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Abstract

We use graphical model sto explorethe question of how peoplelearn sim-
ple causal relationshipsfrom data. The two leading psychological theo-
ries can both be seen as estimating the parameters of afixed graph. We
argue that a complete account of causal induction should also consider
how people learn the underlying causal graph structure, and we propose
to model thisinductive process as a Bayesian inference. Our argument is
supported through the discussion of three data sets.

1 Introduction

Causality playsa central rolein human mental life. Our behavior depends upon our under-
standing of the causal structure of our environment, and we are remarkably good at infer-
ring causation from mere observation. Constructing forma models of causal induction is
currently a major focus of attention in computer science [6], psychology [2,5], and philos-
ophy [4]. This paper attemptsto connect these literatures, by framing the debate between
two mgjor psychological theories in the computationa language of graphical models. We
show that existing theories equate human causal induction with maximum likelihood pa-
rameter estimation on afixed graphical structure, and we argue that to fully account for hu-
man behaviora data, we must also postulate that people make Bayesian inferences about
the underlying causal graph structure itself.

Psychologica models of causal induction address the question of how people learn asso-
ciations between causes and effects, such as P(C'— F), the probability that some event C
causes outcome E. This question might seem trivia at first; why isn’'t P(C—FE) simply
P(et]|ct), the conditional probability that £ occurs (F = et asopposed to e ) given that
C' occurs? But consider thefollowing scenarios. Three case studies have been doneto eval-
uate the probability that certain chemicals, when injected into rats, cause certain genes to
be expressed. In case 1, levels of gene 1 were measured in 100 rats injected with chem-
ica 1, aswell asin 100 uninjected rats; cases 2 and 3 were conducted likewise but with
different chemicals and genes. In case 1, 40 out of 100 injected rats were found to have
expressed the gene, while 0 out of 100 uninjected rats expressed the gene. We will denote
these resultsas {40,/100,0/100}. Case 2 produced the results {7/100,0/100}, while case
3yielded {53/100,46,/100}. For each case, we would like to know the probability that the
chemical causes the geneto be expressed, P(C'— E), where C' denotes the chemica and £
denotes gene expression.



Peopletypicaly rate P(C'—F) highest for case 1, followed by case 2 and thencase 3. Inan
experiment described bel ow, these cases received mean ratings(on a0-20 scal€) of 14.9+ .8,
8.6+ .9,and 4.9+ .7, respectively. Clearly P(C—F) # P(e*|c"), because case 3 hasthe
highest value of P(e™|cT) but receives thelowest rating for P(C—F).

The two leading psychological models of causal induction elaborate upon this basis
in attempting to specify P(C—FE). The AP mode [5] claims that people estimate
P(C—FE) according to

AP = P(et|et) — P(et]c™). (1)

(Werestrict our attention hereto facilitatory causes, inwhich case A P isalways between O
and 1.) Equation 1 capturestheintuitionthat C' isperceived to cause F to theextent that C's
occurence increases the likelihood of observing F. Recently, Cheng [2] has identified sev-
eral shortcomingsof A P and proposedthat P(C'— FE)instead correspondsto causal power,
the probability that C' produces £ in the absence of all other causes. Formally, the power
model can be expressed as:

AP

power = = Pt 2
There are a variety of normative arguments in favor of either of these models [2,6]. Em-
pirically, however, neither model is fully adequate to explain human causal induction. We
will present ample evidence for this claim below, but for now, the basic problem can beiil-
lustrated with the three scenarios above. While people rate P(C'—E) higher for case 2,
{7/100,0/100}, than for case 3, {53/100,46/100}, AP rates them equally and the power
model ranks case 3 over case 2. To understand this discrepancy, we have to distinguish be-
tween two possiblesenses of P(C'— E): “the probability that C causes E (onany giventrial
when C is present)” versus “the probability that C is a cause of E (in general, as opposed
to being causally independent of E)”. Our claimisthat the A P and power models concern
only the former sense, while peopl€'s intuitionsabout P(C'—F) are often concerned with
the latter. In our example, while the effect of C' on any given trial in case 3 may be equal
to (according to A P) or stronger than (according to power) itseffect in case 2, the general
pattern of results seems more likely in case 2 than in case 3 to be due to a genuine causal
influence, as opposed to aspuriouscorrel ation between random samples of two independent
variables. In thefollowing section, we formalize thisdistinction in terms of parameter esti-
mation versusstructurelearning on agraphical model. Section 3 then comparestwo variants
of our structure learning model with the parameter estimation models (A P and power) in
light of data from three experiments on human causal induction.

2 Graphical models of causal induction

The language of causal graphica models provides a useful framework for thinking about
peopl€e's causa intuitions[4,6]. All the induction models we consider here can be viewed
as computations on asimpledirected graph (Graph, inFigure 1). The effect node £ isthe
child of two binary-valued parent nodes: €', the putative cause, and B, a constant back-
ground. Let X = (C4, E1),...,(Cn, En) denote asequence of N trialsin which C' and
E are each observed to be present or absent; B is assumed to be present on al trials. (To
keep notation concisein thissection, weuse 1 or 0in additionto + or ~ to denote presence
or absence of an event, e.g. ¢; = 1 if the causeispresent ontheith trial.) Each parent node
isassociated with a parameter, wp or w¢, that defines the strength of itseffect on E. Inthe



A P model, the probability of £ occuring isalinear function of C":
Q(e+|c; wp,we) = wp + we - c. (3)

(We use @ to denotemodel probabilitiesand P to denoteempirica probabilitiesin the sam-
ple X.) Inthe causal power modd, as first pointed out by Glymour [4], F is anoisy-OR
gate:

Q(et|c;wp,we) =1 - (1 —wp)(1 —we)". 4

2.1 Parameter inferences. AP and Causal Power

In this framework, both the A P and power model’s predictionsfor P(C'— E') can be seen
asmaximum likelihood estimates of the causal strength parameter w inGraph,, but under
different parameterizations. For either model, the loglikelihood of the datais given by

L(X|wp,we) = Zlog [(Qeilei)™ (1 — Q(eilei)' %] ()

N

= ) eilogQeile) + (1 —e;) log(1 — Q(esles)), (6)

i=1

where we have suppressed the dependence of Q(e;|c;) onwp, we. Bresking thissuminto
four parts, one for each possible combination of {et, e~} and {¢T, ¢~} that could be ob-
served, the loglikelihood can be written as

L(X|wp,we) = N P(c) [P(e¥]|c")logQ(eT]ct) + (1 = P(e¥|c™))log(1 = Q(eT|c*)] (7)
+ N P(c7) [P(eF]e7)log Q(eF|eT) + (1 — P(eF|eT)) log(1 — Q(eF|e7))] -

By the Information inequality [3], Equation 7 is maximized whenever wp and w¢ can be
chosen to make the model probabilitiesequal to the empirical probabilites:

Q(etlet wp,we) = P(eF|ech), (8
Q(et|c™;wp,we) = P(et|eT). (9)

To show that the A P mode!’s predictionsfor P(C'— E) correspond to maximum likelihood
estimates of w¢ under alinear parameterization of Graph,, we identify w¢ in Equation 3
with AP (Equation 1), and wg with P(e™|c™). Equation 3 then reduces to P(et|ct) for
thecasec = ¢t (i.e,c = 1)andto P(et|c™) forthecasec = ¢~ (i.e, ¢ = 0), thus satis-
fying the sufficient conditionsin Equations 8-9 for wp and w¢ to be maximum likelihood
estimates. To show that the causal power model’s predictionsfor P(C'— F) correspond to
maximum likelihood estimates of w¢ under a noisy OR parameterization, we follow the
analogous procedure: identify w¢ in Equation 4 with power (Equation 2), and wp with
P(et|c™). Then Equation 4 reducesto P(e™|ct) forc = ¢t andto P(et|c™) fore = ¢,
again satisfying the conditionsfor wp and w¢ to be maximum likelihood estimates.

2.2 Structural inferences: Causal Support and x?

The central claim of this paper is that peopl€’s judgments of P(C—FE) reflect something
other than estimates of causa strength parameters — the quantitiesthat we have just shown
to be computed by A P and the power model. Rather, peopl€’s judgments may correspond



to inferences about the underlying causal structure, such asthe probability that C'isadirect
cause of F. Interms of the graphical model in Figure 1, human causal induction may be
focused on trying to distinguish between Graph,, inwhich C' isaparent of £, and the*null
hypothesis’ of Graph,, in which C'isnot.

This structural inference can beformalized asaBayesian decision. Let h beabinary vari-
ableindicating whether or not thelink C— F existsin thetrue causal model responsiblefor
generating our observations. We will assume anoisy OR-gate, and thusour mode! isclosely
related to causal power. However, we propose to model human estimates of P(C—FE) as
causal support, thelog posterior oddsin favor of Graph,; (hc = 1) over Graph, (hc = 0):

P(hc = 1|X)

P(hc = 0[X)’ (10)

support = log

ViaBayes rule, we can express P(hc = 1|X) in terms of the marginal likelihood or evi-
dence, P(X|he = 1), and the prior probability thet C' isacause of £, P(hc = 1):

P(he = 1|X) x P(X|hc = 1)P(he = 1). (11)

For now, we assume P(h¢c = 1) = P(he = 0) = 1/2. Computing the evidence requires
integratingthelikelihood P(X |wp, wc) over al possibleval ues of the strength parameters:

1 1
P(X|hc = 1) = / / P(X|wB, wc) p(wB, wc|hc = 1) de dwc. (12)
0 0

Wetakep(wp, we|he = 1) tobeauniformdensity, and wenotethat p( X |wp, we) issm-
ply theexponentia of £L(X|wp, w¢) asdefinedin Equation5. P(X |he = 0), themarginal
likelihood for Graphy, is computed similarly, but with the prior p(wp, we|he = 1) in
Equation 12 replaced by p(wg|he = 0)6(we). We again take p(wg|he = 0) to be uni-
form. The Dirac deltadistributionon we = 0 enforces the restriction that the C— E' link
isabsent. Because causal support depends on thefull likelihood functionsfor both Graph;,
and Graph,,, we may expect the support model to be modulated by causal power — which
is based gtrictly on the likelihood maximum estimate for Graph; — but only in interac-
tion with other factors that determine how much of the posterior probability mass for w¢
in Graph, isbounded awvay from zero (where it ispinned in Graph,). In general, causal
support must be computed by numerical integration, but in the limit of large N and weak
causa strength w, it can be approximated by the familiar y? statistic for independence,

N> .. %ﬁ. Here Py(c,e) = P(c)P(e) isthe factorized approximation to

P(c, ), which assumes C' and £ to be independent (as they arein Graphy).

3 Comparison with experiments

In this section we examine the strengths and weaknesses of the two parameter inference
models, A P and causal power, and thetwo structura inference models, causal support and
x?, as accounts of data from three behavioral experiments, each designed to address dif-
ferent aspects of human causal induction. To compensate for possi ble nonlinearitiesin peo-
pl€e suse of numerica rating scales on thesetasks, all model predictionshave been scaled by
power-law transformations, f(z) = sign(z)|z|”, withy chosen separately for each model
and each data set to maximize their linear correlation. In the figures, predictions are ex-
pressed over the same range as the data, with minimum and maximum values aligned.



Figure 2 presents data from a study by Buehner & Cheng [1], designed to contrast the pre-
dictionsof A P and causal power. Peoplejudged P(C'— E) for hypothetical medica studies
much like the gene expression scenarios described above, seeing eight cases in which C' oc-
curred and eight in which C' did not occur. Some trends in the data are clearly captured by
the causal power model but not by A P, such as the monotonic decrease in P(C—FE) from
{1.00,0.75} to {.25,0.00}, as AP stays constant but P(e*|c™) (and hence power) de-
creases (columns6-9). Other trendsare clearly captured by A P but not by the power model,
like the monotonicincrease in P(C—F) as P(e™|ct) staysconstant at 1.0 but P(e*|c™)
decreases, from {1.00, 1.00} to {1.00,0.00} (columns 1, 6, 10, 13, 15). However, one of
themost salient trendsiscaptured by neither model: thedecreasein P(C—FE) as AP stays
constant at O but P(et|c™) decreases (columns 1-5). The causal support model predicts
this decrease, as well as the other trends. The intuitive explanation for the model’s perfor-
mance isthat increasing P(e*|c™) decreases the statistical leverage we have available to
infer that C' does or does not cause E. Thisismost obviousin the case where P(et|ct) =
P(e*|e™) = 1. Whilex? generally approximates the support model rather well, it also fails
to explainthe caseswith P(e*|et) = P(et|c™), whichawaysyidld y* = 0. Thesuperior
fit of the support model isreflected inits correlation with the data, giving R? = 0.95 while
the power, A P, and y?models gave R? vauesof 0.81,0.82, and 0.82 respectively.

Figure 3 shows results from an experiment conducted by Lober and Shanks [5], designed
to explore the trend in Buehner and Cheng’s experiment that was predicted by A P but not
by the power model. Columns 4-7 replicated the monotonic increase in P(C'—E) when
P(et|c™) remainsconstant at 1.0 but P(e*|c™) decreases, thistimewith 28 casesinwhich
C occurred and 28 in which € did not occur. Columns 1-3 show asecond situationinwhich
the predictions of the power modd are constant, but judgements of P(C—FE) incresse.
Columns 8-10 feature three scenarios with equal A P, for which the causal power model
predicts a decreasing trend. These effects were explored by presenting a total of 60 trials,
rather than the 56 used in Columns4-7. For each of thesetrendsthe A P model outperforms
the causal power model, with overall R? valuesof 0.96 and 0.36 respectively. However, it
isimportant to note that the responses of the human subjects in columns 8-10 (contingen-
cies {1.00,0.60},{0.80,0.40}, {0.40,0.00}) are not quite consistent with the predictions
of AP: they show adlight U-shaped non-linearity, with P(C'— E') judged to be smaller for
0.80, 0.40 than for either of theextreme cases. Thistrend is predicted by the causal support
model and its y? approximation, however, which both give the slightly better R? of 0.99.

Figure 4 shows data that we collected in asimilar survey, aiming to explore thisnon-linear
effect in greater depth. 35 studentsin an introductory psychology class completed the sur-
vey for partial course credit. They each provided ajudgment of P(C'—FE) in 14 different
medical scenarios, whereinformationabout P(e™|ct) and P(e*|c™) wasprovidedinterms
of how many mice from a sample of 100 expressed aparticular gene. Columns1-3, 5-7, and
9-11 show contingency structuresdesignedto elicit U-shaped trendsin P(C—FE). Columns
4 and 8 giveintermediateval ues, al so consi stent with the observed non-linearity. Column14
attempted to explore the effects of manipulating sample size, with a contingency structure
of {7/7,93/193}. In each case, we observed the predicted nonlinearity: in a set of situa-
tionswith the same A P, the situationsinvolving less extreme probabilities show reduced
judgmentsof P(C'—F) . These non-linearitiesare not consistent with the A P model, but
are predicted by both causal support and 2. A P actually achieves acorrel ation comparable
tox? (R? = 0.92 for both models) because the non-linear effects contributeonly weakly to
the total variance. The support model gives aslightly worsefit than x2, R? = 0.80, while
the power mode! gives a poor account of the data, 2% = 0.38.



4 Conclusonsand futuredirections

In each of the studies above, the structural inference models based on causal support or
x? consistently outperformed the parameter estimation models, AP and causal power.
While causal power and A P were each capable of capturing certain trends in the data,
causal support was the only model capable of predicting al the trends. For the third data
set, x? provided a significantly better fit to the data than did causal support. This finding
merits future investigation in a study explicitly designed to tease apart y? and causal sup-
port; in any case, due to the close rel ationship between the two model's, this result does not
undermine our claim that probabilistic structural inferences are central to human causal in-
duction.

One unique advantage of the Bayesian causal support model isitsability to draw meaning-
ful inferences based upon very few observations. We have begun aline of experiments, in-
spired by Gopnik, Sobel & Glymour (submitted), to examine how adultsrevise their causal
judgments when given only one or two observations, rather than the large samples used in
the above studies. In one study, subjectswere faced with amachine that wouldinform them
whether a pencil placed upon it contained “superlead” or ordinary lead. Subjectswere ei-
ther given prior knowledge that superlead was rare or that it was common. They were then
given two pencils, analogous to B and C' in Figure 1, and asked to rate how likely these
pencils were to have superlead, that is, to cause the detector to activate. Mean responses
reflected the induced prior. Next, they were shown that the superlead detector responded
when B and C were tested together, and their causal ratingsof both B and C' increased. Fi-
nally, they were shown that B set off the superlead detector onits own, and causa ratings
of B increased to ceiling whileratings of C' returned to their prior levels. Thissituationis
exactly analogous to that explored in the medical tasks described above, and people were
ableto perform accurate causal inductionsgiven only onetria of each type. Of the models
we have considered, only Bayesian causal support can explain this behavior, by alowing
the prior in Equation 11 to adapt based on the knowledge that superlead is either rare or
common.

In addition to exploring causal learning with very little data, we aso hopeto look at infer-
ences about more complex causal structures, including those with hidden variables. With
just asingle cause C, causal support and y? are highly correlated, but with more complex
structures, the Bayesian computation of causal support becomes increasingly intractable
whilethe y? approximation becomes less accurate. Through further experiments, we hope
to discover where human causal induction fallson this continuum from ponderousrational -
ity to efficient heuristic.

Finally, we should stress that despite the superior performance of the structura inference
models here, in many real-life situations estimating causal strength parametersislikely to
bejust asimportant asinferring causal structure. Our hopeisthat by using graphical models
to relate and extend upon existing accounts of causality, we have provided a framework
for exploring the interplay between the different kinds of causal inferences that people can
make.
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