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Abstract

We explore the phenomena of subjective randomness as a case study in
understanding how people discover structure embedded in noise. We
present a rational account of randomness perception based on the statis-
tical problem of model selection: given a stimulus, inferring whether the
process that generated it was random or regular. Inspired by the mathe-
matical definition of randomness given by Kolmogorov complexity, we
characterize regularity in terms of a hierarchy of automata that augment
a finite controller with different forms of memory. We find that the reg-
ularities detected in binary sequences depend upon presentation format,
and that the kinds of automata that can identify these regularities are in-
formative about the cognitive processes engaged by different formats.

1 Introduction

People are extremely good at finding structure embedded in noise. This sensitivity to pat-
terns and regularities is at the heart of many of the inductive leaps characteristic of human
cognition, such as identifying the words in a stream of sounds, or discovering the presence
of a common cause underlying a set of events. These acts of everyday induction are quite
different from the kind of inferences normally considered in machine learning and statis-
tics: human cognition usually involves reaching strong conclusions on the basis of limited
data, while many statistical analyses focus on the asymptotics of large samples.

The ability to detect structure embedded in noise has a paradoxical character: while it is
an excellent example of the kind of inference at which people excel but machines fail, it
also seems to be the source of errors in tasks at which machines regularly succeed. For
example, a common demonstration conducted in introductory psychology classes involves
presenting students with two binary sequences of the same length, such as HHTHTHTT and
HHHHHHHH, and asking them to judge which one seems more random. When students
select the former, they are told that their judgments are irrational: the two sequences are
equally random, since they have the same probability of being produced by a fair coin. In
the real world, the sense that some random sequences seem more structured than others
can lead people to a variety of erroneous inferences, whether in a casino or thinking about
patterns of births and deaths in a hospital [1].

Here we show how this paradox can be resolved through a proper understanding of what our
sense of randomness is designed to compute. We will argue that our sense of randomness is
actually extremely well-calibrated with a rational statistical computation — just not the one
to which it is usually compared. While previous accounts criticize people’s randomness



judgments as poor estimates of the probability of an outcome, we claim that subjective
randomness, together with other everyday inductive leaps, can be understood in terms of the
statistical problem of model selection: given a set of data, evaluating hypotheses about the
process that generated it. Solving this model selection problem for small datasets requires
two ingredients: a set of hypotheses about the processes by which the data could have been
generated, and a rational statistical inference by which these hypotheses are evaluated.

We will model subjective randomness as an inference comparing the probability of a se-
quence under a random process, P(X|random), with the probability of that sequence
under a regular process, P(X|regular). In previous work we have shown that defining
P(X]|regular) using a restricted form of Kolmogorov complexity, in which regularity is
characterized in terms of a simple computing machine, can provide a good account of hu-
man randomness judgments for binary sequences [2]. Here, we explore the consequences
of manipulating the conditions under which these sequences are presented. We will show
that the kinds of regularity to which people are sensitive depend upon whether the full se-
quence is presented simultaneously, or its elements are presented sequentially. By explor-
ing how these regularities can be captured by different kinds of automata, we extend our
rational analysis of the inference involved in subjective randomness to a rational character-
ization of the processes underlying it: certain regularities can only be detected by automata
with a particular form of memory access, and identifying the conditions under which regu-
larities are detectable provides insight into how characteristics of human memory interact
with rational statistical inference.

2 Kolmogorov complexity and randomness

A natural starting point for a formal account of subjective randomness is Kolmogorov com-
plexity, which provides a mathematical definition of the randomness of a sequence in terms
of the length of the shortest computer program that would produce that sequence. The idea
of using a code based upon the length of computer programs was independently proposed
in [3], [4] and [5], although it has come to be associated with Kolmogorov. A sequence
X has Kolmogorov complexity K (X) equal to the length of the shortest program p for a
(prefix) universal Turing machine U that produces X and then halts,

K(X)= min ((p) 1)

where ¢(p) is the length of p in bits. Kolmogorov complexity identifies a sequence X
as random if ¢(X) — K(X) is small: random sequences are those that are irreducibly
complex [4]. While not necessarily following the form of this definition, psychologists
have preserved its spirit in proposing that the perceived randomness of a sequence increases
with its complexity (eg. [6]). Kolmogorov complexity can also be used to define a variety
of probability distributions, assigning probability to events based upon their complexity.
One such distribution is algorithmic probability, in which the probability of X is

R(X)=2"KX) = max 27¢P), (2)
p:U(p)=X
There is no requirement that R(X') sum to one over all sequences; many probability distri-
butions that correspond to codes are unnormalized, assigning the missing probability to an
undefined sequence.

There are three problems with using Kolmogorov complexity as the basis for a computa-
tional model of subjective randomness. Firstly, the Kolmogorov complexity of any partic-
ular sequence X is not computable [4], presenting a practical challenge for any modelling
effort. Secondly, while the universality of an encoding scheme based on Turing machines
is attractive, many of the interesting questions in cognition come from the details: issues of
representation and processing are lost in the asymptotic equivalence of coding schemes, but



play a key role in people’s judgments. Finally, Kolmogorov complexity is too permissive in
what it considers a regularity. The set of regularities identified by people are a strict subset
of those that might be expressed in short computer programs. For example, people are very
unlikely to be able to tell the difference between a binary sequence produced by a linear
congruential random number generator (a very short program) and a sequence produced by
flipping a coin, but these sequences should differ significantly in Kolmogorov complexity.
Restricting the set of regularities does not imply that people are worse than machines at
recognizing patterns: reducing the size of the set of hypotheses increases inductive bias,
making it possible to identify the presence of structure from smaller samples.

3 A statistical account of subjective randomness

While there are problems with using Kolmogorov complexity as the basis for a rational
theory of subjective randomness, it provides a clear definition of regularity. In this section
we will present a statistical account of subjective randomness in terms of a comparison be-
tween random and regular sources, where regularity is defined by analogues of Kolmogorov
complexity for simpler computing machines.

3.1 Subjective randomness as model selection

One of the most basic problems that arises in statistical inference is identifying the source
of a set of observations, based upon a set of hypotheses. This is the problem of model
selection. Model selection provides a natural basis for a statistical theory of subjective
randomness, viewing these judgments as the consequence of an inference to the process
that produced a set of observations. On seeing a stimulus X, we consider two hypotheses:
X was produced by a random process, or X was produced by a regular process. The
decision about the source of X can be formalized as a Bayesian inference,

P(random|X)  P(X|random) P(random) 3)
P(regular|X)  P(X|regular) P(regular)’
in which the posterior odds in favor of a random generating process are obtained from the
likelihood ratio and the prior odds. The only part of the right hand side of the equation
affected by X is the likelihood ratio, so we define the subjective randomness of X as

P(X|random
random(X) = IOg W’

4)

being the evidence that X provides towards the conclusion that it was produced by a ran-
dom process.

3.2 Thenatureof regularity

In order to define random(X'), we need to specify P(X |random) and P (X |regular). When
evaluating binary sequences, it is natural to set P(X|random) = (1)“X). Taking the
logarithm in base 2, random(X) is —¢(X) — log, P(X|regular), depending entirely on
P(X|regular). We obtain random(X) = K(X) — ¢(X), the difference between the com-
plexity of a sequence and its length, if we choose P(X|regular) = R(X), the algorith-
mic probability defined in Equation 2. This is identical to the mathematical definition of
randomness given by Kolmogorov complexity. However, the key point of this statistical
approach is that we are not restricted to using R(X): we have a measure of the randomness
of X for any choice of P(X|regular).

The choice of P(X|regular) will reflect the stimulus domain, and express the kinds of
regularity which people can detect in that domain. For binary sequences, a good candi-
date for specifying P(X |regular) is a hidden Markov model (HMM), a probabilistic finite
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Figure 1: Finite state automaton used to define P(X |regular) to give random(X) o DP.

Solid arrows are transitions consistent with repeating a motif, which are taken with proba-
bility 6. Dashed arrows are motif changes, using the prior determined by «.

state automaton. In fact, specifying P(X |regular)in terms of a particular HMM results in
random(X) being equivalent to the “Difficulty Predictor” (DP) [6] a measure of sequence
complexity that has been extremely successful in modelling subjective randomness judg-
ments. DP measures the complexity of a sequence in terms of the number of repeating (eg.
HHHH) and alternating (eg. HTHT) subsequences it contains, adding one point for each
repeating subsequence and two points for each alternating subsequence. For example, the
sequence TTTHHHTHTH is a run of tails, a run of heads, and an alternating sub-sequence,
DP = 4. If there are several partitions into runs and alternations, D P is calculated on the
partition that results in the lowest score.

In [2], we showed that random(X) o« DP if P(X|regular) is specified by a particu-
lar HMM. This HMM produces sequences by motif repetition, using the transition graph
shown in Figure 1. The model emits sequences by choosing a motif, a sequence of symbols
of length %, with probability proportional to o*, and emitting symbols consistent with that
motif with probability 4, switching to a new motif with probability 1 — §. In Figure 1,
state 1 repeats the motif H, state 2 repeats T, and the remaining states repeat the alternat-
ing motifs HT and TH. The randomness of a sequence under this definition of regularity
depends on ¢ and «, but is generally affected by the number of repeating and alternating
subsequences. The equivalence to DP, in which a sequence scores a single point for each
repeating subsequence and two points for each alternating subsequence, results from taking

0=05and o = ﬁ;l, and choosing the the state sequence for the HMM that maximizes
the probability of the sequence.

Just as the algorithmic probability R(X) is a probability distribution defined by the length
of programs for a universal Turing machine, this choice of P(X|regular) can be seen as
specifying the length of “programs” for a particular finite state automaton. The output of a
finite state automaton is determined by its state sequence, just as the output of a universal
Turing machine is determined by its program. However, since the state sequence is the
same length as the sequence itself, this alone does not provide a meaningful measure of
complexity. In our model, probability imposes a metric on state sequences, dictating a
greater cost for moves between certain states, which translates into a code length through
the logarithm. Since we find the state sequence most likely to have produced X, and thus
the shortest code length, we have an analogue of Kolmogorov complexity defined on a
finite state automaton.

3.3 Regularitiesand automata

Using a hidden Markov model to specify P(X|regular) provides a measure of complexity
defined in terms of a finite state automaton. However, the kinds of regularities people can
detect in binary sequences go beyond the capacity of a finite state automaton. Here, we
consider three additional regularities: symmetry (eg. THTHHTHT), symmetry in the com-
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Figure 2: Hierarchy of automata used to define measures of complexity. Of the regularities
discussed in this paper, each automaton can identify all regularities identified by those
automata to its left as well as those stated in parentheses beneath its name.

plement (eg. TTTTHHHH), and the perfect duplication of subsequences (eg. HHHTHHHT
vs. HHHTHHHTH). These regularities identify formal languages that cannot be recognized
by a finite state automaton, suggesting that we might be able to develop better models of
subjective randomness by defining P (X |regular) in terms of more sophisticated automata.

The automata we will consider in this paper form a hierarchy, shown in Figure 2. This
hierarchy expresses the same content as Chomsky’s [7] hierarchy of computing machines
— the regularities identifiable by each machine are a strict superset of those identifiable
to the machine to the left — although it features a different set of automata. The most
restricted set of regularities are those associated with the finite state automaton, and the
least restricted are those associated with the Turing machine. In between are the pushdown
automaton, which augments a finite controller with a stack memory, in which the last item
added is the first to be accessed; the queue automaton,* in which the memory is a queue, in
which the first item added is the first to be accessed; and the stack automaton, in which the
memory is a stack but any item in the stack can be read by the controller [9, 10]. The key
difference between these kinds of automata is the memory available to the finite controller,
and exploring measures of complexity defined in terms of these automata thus involves
assessing the kind of memory required to identify regularities.

Each of the automata shown in Figure 2 can identify a different set of regularities. The
finite state automaton is only capable of identifying motif repetition, while the pushdown
automaton can identify both kinds of symmetry, and the queue automaton can identify
duplication. The stack automaton can identify all of these regularities, and the Turing
machine can identify all computable regularities. For each of the sub-Turing automata,
we can use these constraints to specify a probabilistic model for P(X|regular). For ex-
ample, the probabilistic model corresponding to the pushdown automaton generates regu-
lar sequences by three methods: repetition, producing sequences with probabilities deter-
mined by the HMM introduced above; symmetry, where half of the sequence is produced
by the HMM and the second half is produced by reflection; and complement symmetry,
where the second half is produced by reflection and exchanging H and T. We then take
P(X|regular) = maxz r P(X, Z|M)P(M), where M is the method of production and
Z is the state sequence for the HMM. Similar models can be defined for the queue and
stack automata, with the queue automaton allowing generation by repetition or duplication,
and the stack automaton allowing any of these four methods. Each regularity introduced
into the model requires a further parameter in specifying P(M), so the hierarchy shown
in Figure 2 also expresses the statistical structure of this set of models: each model is a
special case of the model to its right, in which some regularities are eliminated by setting
P(M) to zero. We can use this structure to perform model selection with likelihood ratio
tests, determining which model gives the best account of a particular dataset using just the
difference in the log-likelihoods. We apply this method in the next section.

LAn unrestricted queue automaton is equivalent to a Turing machine. We will use the phrase to
refer to an automaton in which the number of queue operations that can be performed for each input
symbol islimited, which is generally termed a quasi real time queue automaton [8].



4 Testingthe models

The models introduced in the previous section differ in the memory systems with which
they augment the finite controller. The appropriateness of any one measure of complexity
to a particular task may thus depend upon the memory demands placed upon the partici-
pant. To explore this hypothesis, we conducted an experiment in which participants make
randomness judgments after either seeing a sequence in its entirety, or seeing each element
one after another. We then used model selection to determine which measure of com-
plexity gave the best account of each condition, illustrating how the strategy of defining
more restricted forms of complexity can shed light into the cognitive processes underlying
regularity detection.

4.1 Experimental methods

There were two conditions in the experiment, corresponding to Simultaneous and Sequen-
tial presentation of stimuli. The stimuli were sequences of heads (H) and tails (T) presented
in 130 point fixed width sans-serif font on a 19” monitor at 1280 x 1024 pixel resolution.
In the Simultaneous condition, all eight elements of the sequence appeared on the display
simultaneously. In the Sequential condition, the elements appeared one by one, being dis-
played for 300ms with a 300ms inter-stimulus interval.

The participants were 40 MIT undergraduates, randomly assigned to the two conditions.
Participants were instructed that they were about to see sequences which had either been
produced by a random process (flipping a fair coin) or by other processes in which the
choice of heads and tails was not random, and had to classify these sequences according
to their source. After a practice session, each participant classified all 128 sequences of
length 8, in random order, with each sequence randomly starting with either a head or a
tail. Participants took breaks at intervals of 32 sequences.

4.2 Resultsand Discussion

We analyzed the results by fitting the models corresponding to the four automata de-
scribed above, using all motifs up to length 4 to specify the basic model. We computed
random(X) for each stimulus as in Eq. (4), with P(X|regular) specified by the probabilis-
tic model corresponding to each of the automata. We then converted this log-likelihood
ratio into the posterior probability of a random generating process, using

1

P(random|.X) 1+ exp{—A random(X) — ¢}

where X\ and v are parameters weighting the contribution of the likelihoods and the pri-
ors respectively. We then optimized A, ¢, §, o and the parameters contributing to P(M)
for each model, maximizing the likelihood of the classifications of the sequences by the
20 participants in each of the 2 conditions. The results of the model-fitting are shown in
Figure 3(a) and (b), which indicate the relationship between the posterior probabilities pre-
dicted by the model and the proportion of participants who classified a sequence as random.
The correlation coefficients shown in the figure provide a relatively good indicator of the
fit of the models, and each sequence is labelled according to the regularity it expresses,
showing how accommodating particular regularities contributes to the fit.

The log-likelihood scores obtained from fitting the models can be used for model selec-
tion, testing whether any of the parameters involved in the models are unnecessary. Since
the models form a nested hierarchy, we can use likelihood ratio tests to evaluate whether
introducing a particular regularity (and the parameters associated with it) results in a sta-
tistically significant improvement in fit. Specifically, if model 1 has log-likelihood 1, and
df parameters, and model 2 has log-likelihood Lo and dfy > df; parameters, 2(Ly — Lq)
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Figure 3: Experimental results for (a) the Simultaneous and (b) the Sequential condition,
showing the proportion of participants classifying a sequence as “random” (horizontal axis)
and P(random|X) (vertical axis) as assessed by the four models. Points are labelled ac-
cording to their parse under the Stack model. (c) and (d) show the model selection results
for the Simultaneous and Sequential conditions respectively, showing the four automata
with edges between them labelled with x2 score (df, p-value) for improvement in fit.

should have a x?(df, — df;) distribution under the null hypothesis of no improvement in
fit. We evaluated the pairwise likelihood ratio tests for the four models in each condition,
with the results shown in Figure 3(c) and (d). Additional regularities always improved the
fit for the Simultaneous condition, while adding duplication, but not symmetry, resulted in
a statistically significant improvement in the Sequential condition.

The model selection results suggest that the best model for the Simultaneous condition
is the stack automaton, while the best model for the Sequential condition is the queue
automaton. These results indicate the importance of presentation format in determining
subjective randomness, as well as the benefits of exploring measures of complexity defined
in terms of a range of computing machines. The stack automaton can evaluate regularities
that require checking information in arbitrary positions in a sequence, something that is
facilitated by a display in which the entire sequence is available. In contrast, the queue
automaton can only access information in the order that it enters memory, and gives a
better match to the task in which working memory is required. This illustrates an important
fact about cognition — that human working memory operates like a queue rather than a stack
—that is highlighted by this approach.

The final parameters of the best-fitting models provide some insight into the relative impor-
tance of the different kinds of regularities under different presentation conditions. For the
Simultaneous condition, § = 0.66,a = 0.12, A = 0.26,% = —1.98 and motif repetition,
symmetry, symmetry in the complement, and duplication were given probabilities of 0.748,
0.208, 0.005, and 0.039 respectively. Symmetry is thus a far stronger characteristic of reg-



ularity than either symmetry in the complement or duplication, when entire sequences are
viewed simultaneously. For the Sequential condition, 6 = 0.70,« = 0.11, A = 0.38,%¢ =
—1.24, and motif repetition was given a probability of 0.962 while duplication had a prob-
ability of 0.038, with both forms of symmetry being given zero probability since the queue
model provided the best fit. Values of 6 > 0.5 for both models indicates that regular se-
quences tend to repeat motifs, rather than rapidly switching between them, and the low «
values reflect a preference for short motifs.

5 Conclusion

We have outlined a framework for understanding the rational basis of the human ability to
find structure embedded in noise, viewing this inference in terms of the statistical prob-
lem of model selection. Solving this problem for small datasets requires two ingredients:
strong prior beliefs about the hypothetical mechanisms by which the data could have been
generated, and a rational statistical inference by which these hypotheses are evaluated.
When assessing the randomness of binary sequences, which involves comparing random
and regular sources, people’s beliefs about the nature of regularity can be expressed in
terms of probabilistic versions of simple computing machines. Different machines capture
regularity when sequences are presented simultaneously and when their elements are pre-
sented sequentially, and the differences between these machines provide insight into the
cognitive processes involved in the task. Analyses of the rational basis of human inference
typically either ignore questions about processing or introduce them as relatively arbitrary
constraints. Here, we are able to give a rational characterization of process as well as in-
ference, evaluating a set of alternatives that all correspond to restrictions of Kolmogorov
complexity to simple general-purpose automata.
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