Infinite Latent Feature Models
and the Indian Buffet Process

Thomas L. Griffiths Zoubin Ghahramani
Cognitive and Linguistic Sciences Gatsby Computationalridscience Unit
Brown University, Providence RI 02912 University Collegeridon, London WC1N 3AR
tomgriffiths@rown. edu zoubi n@at sbhy. ucl . ac. uk
Abstract

We define a probability distribution over equivalence atassf binary
matrices with a finite number of rows and an unbounded number o
columns. This distribution is suitable for use as a prior iak@abilistic
models that represent objects using a potentially infinii@yeof features.
We identify a simple generative process that results in &ineesdistribu-
tion over equivalence classes, which we call the Indiangbyffocess.
We illustrate the use of this distribution as a prior in anriité latent fea-
ture model, deriving a Markov chain Monte Carlo algorithmifderence

in this model and applying the algorithm to an image dataset.

1 Introduction

The statistical models typically used in unsupervisediea draw upon a relatively small
repertoire of representations. The simplest representatised in mixture models, asso-
ciates each object with a single latent class. This appr@eappropriate when objects
can be partitioned into relatively homogeneous subsetsveMer, the properties of many
objects are better captured by representing each objew usiltiple latent features. For
instance, we could choose to represent each object as g baor, with entries indicat-
ing the presence or absence of each feature [1], allow eathrésto take on a continuous
value, representing objects with points in a latent spakefalefine a factorial model, in
which each feature takes on one of a discrete set of valud$.[3,

A critical question in all of these approaches is the dimemality of the representation:
how many classes or features are needed to express the dtaigrttire expressed by a
set of objects. Often, determining the dimensionality & tpresentation is treated as a
model selection problem, with a particular dimensiondhigng chosen based upon some
measure of simplicity or generalization performance. Essumes that there is a single,
finite-dimensional representation that correctly chamazes the properties of the observed
objects. An alternative is to assume that the true dimeasityris unbounded, and that the
observed objects manifest only a finite subset of classesatuifes [5]. This alternative
is pursued in nonparametric Bayesian models, such as Rtiphocess mixture models
[6, 7, 8, 9]. In a Dirichlet process mixture model, each obje@ssigned to a latent class,
and each class is associated with a distribution over obbt\properties. The prior dis-
tribution over assignments of objects to classes is definedich a way that the number
of classes used by the model is bounded only by the numberje€tsbmaking Dirichlet
process mixture models “infinite” mixture models [10].

The prior distribution assumed in a Dirichlet process mm@tmodel can be specified in



terms of a sequential process called the Chinese restqua@gss (CRP) [11, 12]. In the
CRP,N customers enter a restaurant with infinitely many tablesh @ath infinite seating
capacity. Theith customer chooses an already-occupied tabieth probability =3+,
wherem, is the number of current occupants, and chooses a new tatiieprabability
—i7a- Customers arexchangeableinder this process: the probability of a particular
seating arrangement depends only on the number of peopdelata&ble, and not the order
in which they enter the restaurant.

If we replace customers with objects and tables with clagkesCRP specifies a distribu-
tion over partitions of objects into classes. A partitioidivision of the set ofV objects
into subsets, where each object belongs to a single subd¢harordering of the subsets
does not matter. Two assignments of objects to classesabalt in the same division of
objects correspond to the same partition. For example, ihadgthree objects, the class
assignmentdcy, ca, c3} = {1, 1,2} would correspond to the same partition{as2, 1},
since all that differs between these two cases is the lali¢lealasses. A partition thus
defines an equivalence class of assignment vectors.

The distribution over partitions implied by the CRP can bewel by taking the limit of
the probability of the corresponding equivalence classssfgamment vectors in a model
where class assignments are generated from a multinonsi@ibdition with a Dirichlet
prior [9, 10]. In this paper, we derive an infinitely exchaafgke distribution over infinite
binary matrices by pursuing this strategy of taking thetiafia finite model. We also de-
scribe a stochastic process (the Indian buffet processtakine CRP) which generates this
distribution. Finally, we demonstrate how this distriloutican be used as a prior in statisti-
cal models in which each object is represented by a sparsetsoban unbounded number
of features. Further discussion of the properties of thssrithution, some generalizations,
and additional experiments, are available in the longesigarof this paper [13].

2 Adistribution on infinite binary matrices

In a latent feature model, each object is represented bytanellatent feature value,
and the observable properties of that objecare generated from a distribution determined
by its latent features. Latent feature values can be comtisiuas in principal component
analysis (PCA) [2], or discrete, as in cooperative vectarization (CVQ) [3, 4]. In the
remainder of this section, we will assume that feature \séwe continuous. Using the ma-

trix F = [f{ £ - fﬂT to indicate the latent feature values for Allobjects, the model
is specified by a prior over features(F'), and a distribution over observed property ma-
trices conditioned on those featureéX|F), wherep(-) is a probability density function.
These distributions can be dealt with separatg(¥.) specifies the number of features and
the distribution over values associated with each featuhéle p(X|F) determines how
these features relate to the properties of objects. Oussfadiibe onp(F'), showing how
such a prior can be defined without limiting the number ofdead.

We can brealF® into two components: a binary matiZindicating which features are pos-
sessed by each object, with, = 1 if objecti has featuré: and0 otherwise, and a matrix
V indicating the value of each feature for each obj&tts the elementwise product @
andV, F = Z ® V, as illustrated in Figure 1. In many latent feature modelg.(€CA)
objects have non-zero values on every feature, and eveny @nZ is 1. In sparselatent
feature models (e.g., sparse PCA [14, 15]) only a subsetdiifes take on non-zero values
for each object, an@ picks out these subsets. A prior #hcan be defined by specifying
priors forZ and'V, with p(F) = P(Z)p(V), whereP(-) is a probability mass function.
We will focus on defining a prior o#, since the effective dimensionality of a latent feature
model is determined b¥. Assuming thaf is sparse, we can define a prior for infinite la-
tent feature models by defining a distribution over infiniteany matrices. Our discussion
of the Chinese restaurant process provides two desidemasuch a distribution: objects
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Figure 1: A binary matri¥Z, as shown in (a), indicates which features take non-zergegal
Elementwise multiplication oZ by a matrixV of continuous values produces a represen-
tation like (b). If V contains discrete values, we obtain a representationdike (

should be exchangeable, and posterior inference shoultabelle. It also suggests a
method by which these desiderata can be satisfied: starewitbdel that assumes a finite
number of features, and consider the limit as the numberatfifes approaches infinity.

2.1 Afinite feature model

We haveN objects ands features, and the possession of featubgy objecti is indicated

by a binary variable;;;,. The z;; form a binaryN x K feature matrix,Z. Assume that
each object possesses featiraith probability 7, and that the features are generated
independently. Under this model, the probabilityZ)givenw ={m,mo,..., K} IS

P(Z|r) = HHP Zik|TR) = HTF (1 — mp) Ve, 1)

k=11i=1

wheremy, = Zfil 2k 1S the number of objects possessing featuré/e can define a prior
on by assuming that eact), follows a beta distribution, to give

T |~ Bete(%, 1)

zik | Tk ~ Bernoulli(ry,)
Eachz;;, is independent of all other assignments, conditioned;qrand ther; are gener-
ated independently. We can integrate oub obtain the probability o¥, which is

K
2D (mg 4+ E)D(N —my, + 1
Pz) = [[X (s + g TNV —mie 1)
P (N +1+ %)

This distribution is exchangeable, sineg is not affected by the ordering of the objects.

)

2.2 Equivalence classes

In order to find the limit of the distribution specified by Edjoa 2 asK — oo, we need to
define equivalence classes of binary matrices — the analoftpagtitions for class assign-
ments. Our equivalence classes will be defined with respexfiinction on binary matri-
ces,lof (). This function maps binary matrices left-orderedbinary matriceslof(Z) is
obtained by ordering the columns of the binary maFiftom left to right by the magnitude
of the binary number expressed by that column, taking therfive as the most significant
bit. The left-ordering of a binary matrix is shown in Figurel the first row of the left-
ordered matrix, the columns for which, = 1 are grouped at the left. In the second row,
the columns for whichs, = 1 are grouped at the left of the sets for whigh = 1. This
grouping structure persists throughout the matrix.

Thehistory of featurek at objecti is defined to béz1x, ..., z;—1)x). Where no object is
specified, we will usénistoryto refer to the full history of featurg, (z1x,...,2nk). We



Figure 2: Left-ordered form. A binary matrix is transformieto a left-ordered binary
matrix by the functioriof(-). The entries in the left-ordered matrix were generated from
the Indian buffet process with = 10. Empty columns are omitted from both matrices.

will individuate the histories of features using the dedieguivalent of the binary numbers
corresponding to the column entries. For example, at oBjdeaitures can have one of four
histories:0, corresponding to a feature with no previous assignménkging a feature for
which zo, = 1 butzy;, = 0, 2, being a feature for whick,;, = 1 butz,, = 0, and3, being

a feature possessed by both previous objects were assifnpedlll denote the number of
features possessing the histérywith K being the number of features for whiely, = 0

andK, = Z,ﬁ;l K}, being the number of features for whigh, > 0, SOK = Ko+ K ;.

Two binary matricesY and Z are lof-equivalent iflof(Y) = lof(Z). The lof-
equivalence class of a binary matt#x denotedZ], is the set of binary matrices that are
lof-equivalent toZ. lof-equivalence classes play the role for binary matricespheti-
tions play for assignment vectors: they collapse togethdrimary matrices (assignment
vectors) that differ only in column ordering (class labels)-equivalence classes are pre-
served through permutation of the rows or the columns of airpgirovided the same
permutations are applied to the other members of the eguivalclass. Performing infer-
ence at the level ofo f-equivalence classes is appropriate in models where featder

is not identifiable, withp(X|F) being unaffected by the order of the columnskof Any
model in which the probability oX is specified in terms of a linear function &Y, such
as PCA or CVQ, has this property. The cardinality of thg-equivalence clasfZ] is

(Ko.ﬁgml) # wherekK], is the number of columns with full history.

2.3 Taking the infinite limit

Under the distribution defined by Equation 2, the probahidfta particulaio f-equivalence
class of binary matrice$Z], is

B KA (my + L)D(N —my + 1)
P([Z])—Z%:Z]P(Z)— iNol ]:IK N1+ %) )

Rearranging terms, and using the fact that) = (z — 1)I'(x — 1) for z > 1, we can
compute the limit ofP([Z]) as K approaches infinity

K m N
; ak+ K! < N ) ﬁ (N —m) T2 G+ )
lm . . .

K—o0 HQN VR Kol KR\ T G+ 2) Pt N!

af+ (N — mp)!(my, — 1)!
i e — 1 - exp{—aHy} 11 N , 4
h=1 1! k=1

where Hy is the Nth harmonic numberldy = ijzl % This distribution is infinitely

exchangeable, since neith&, norm, are affected by the ordering on objects. Technical
details of this limit are provided in [13].



2.4 The Indian buffet process

The probability distribution defined in Equation 4 can beivt from a simple stochastic
process. Due to the similarity to the Chinese restauramgss) we will also use a culinary
metaphor, appropriately adjusted for geography. Indiatatgants in London offer buffets
with an apparently infinite number of dishes. We will defineistribution over infinite
binary matrices by specifying how customers (objects) skabishes (features).

In our Indian buffet process (IBP)Y customers enter a restaurant one after another. Each
customer encounters a buffet consisting of infinitely maishes arranged in a line. The
first customer starts at the left of the buffet and takes airsgrivom each dish, stopping
after a Poisson() number of dishes. Théh customer moves along the buffet, sampling
dishesin proportlon to their popularity, taking diskwith probability ==, wherem,, is the
number of previous customers who have sampled that dlshnglwached the end of all
previous sampled dishes, tith customer then tries a Poissg)(number of new dishes.

We can indicate which customers chose which dishes usingeaybmatrixZ with N rows

and infinitely many columns, whetg,, = 1 if the ith customer sampled thigh dish.

Using Kfi) to indicate the number of new dishes sampled byitheustomer, the proba-
bility of any particular matrix being produced by the IBP is

K N mk) (mk — 1)
P(Z) = TR exp{— aHN}H Vi : (5)

The matrices produced by this process are generally noftioldered form. These ma-
trices are also not ordered arbitrarily, because the Poidsaws always result in choices
of new dishes that are to the right of the previously sampletes. Customers are not

exchangeable under this distribution, as the number ofedisiounted aﬁfi) depends

upon the order in which the customers make their choices. edevy if we only pay at-
tention to theo f-equivalence classes of the matrices generated by thleq;rsowe obtain

the infinitely exchangeable distributid®([Z]) given by Equation 41_1_[[23\,17][( matrices

generated via this process map to the same left-ordered forcthP([Z]) is obtained by
multiplying P(Z) from Equation 5 by this quantity. A similar but slightly mocempli-
cated process can be defined to produce left-ordered matficectly [13].

2.5 Conditional distributions

To define a Gibbs sampler for models using the IBP, we need ¢avkhe conditional
distribution on feature assignmenf3(z;, = 1|Z_;)). In the finite model, wheré’(Z)
is given by Equation 2, it is straightforward to compute toaditional distribution for any
zik- Integrating overr, gives

m_;k+ %

Pz =1lz—ip) =
' N+ %

; (6)
wherez_, ;. is the set of assignments of other objects, not includjrfgr featurek, and
m_; i iS the number of objects possessing featureot including:. We need only condi-

tion onz_;  rather thar¥_;;,, because the columns of the matrix are generated indepen-
dently under this prior.

In the infinite case, we can derive the conditional distitufrom the (exchangeable) IBP.
Choosing an ordering on objects such thatdheobject corresponds to the last customer
to visit the buffet, we obtain

m_ik

P(zi = 1lz—ix) = N

()



for any k& such thatn_; ; > 0. The same result can be obtained by taking the limit of
Equation 6 ag{ — oo. The number of new features associated with objesttould be
drawn from a Poissor{) distribution. This can also be derived from Equation 6ngshe
same kind of limiting argument as that presented above.

3 Alinear-Gaussian binary latent feature model

To illustrate how the IBP can be used as a prior in models feuparvised learning, we
derived and tested a linear-Gaussian latent feature modhdhich the features are binary.
In this case the feature matrX reduces to the binary matriz. As above, we will start
with a finite model and then consider the infinite limit.

In our finite model, theD-dimensional vector of properties of an objéck; is generated
from a Gaussian distribution with meanA and covariance matrif xy = 0'%(1, where
z; IS a K-dimensional binary vector, and is a K x D matrix of weights. In matrix
notation,E [X]| = ZA. If Z is a feature matrix, this is a form of binary factor analy3ike
distribution of X givenZ, A, andox is matrix Gaussian with medAA and covariance
matrix o% I, where! is the identity matrix. The prior o is also matrix Gaussian, with
mean0 and covariance matrix? I. Integrating outA, we have

1

p(X|ZaUXaUA) =
(2m)ND/2g NP KD 717, 4 x| D/2
A

2
exp{—%tr(XT(I ~ 2277 + ZX1)7'Z7)X)}. (8)
20% o)
This result is intuitive: the exponentiated term is theefifnce between the inner product
of X and its projection onto the space spanne@byegularized to an extent determined
by the ratio of the variance of the noiseXato the variance of the prior oA. It follows
thatp(X|Z, ox,04) depends only on the non-zero columnsZgfand thus remains well-
defined when we take the limit &8 — oo (for more details see [13]).

We can define a Gibbs sampler for this model by computing theduditional distribution
P(zir| X, Z_(5 1y, 0x,04) X p(X|Z,0x,04)P(2ik|2—i 1) 9)

The two terms on the right hand side can be evaluated usingtieqs 8 and 7 respectively.
The Gibbs sampler is then straightforward. Assignmentsefatures for whichn_; , > 0

are drawn from the distribution specified by Equation 9. Tistridbution over the number
of new features for each object can be approximated by ttiomga@omputing probabilities

for a range of values OKY) up to an upper bound. For each valp€X|Z,ox,04) can
be computed from Equation 8, and the prior on the number offeatures is Poissof).

We will demonstrate this Gibbs sampler for the infinite biniamear-Gaussian model on a
dataset consisting of 1aBI0 x 320 pixel images. We represented each image using

a 100-dimensional vector corresponding to the weights of thermiegge and the firgi9
principal components. Each image contained up to four earpbjects — a $20 bill, a
Klein bottle, a prehistoric handaxe, and a cellular phorechEobject constituted a single
latent feature responsible for the observed pixel valudse images were generated by
sampling a feature vectog,, from a distribution under which each feature was present
with probability0.5, and then taking a photograph containing the approprigeztdbusing

a LogiTech digital webcam. Sample images are shown in Fig\eg.

The Gibbs sampler was initialized witiy = 1, choosing the feature assignments for
the first column by setting;; = 1 with probability0.5. o4, ox, anda were initially
set t00.5, 1.7, and1 respectively, and then sampled by adding Metropolis stepbéd
MCMC algorithm. Figure 3 shows trace plots for the first 10@@dtions of MCMC for the
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Figure 3: Data and results for the demonstration of the itefifihear-Gaussian binary
latent feature model. (a) Four sample images from the 108éndataset. Each image
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had320 x 240 pixels, and contained from zero to four everyday objectsT{ie posterior
mean of the weights4) for the four most frequent binary features from itd@0th sample.

Each image corresponds to a single feature. These featemresiby indicate the presence
or absence of the four objects. The first feature indicatespttesence of the $20 bill,
the other three indicate the absence of the Klein bottle htnelaxe, and the cellphone.
(c) Reconstructions of the images in (a) using the binaryesanferred for those images.

These reconstructions are based upon the posterior me&riafthe 1000th sample. For

example, the code for the first image indicates that the $2&kabsent, while the other

three objects are not. The lower panels show trace plotshiordimensionality of the
representation/;) and the parameters, ox, ando4 over 1000 iterations of sampling.

The values of all parameters stabilize after approximait@lyiterations.



number of features used by at least one objggt, and the model parameters, ox, and
a. All of these quantities stabilized after approximately) If@rations, with the algorithm
finding solutions with approximately seven latent featufidge four most common features
perfectly indicated the presence and absence of the foactsijshown in Figure 3 (b)), and
three less common features coded for slight differencdsdidcations of those objects.

4 Conclusion

We have shown that the methods that have been used to defmteitdient class models
[6, 7, 8, 9, 10, 11, 12] can be extended to models in which d&bjare represented in
terms of a set of latent features, deriving a distributionrdimite binary matrices that can
be used as a prior for such models. While we derived this @gothe infinite limit of

a simple distribution on finite binary matrices, we have shahat the same distribution
can be specified in terms of a simple stochastic process -nthan buffet process. This
distribution satisfies our two desiderata for a prior fomité latent feature models: objects
are exchangeable, and inference remains tractable. Ocesaimn transferring the strategy
of taking the limit of a finite model from latent classes tcelatt features suggests that a
similar approach could be applied with other represemtatiexpanding the forms of latent
structure that can be recovered through unsupervisedibegarn
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