These

ratings are most commonly used to explore natural categories and were instrumental in supporting
the view that natural basic-level categories have a prototypical representation (Rosch & Mervis,
1975). Later work showed that typicality ratings in a training paradigm were well-described by an
exemplar model (Nosofsky, 1988). The most commonly used categorization tasks are discrimination
tasks, but the information gathered by typicality ratings is often more stable across different contexts.
As an example, the boundaries of color categories show a lot of variation across different cultures. In
contrast, focal colors, or the best examples of colors, do not show much variation across cultures
(Lakoff, 1987). Other experiments suggest that the same result occurs for odors (Chrea, Valentin, Sul-
mont-Ross, Hoang Nguyen, & Abdi, 2005). These results and others (Labov, 1973), show that category
boundaries are more sensitive to context effects than category centers. Thus, typicality judgments may
be more useful for studying basic cognitive processes than discrimination judgments.

A typicality rating task and the task used in the MCMC method are very similar. The ratings can
be typicality judgments of single objects (e.g., Storms et al., 2000) or a pairwise judgment of which
object is more typical (e.g., Bourne, 1982). The pairwise judgment is exactly the task used in the
MCMC method. However, the MCMC method provides a way to estimate the distributions associated
with natural categories that is more efficient than previous methods for gathering typicality ratings.
Experiments that collect typicality ratings have relied on the researcher to choose the test objects
(e.g., Labov, 1973; Rosch et al., 1976; Nosofsky, 1988). If the researcher has a lot of knowledge about
the structure of the category, then this method will be efficient. However, with natural categories the
researcher often has less knowledge, because he or she does not know what examples were used to
construct the category. Out of many hypotheses about a natural category structure, few will be true.
The resulting experiment will require a large set of stimuli to be tested, and few trials will be
informative.
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Experiment 3 demonstrated just this kind of situation: the distributions associated with each indi-
vidual animal shape were only non-zero in a small region of the parameter space required to test all of
the animals. Choosing a set of animal shapes for participants to rate would have been inefficient be-
cause almost all would fall outside the bounds of the categories. The MCMC method is more effective
in this situation because it uses a participant’s previous responses to choose informative new test ob-
jects. In general, the MCMC algorithm is particularly effective for sampling from distributions that oc-
cupy a small region of a parameter space (Neal, 1993). As a result, the MCMC method presented here is
well suited for determining the distribution associated with a natural category.

9.2.4. Categorization models
Categorization research has benefited from intensive investigation using a large number of math-

ematical models. These models have been developed to fit the data from a variety of tasks including
binary classifications (e.g., Nosofsky et al., 1994; Ashby & Gott, 1988; Nosofsky, 1987), typicality judg-
ments (e.g., Storms et al., 2000; Nosofsky, 1988), or stimulus reconstructions (e.g., Huttenlocher et al.,
2000; Vevea, 2006). In order to produce predictions, the models need to be adapted for each task in
which the researcher is interested. The MCMC method is not a model of categorization, but instead
is a method for collecting data. To make this discussion more concrete, we will describe how the
MCMC method relates to a very well known model of categorization: the Generalized Context Model
(GCM; Nosofsky, 1986).

The GCM stores all exemplars that a participant has observed. In order to make a category judg-
ment, the summed similarity of a new stimulus to each of the examples from a category is computed,
as shown in Eq. (12). These summed similarities for a category are combined in a ratio rule with the
summed similarities of other categories to response probabilities, as in Eq. (11). In essence, the exem-
plars are peaks of a similarity function over the stimulus parameter space. The generalization gradient
and dimension weights of the GCM determine the spread around these peaks. Each category has a sep-
arate similarity function and the strength of an example in a particular category is determined by the
value of the similarity function at the parameters of the test stimulus. An illustration of the similarity
function created by the GCM is shown in Fig. 21.

There is already an explicit model of the MCMC task – participants respond according to the ratio
rule based on the similarity functions of the different categories. This is the same assumption as that
used in the GCM, except we make this assumption as part of the design of our experiment rather than
part of the analysis. If the assumption holds, the results our method produces samples from a proba-
Fig. 21. Relationship of samples to exemplars in the Generalized Context Model. The crosses on the horizontal axis are
exemplars, the solid curve is the resulting similarity function, the dashed curve is the exponentiated function, and the circles are
samples from the exponentiated normalized function.
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bility distribution that is proportional to the summed similarity of the objects to the exemplars. Mak-
ing this assumption earlier in the process of data collection allows it to be leveraged to collect more
informative data via MCMC. However, it should be noted that this method does not draw samples
from the stored exemplars in the GCM. If people are behaving according to the GCM, then the samples
will be a proportional approximation to the similarity function that the GCM produces for a category,
as shown in Fig. 21. These samples will reflect the exemplars plus the generalization gradient and the
dimension weights, not the exemplars themselves. Also, if participants deviate from probability
matching and follow the choice rule in Eq. (9), the resulting probability distributions will show an ef-
fect of the c parameter and will not be equivalent to the similarity function used to represent exem-
plars in the GCM.

9.2.5. Psychophysical staircases
The psychophysical method of adaptive staircases (Cornsweet, 1962) is used to find a participant’s

threshold in a task in which the intensity of the stimulus is varied. A simple implementation of this
method is to show a participant a series of trials, half of which contain a stimulus and half of which
are noise alone. The participant responds as to whether the stimulus is present. If the response is cor-
rect, then the intensity of the stimulus is lowered to make the task more difficult. If the response is
incorrect, the intensity is raised to make it easier. This staircase automatically converges on the 50%
accuracy threshold. The number of consecutive correct or incorrect responses required can be manip-
ulated to change the percent accuracy to which the staircase will converge (Levitt, 1971).

The MCMC method resembles the method of adaptive staircases in that they both adjust trial pre-
sentation based on participant responses. Both have a current state in the stimulus space and transi-
tion to a new state based on human responses. Both methods use Markov chains – for psychophysical
staircases, the next state depends only on the responses to the current state. However, the Markov
chains of the two methods use different contingencies for making transitions. The MCMC method
transitions to the state that the participant chooses, while a staircase transitions based on the correct-
ness of the participant’s response. The stationary distribution of the MCMC method is the category dis-
tribution while the stationary distribution of a psychophysical staircase is unknown apart from its
target mean. The most salient difference between the two methods is that the MCMC method has
no ground truth. Rather than converging to a distribution centered around a point with a certain
objective level of accuracy, it converges to a distribution reflecting a participant’s subjective degrees
of belief about the stimuli.

9.3. Cautions and recommendations

While the MCMC method has many desirable theoretical properties and the experiments illustrate
that it can produce meaningful results for natural categories, there are several issues that can arise in
its implementation. In this section, we describe some of the potential problems and some ways in
which they can be solved.

9.4. Designing the experiment and analyzing the data

9.4.1. Burn-in
As mentioned previously, MCMC requires a number of trials to converge to the stationary distribu-

tion. These pre-convergence trials are not samples from the distribution of interest and must be dis-
carded. Unfortunately, there are few theoretical guarantees about when a Markov chain has converged
to its stationary distribution. A large and varied set of heuristics have been developed for assessing
convergence, and we applied different heuristics in different experiments. In Experiments 1 and 2,
we waited until the chains crossed, a simple heuristic that can be applied in one dimension. Since
the chains will definitely cross once they reach their stationary distibution (as each chain should visit
every state with probability proportional to its stationary probability), this gives us a simple criterion
to check for convergence. In Experiment 3, a variant of an early standard known as the ‘‘thick pen
technique” (Gelfand, Hills, Racine-Poon, & Smith, 1990) was applied. This heuristic involves looking
at a fixed number of chains and removing the early samples from each until they are visually
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indistinguishable. More objective measures have been developed to determine whether a Markov
chain has converged, but are usually more difficult to implement and can be computationally expen-
sive. There is quite a large number of these methods and they vary in their applicability to different
sampling problems (see Brooks & Roberts, 1998; Mengersen et al., 1999; Cowles & Carlin, 1996 for
reviews).

9.4.2. Dependent samples
An issue with MCMC that affects the power of the method is that there is a dependency between

successive samples. The states of a Markov chain are not drawn independently – the overall probabil-
ity of transitioning to a new state depends on the current state. There are many ways to deal with
sample dependence. A common method is to keep every nth sample and discard the rest, as the depen-
dence between samples decreases as the distance between samples increases. Thus, by dropping out a
large enough number of intermediate samples, the remaining set will be pseudo-independent. In the
experiments, all of the samples were retained. A sample can be dependent when computing the mo-
ments of a distribution, or any other expectation with respect to that distribution. However, if a cal-
culation that involved the number of samples (e.g., t-test, ANOVA) were used, the number of states of
the Markov chain cannot be used as the sample size. One alternative is to use the pseudo-independent
sample in the calculation. A second alternative is to compute the effective sample size of the Markov
chain states and using that as the sample size.

9.4.3. Bounded parameter spaces
The MCMC method uses a symmetric proposal distribution, which requires care when applying to

bounded parameter spaces. For states near the boundary, a large number of proposals will be outside
the bounds. A common impulse in this situation is to truncate the proposal distribution and normalize.
However, this scheme will violate detailed balance (Eq. (1)) because the proposal probabilities be-
tween a state at the edge of the space and a state in the middle of the space will not be the same.
Experiments 1 and 2 dealt with this problem by allowing proposals outside of the parameter range
and rejecting participants who accepted out-of-bounds proposals. This method is not very appealing,
especially for experiments in which each participant requires a long time to run. A more sophisticated
approach was adopted for Experiments 3 and 4. Proposals of parameter values outside of the param-
eter range were allowed, but these proposals were automatically rejected – adding another sample of
the Markov chain at the current state without presenting a trial to the participant.

The justification for this approach is straightforward. In committing ourselves to a restricted range
of parameter values, we only want to measure the subjective function f ðxÞ over those values. Thus, we
treat parameters outside the range as having f ðxÞ equal to zero. As a consequence, we will automat-
ically reject any proposal that goes outside the range, and converge to a stationary distribution that
is proportional to f ðxÞ normalized over the set of parameter values allowed in the experiment. In prin-
ciple, we can actually run the MCMC procedure without bounds on the values of the parameters, since
it should converge to a sensible distribution regardless, but we have not tested this in practice.

We can also check that rejecting proposals outside the parameter range is valid by separately
showing detailed balance holds for in-bounds and out-of-bounds proposals. Within the in-bounds re-
gion detailed balance holds because the proposal probability between any two states using a symmet-
ric distribution is equal and a Barker acceptance function is assumed. Between the in-bounds and out-
of-bounds regions proposals are allowed, but an always-reject acceptance function has been adopted.
Assuming that in-bounds proposals from an out-of-bounds state are always rejected (which will never
actually be implemented), detailed balance is satisfied – between any in-bounds and out-of-bounds
state both sides of the detailed balance equation are zero.

9.4.4. Selection of a proposal distribution
When implementing the MCMC method, a proposal distribution must be chosen. In the limit, any

distribution that is symmetric and allows the Markov chain to visit every state in the space will pro-
duce samples from the same distribution. However, for any practical number of trials, some proposal
distributions will be more efficient than others. In Experiments 1–3, we used Gaussian distributions
that had a variance along each parameter equal to a fixed percentage of that parameter’s range. The
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percentage for each experiment was chosen based on pilot studies, looking for a percentage that
would give an average acceptance probability of around 20–40%. This value was sought because it
is the optimal acceptance probability when sampling from a Gaussian distribution (Roberts et al.,
1997) and we anticipated that our subjective probability distributions would be similar to Gaussians,
consistent with several standard models of human category learning (Ashby & Alfonso-Reese, 1995;
Reed, 1972).

Recent research in statistics has focused on developing automated methods for adjusting a pro-
posal distribution. A variety of related algorithms collectively known as adaptive MCMC were devel-
oped for this reason (Gilks, Roberts, & George, 1994; Gelfand & Sahu, 1994; Gilks, Roberts, & Sahu,
1998). These algorithms work by using samples from the chain in order to adjust the proposal distri-
bution to be more efficient. Similar methods could be used to adjust proposal distributions when using
MCMC as an experimental procedure, potentially increasing the efficiency of the method by shorten-
ing burn-in and ensuring better exploration of the distributions associated with different categories.
9.4.5. Isolated modes
A concern in any attempt to characterize a natural category is that there may be peaks of the prob-

ability distribution that are isolated from the rest of the peaks by regions of stimuli that are not mem-
bers of the category. This concern was especially valid in Experiment 4 in which the mode of red
apples might be isolated from the mode of green apples by a region of poor category members. Draw-
ing samples from isolated peaks can be difficult under MCMC. The width of the proposal distribution
can be increased to raise the probability of proposing a state in an isolated mode, but has the downside
of decreasing the overall probability of accepting proposals. In Experiment 4, we used a mixture dis-
tribution that combined a high proportion of local proposals with the possibility of making large
jumps in the parameter space. Despite using this proposal distribution, the chains did not mix well
in this experiment, which could be due to chains not switching between isolated modes.

One alternative approach is to use algorithms developed in the machine learning literature to spe-
cifically deal with this issue. The key to these methods is to sample from the target distribution at dif-
ferent temperatures, meaning that samples are drawn from distributions proportional to the target
distribution raised to different powers. Low temperatures refer to large exponents and high temper-
atures refer to small exponents. Metropolis-coupled MCMC (Geyer, 1991) runs several chains with
transition kernels at different temperatures in parallel. The states of the chains are occasionally ex-
changed, allowing chains with small proposal widths to make large jumps. Simulated tempering (Mar-
inari & Parisi, 1992) is a similar algorithm, but instead of running several chains in parallel, one chain
is run and transition kernels of different temperatures are swapped. These ideas provide help in most
applications, and it may be possible to apply them in the human MCMC procedure. In our setting, the
‘‘temperature” of a chain corresponds to the value of the parameter c used in Eq. (9). Consequently,
MCMC methods that exploit variation in temperature could be implemented by developing a way
to adjust the c parameter of a participant’s acceptance function, perhaps through instructions or
manipulation of the motivation of the participant via rewards.
9.5. Conclusions

Markov chain Monte Carlo is one of the basic tools in modern statistical computing, providing the
basis for numerical simulations conducted in a wide range of disciplines. The results presented in this
paper suggest that this class of algorithms can also be of use in psychology, not just for numerical sim-
ulation, but also for uncovering mental representations. The experiments in this paper have applied
the MCMC method to categorization tasks, but it could also be used in a variety of other domains
as well. Many formal models of human cognition (Oaksford & Chater, 1998; Chater, Tenenbaum, &
Yuille, 2006; Anderson, 1990; Shiffrin & Steyvers, 1997) assume that there is a range of degrees of be-
lief in different hypothetical outcomes. The MCMC method is designed to estimate these subjective
functions. Using this technique, interesting data could be collected in many different areas of study,
including investigating the subjective response to a probe of memory or exploring the internal values
of different response alternatives in decision making. We are particularly excited about the prospects
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for using this approach together with probabilistic models of cognition, making it possible to estimate
many of the distributions that otherwise have to be assumed in these models.

Beyond the potential of MCMC for uncovering mental representations, we view one of the key con-
tributions of this research to be the idea that we can use people as elements in randomized algorithms,
provided we can predict their behavior, and use those algorithms to learn more about the mind. The
early success of this approach suggests that other MCMC methods could be used to explore mental
representations, either by using the Barker acceptance function or by establishing other connections
between statistical inference and human behavior. The general principle of allowing people to act
as components of randomized algorithms can teach us a great deal about cognition.
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Appendix A. Bayesian analysis of choice tasks

Consider the following task. You are shown two objects, x1 and x2, and told that one of those objects
comes from a particular category, c. You have to choose which object you think comes from that cat-
egory. How should you make this decision?

We can analyze this choice task from the perspective of a rational Bayesian learner. The choice be-
tween the objects is a choice between two hypotheses: The first hypothesis, h1, is that x1 is drawn
from the probability distribution associated with a category pðxjcÞ and x2 is drawn from gðxÞ, an alter-
native distribution that governs the probability of a non-category object being presented to the par-
ticipant. The second hypothesis, h2, is that x1 is from the alternative distribution and x2 is from the
category distribution. The posterior probability of the first hypothesis given the data is determined
via Bayes’ rule,
pðh1jx1; x2Þ ¼
pðx1; x2jh1Þpðh1Þ

pðx1; x2jh1Þpðh1Þ þ pðx1; x2jh2Þpðh2Þ
¼ pðx1jcÞgðx2Þpðh1Þ

pðx1jcÞgðx2Þpðh1Þ þ pðx2jcÞgðx1Þpðh2Þ
ð19Þ
where we use the category distribution pðxjcÞ and its alternative gðxÞ to calculate pðx1; x2jhÞ.
We will now make two assumptions. The first assumption is that the prior probabilities of the

hypotheses are the same. Since there is no a priori reason to favor one of the objects over the other,
this assumption seems reasonable. The second assumption is that the probabilities of the two stimuli
under the alternative distribution are approximately equal, with gðx1Þ � gðx2Þ. If people assume that
the alternative distribution is uniform, then the probabilities of the two stimuli will be exactly equal.
However, the probabilities will still be roughly equal under the weaker assumption that the alterna-
tive distribution is fairly smooth and x1 and x2 differ by only a small amount relative to the support of
that distribution. The difference between x1 and x2 is likely to be small if the proposal distribution is
narrow. With these assumptions Eq. (19) becomes
pðh1jx1; x2Þ �
pðx1jcÞ

pðx1jcÞ þ pðx2jcÞ
ð20Þ
with the posterior probability of h1 being set by the probabilities of x1 and x2 in that category.
The analysis of the ‘‘Which is more typical?” question proceeds similarly. Tenenbaum and Griffiths

(2001) defined a Bayesian measure of the representativeness of a stimulus x for a category c to be
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rðx; cÞ ¼ pðxjcÞP
c0–cpðxjc0Þpðc0Þ ð21Þ
where pðc0Þ is the probability of an alternative category, normalized to exclude c. This measure indi-
cates the extent to which x provides evidence for c, as opposed to all other categories. Applying the
Luce choice rule, we might expect that participants asked to decide whether x1 or x2 were more typical
of c would choose x1 with probability
pðchoose x1Þ ¼ rðx1; cÞ=ðrðx1; cÞ þ rðx2; cÞÞ ð22Þ
If x1 and x2 are approximately equally likely, averaging over all categories, then
P

c0–cpðx1jc0Þpðc0Þ will
be approximately the same as

P
c0–cpðx2jc0Þpðc0Þ. As above, the fact that x1 and x2 should be relatively

similar makes this assumption likely to hold. In this case, Eq. (22) reduces to the familiar Barker accep-
tance rule for pðxjcÞ (Eq. (7)).

Appendix B. The information available from discriminative data

Assume we have two categories with Gaussian distribution representations. The two categories
have equal covariance matrices R and assume that discriminative judgments are made via a ratio rule
(Eq. (8)). Without loss of generality, let the midpoint between the means of categories 1 and 2 be zero,
so that l1 ¼ �l2. The probability of assigning a stimulus x to category 1 is
Pðc ¼ 1jxÞ ¼ Nðx; l1;RÞ
Nðx;l1;RÞ þ Nðx;l2;RÞ

ð23Þ
where Nðx;l;RÞ is the probability density function for a Gaussian with mean l and covariance matrix
R, and we assume that the two categories have equal prior probability. Dividing through by the
numerator we obtain
Pðc ¼ 1jxÞ ¼ 1

1þ exp � 1
2 ðx� l2Þ

TR�1ðx� l2Þ � ðx� l1Þ
TR�1ðx� l1Þ

h in o ð24Þ
being a logistic function. Using the distributive property and l1 ¼ �l2, the argument of the exponen-
tial in the denominator reduces to �lT

1R
�1x� xTR�1l1, which simplifies to �2lT

1R
�1x, being a linear

function of x.
From the results in the previous paragraph, we can see that the mean l1 can be multiplied by any

constant and produce the same discriminative judgments, as long as the covariance R is multiplied by
the same constant. This result was used to produce the univariate example in Fig. 20. In the multivar-
iate case, this result means that discriminative judgments can at least determine the means of the cat-
egories up to a multiplicative constant. However, by diagonalizing the covariance matrix, we can show
that the multivariate category means are even less constrained. The covariance matrix is diagonalized
by R ¼ Q T DQ , factoring it into matrices of eigenvectors Q and a diagonal matrix of eigenvalues D. The
eigenvector matrices can be used to transform l1 and x into a new basis, giving
�2lT
1Q T D�1Qx ¼ �2ðl01Þ

T Dx0 ð25Þ
where l0A and x0 are the vectors transformed into the new basis and Q T ¼ Q�1 because Q is an orthog-
onal matrix.

In the right-hand side of Eq. (25), each entry of the transformed mean vector is multiplied only by
the variance along that dimension. Now each element of the mean vector can be multiplied by a dif-
ferent coefficient, as long as the corresponding variance is divided by that coefficient. Assume we now
have two more categories, categories 3 and 4, with l3 ¼ �l4 and a shared covariance matrix R0. Let K
be a diagonal matrix with each entry corresponding to the ratio of an entry of the transformed mean of
category 3, l3Q , divided by an entry of the transformed mean of category 1, l1Q . Then l3 can take any
value where R0 is positive semi-definite, with
R0 ¼ Q T DKQ ð26Þ
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and still produce an equivalent boundary between categories 3 and 4 to that between categories 1
and 2.

Not all values of l3 will produce a positive semi-definite R0, but l3 can take many values that are
not a multiplicative constant of l1. This analysis shows that discriminative judgments between a pair
of categories cannot determine the category means without additional information. Even knowing
that the categories are multivariate Gaussian with equal covariance, the best a researcher can say is
that the means are equidistant from a particular point (or, more generally, a particular hyperplane)
in a metric determined by their covariance matrix, as this is the relevant criterion for producing the
same discriminative judgment. Though this result was shown assuming a ratio rule, odds ratios of
multivariate Gaussians, such as Nðx;l1;RÞ=Nðx;l2;RÞ, have the same property. Dividing the ratio by
the numerator results in Eq. (24) without the additive constant in the denominator.
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