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Abstract 0010101101) more random than arrays in which cells take the
We examine factors influencing whether people perceive two- same values as their neighbors (such as 0000011111) (Falk &

dimensional binary arrays as random. Accounts of subjectiv ~ Konold, 1997). These results make it clear that people are
randomness often appeal to the idea that people consider sti  sensitive to certain regularities, such as cells havingtime

uli random when they cannot detect any regularities charac- ; ; e diffi ;
terizing the structure of those stimuli. We explore the pos- values as their neighbors. However, it is difficult to explai

sibility that the kinds of regularities people can deteat ar ~ Why these regularities should be more important than others

shaped by the statistics of their natural environment. Wor t that seema priori plausible, such as neighboring cells differ-
dimensional binary arrays — grids of black and white pixels — ing in their values

we can measure these statistics directly from images of natu 9 . ’ . . .
ral scenes. By estimating the parameters of a Markov random In this paper, we explore a possible explanation for the ori-
field from these images, we obtain a potential explanation fo  gins of the regularities that influence subjective randasane

why people find arrays in which cells differ in value from thei : : . : : :
nei)éiﬁ)borg ore ran)éom, with the reverse being more char- judgments for one class of stimuli: two-dimensional binary

acteristic of structured images. We present an experinment i ~ arrays. These stimuli are essentially images, consisfireg o
which we find a correlation between the extent to which peo-  grid of black and white pixels (see Figure 1), and we might
ple consider an array random, and the evidence it provides fo thus expect that the kinds of regularities detected by theali

having been generated by chance rather than nature. hould bl ) leind T hei
Keywords: subjective randomness; Markov random fields; system should play an importantrole in determining thei pe

Boltzmann machine; Gibbs sampling; natural scenes ceived randomness. A great deal of recent research suggests
that the human visual cortex efficiently codes for the strrect
Introduction of natural scenes (Olshausen & Field, 2000; Simoncelli & Ol-

People are very sensitive to deviations from their expitat  Shausen, 2001). We consider the possibility that the kiids o
about randomness. For example, the game Yahtzee involvéggularities that people detect in two-dimensional birary
repeatedly rolling five six-sided dice. If you were to roll al 'ays aré those th_at.are characterlsuc of natural scenes. We
sixes six times in a row, you would probably be quite sur-Show thqt the statistics of |m.ages.ofnat'ural scenes prw?de
prised. The probability of such a sequence arising by chancféxmanatlon for why arrays in which neighboring cells d!ﬁe
is 1/6%0. However, the low probability of such an event is N valge sho_uld be c_:onS|dered more _random, and deS(_:rlb_e an
not sufficient to explain its apparent non-randomness, s arfxPeriment illustrating that a Bayesian model of subjectiv
other sequence of the same number of dice rolls has the sarﬁ%ndomne:ss that evaluates whether a particular array is mor
probability. Consequently, recent accounts of human subje Ilkely to be generate.:d.by chance or be part of a na}tural scene
tive randomness — our sense of the extent to which an eveRf0vides good predictions of human randomness judgments.
seems random — have focused on the regularities in an event The plan of the paper is as follows. The next section
that suggest a process other than chance might be at wop¢esents a formal definition of subjective randomness from
(Griffiths & Tenenbaum, 2003, 2004; Falk & Konold, 1997). the perspective of Bayesian statistics. This establishes t
The basic idea behind these accounts is that stimuli will apneed to define a distribution over stimuli based on a “redular
pear random when they do not express any regularities. process, which we approach by introducing a simple statis-
An important challenge for any account of subjective ran-tical model for images. We then describe how the parame-
domness based on the presence of regularities is explainiﬁﬁrs of this model can be estimated from natural scenes and
why people should be sensitive to a particular set of regular outline the prediptions that result fronj using this model as
ties. In the example given above, we might be able to appedart of the Bayesian accountqfsubjectlv_e randomness;é)gfo
to the fact that systematic runs of the same number sugge8Ping on to present an experiment testing those predictions
loaded dice, or some other non-random process influencin§/@ conclude by discussing the implications and limitations
the outcomes. However, for other kinds of stimuli, such as°f this experiment.
the one- or two-dimensional binary arrays used in many sub- .. .
jective randomness experiments, explanations are mdie dif Subjective randomness as Bayesian inference
cult to come by. A common finding in these experiments isOne explanation for human randomness judgments is to view
that people consider arrays in which cells take differeit va them as the result of an inference as to whether an observed
ues from their neighbors (such as the one-dimensional arrastimulus, X, was generated by chance, or by some other more
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Figure 1. An example of a two-dimensional binary array. Tikia screenshot from the experiment described in the main tex
indicating how participants made their responses.

regular process (Griffiths & Tenenbaum, 2003, 2004). If wechoice ofP(X|randon) is to assume that each cell in the ar-
let P(X|randon) denote the probability ok being generated ray takes on a value of 1 or 0 with equal probability, making
by chance, an&(X|regulay be the probability oK underthe  P(X|random = 1/2", wheren is the number of cells in the
regular generating process, then Bayes’ rule gives thepostarray. However, defining(X|regulay is more challenging.
rior odds in favor of random generation as In the remainder of the paper, we develop and test a model in
whichP(X|regula is chosen to reflect the statistics of natural
P(randomX)  P(X|random) P(randor) 1) scenes.
P(regulafX)  P(X|regulay P(regulay (

A statistical model for images

whereP(randon) and P(regulay are the prior probabilities n order to definé®(X|regulay, we need to be able to spec-

assigned to the random and regular processes respectively. o . ; :
Only the first term on the right hand side of this expression,'K/ a statistical model for two-dimensional binary arraljatt

o ) ; S taptures the structure of natural images. A standard model
the likelihood ratio, changes as a functionX6fmaking it a : . '
. . : for images is a Markov random field (MRF) (Geman & Ge-
natural measure of the amount of evidexcprovides in fa- o : A
. ! man, 1984; Pérez, 1998). We can view a digital image as a
vor of a random generating process. Hence, we can define the . .
. set ofm pixel values and model each pixel value as a random
randomness of a stimuluéas

variableX;, wherex is the set of possible values of eaxh

P(X|random) Using X to denoteXy, Xo,. .., Xn, the joint distribution over
randontX) = Iogm (2)  all of the pixels isP(X). To define this distribution, we lay
a two-dimensional lattice over the pixels (as shown in Fig-
where the logarithm simply scales the result. ure 2), and assume that the value of each pixel (a node in the

The measure of subjective randomness defined in Equdattice) is independent of the value of all other pixels when
tion 2 has been used to model human randomness judgonditioned on its neighbors in the lattice.
ments for single digit numbers and one-dimensional binary If we constrainx to contain just two values—0and 1 —then
arrays (Griffiths & Tenenbaum, 2001, 2003, 2004). Herewe can draw on work on Ising models in statistical physics
we consider how it might be applied to two-dimensional bi-(Newman & Barkema, 1999) and Boltzmann machines in
nary arrays, of the kind shown in Figure 1. A reasonableneural network research (Hinton & Sejnowski, 1986) to de-



X X X X the parameters of this model. In this section, we outlindasuc
>/ &Y Y 2 an algorithm and describe its application to images of @tur
scenes.

Finding A1 and A,
Q(; 6(9 Q(D Q(; The simplest way to estimadg andA; is to use the learn-

ing algorithm for Boltzmann machines (Hinton & Sejnowski,
1986), which is gradient descent on the log-likelihood of a
collection ofn imagesX = {X®M X@ . XMW1 If we as-
sume that each of the images is generated independently from

@9 &D &D &9 the distributionP(X|A1,A;) defined by the MRF, we have the
~ N N/ . log-likelihood
logP(X|A1,A2) = zllogP D|A1,A2)

o) X (X2 X "
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Figure 2: The dependency structure of a Markov random field - (Al L;m‘l‘"‘(})
for a distribution over images. Each variable corresponds t

one pixel in the image, and the variables are connected in wherem andm0 are the number of pixels in imageaking
lattice reflecting their spatial layout. Each variable idén  values 1 and 0 respectively, ang and nfé are the number
pendent of all others when conditioned on its neighbors irbf neighboring pixels in imageof equal and different value
the lattice. However, variables are dependent on theirtReig respectively. Differentiating the log-likelihood with seect
bors, making it possible to capture regularities involvieg  to A, gives

lationships between neighboring pixels. The probabilfta o

n

3 - nﬁ} ) élogzm,xz)
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particular image depends on a set of functions defined over nooo %11)‘2)
neighboring pairs of variables, illustrated with ellipses o i;(m —ny) m
n
fine a distribution over images based on a global energy func- =— <21(m1 - m°)> +N-Ep(xaia0) [(ml m°)] (5)
tion E(X). Specifically, we take i=
)\lz WX +)\ZZ W%, X)) (3) WwhereEpx)[f(X)] is the expectation of the functiofi(X)
i<] with respect to the distributioR(X). The last line follows
o from the fact that
where(Xi) = 2% — 1, P(X, Xj) is 1 if X; = X; and—1 other-
wise, and the final sum is constrained such ¥andX; are 82(3)\11&) a% 3 x exp{—Ar(mt — m®) — Ap(m~ — )}
neighbors in the lattice. We can then define the distribution ZA2) ZOM,A2)
exp{—E(X)} exp{ EX)}
( | 1, 2) Z()\l,)\z) ( ) ; )\1,)\2)
whereZ(A,A\2) = Sy exp{—E(X)} is thepartition function - _Z (m = m*)P(X[A,A2). ®6)

of the distribution. This is gairwise MRF, since the distri-

bution onX depends only on functions computed over neigh-A similar calculation forA, gives

boring pairs of variables. The properties of the resultirsg d

tribution depend on the values of the paramedarandA.. 0 noo_ ) _ "

If A1 > 0, it will favor images in which more pixels take the dn, i;(m —ny) | +n-Eppxpyag (M —m7)] (7)
value 0, and ifA2 > 0, it will favor images in which pixels a

tend to differ from their neighbors. providing us with all we need in order to apply gradient de-
L - scent.
Estimating the statistics of natural scenes The expectations in Equations 5 and 7 cannot be com-

The statistical model introduced in the previous sectian pr puted analytically, and thus need to be approximated. We
vides a coarse-grained means of defining a distribution ovefiollow the procedure used in (Hinton & Sejnowski, 1986), ap-
two-dimensional binary arrays that will reflect the stédist proximating these expectations using a Markov chain Monte
of our visual world: takd®(X|regula) = P(X|A1,A2), and es-  Carlo algorithm (Newman & Barkema, 1999; Andrieu, Fre-
timateA; andA, from images of natural scenes. However, in itas, Doucet, & Jordan, 2003). The basic idea behind these
order to do this we need to define an algorithm for estimatinglgorithms is to repeatedly sample from a Markov chain until



it converges to its stationary distribution. If we constrtie  sult from using our simple model of images of natural scenes
chain carefully, the stationary distribution will be thestli-  asP(X|regula). Using the definition of randomness given in
bution from which we want to sample. Gibbs sampling (Ge-Equation 2 and takin@(X|randon) to be the probability re-
man & Geman, 1984) provides one way to construct such aulting from choosing pixel values with equal probabilityg
chain. To perform one sweep of Gibbs sampling, we iter-obtain

ate over all pixels in the image, drawing that pixel from its

cpndltlonal_ distribution given the current value_s of a_llhem _ randonfX) = A1 z W) + A2 Z WX, X)) +C  (8)
pixels. This procedure defines a Markov chain which will, | i<)

after many sweeps, converge to the distribufRgX|A1,A2),

providing us with samples from that distribution. We simply whereC is a constant that absorbs the log partition func-
take the average of the quantities that appear in the expectfion and logP(X|random). Thus, the randomness of an ar-
tions over the samples produced by the Markov chain. ray depends on the number of white pixels and the number of
matching neighbors, with the nature of this dependencygein

) ) determined by the values af andA,.
We estimated the parameters of a1 86 pixel Markov

. . Based on the estimates &f and A, obtained from nat-
random field model from a dataset of 62 images of natu'ural images, we should expect that people will find images
ral scenes, each 10601280 pixels in size (Doi, Inui, Lee, ges, b peop 9

Wachtler, & Sejnowski, 2003). From each of these imagesW'th pixels th?t tend to. be 'the same as thelr_nelghbors Ie_ss
. fandom than images with pixels that tend to differ from their
we sampled 10 sub-images at each ofx166, 32x 32, . LS . . . L
neighbors. This is consistent with previous subjective ran

64 x 64, 128x 128 and 256« 256 pixels in size uniformly . . ) : .
. . domness experiments, as mentioned in the introduction, and
at random. We then resized each of these images down t0

. L . . potentially provides an explanation for why a match between
16 x 16 pixels, giving us a set of images at different resolu- : . : :
. . . . .. the values of neighboring pixels should constitute a ragula
tions. Finally, the images were converted to binary by figdin

. . : . fty: it is something that is more characteristic of struedir
the median pixel value of all 3100 images, and mapping alnatural scenes than of images produced by chance. Beyond
pixel values less than the median to black (0) and all othe ges p y - BeY

pixel values to white (1). This procedure guaranteed tha hese qualitative predictions, the model makes quanviati

white and black pixels occurred equally often across the e predictions about which images will be considered random.
e conducted an experiment to test those predictions.

tire dataset, but preserved some of the variation in intgnsi
across different images.

Gradient descent was used to find the values;acind >
that maximized the log-likelihood Idg(X|A1,Az). Inspection b icinants  Participants were 25 members of the Brown
of Equations 5 and 7 reveals that the derivative is zero if th%niversity community.
expected number of white pixels and of matching neighbors o ' _
underP(X|A1,A2) equals the empirical average observed inSt|r_nuI|_ Participants were shown 1616 pixel black and _
the images. The gradient descent algorithm thus consigted ¥/hite binary arrays that were generated from one of two dis-
using Gibbs sampling to compute the expectations that appef{ibutions: P(X|random and P(X|regulaj. Two thousand
in the gradients, and then modifying and); in the direc-  Images were generated from each distribution, with the im-
tion indicated by those gradients. We ran the Gibbs sample?9es fromP(X|regulaj being produced by 300 sweeps of
for 250 sweeps in each gradient descent step, and halted tf&Pbs sampling. In order to ensure a range of randomness
algorithm after 100 iterations, when the log-likelinooddha Values under the model, rand¥) was computed for each
stabilized. image was using Equation 8. The 4000 images were sorted

The estimates of1 and)» for the binary arrays produced according to this score, and 20 images that evenly spaneed th
from the natural scenes were).001 and—0.189. The value fange of values of randoX) were selected, together with
of A1 is approximately 0 because we ensured an equal numbé&fother 5 practice images. These 25 images were used as
of black and white pixels through the thresholding procedur Stimuli in the experiment.
used to construct the binary images, and thus simply indiProcedure Participants were told that the stimuli were cre-
cates the validity of our method of estimating these paramated using either a random process or another undefined pro-
eters. The value okz reflects this propensity for neighbor- cess. They were asked to decide which process generated
ing pixels in our natural scenes to take on the same intensitgach stimulus. Below the stimulus were two buttons, as
value: in our training set of 3100 image samples, each pixeshown in Figure 1. The first button was labeled “Random”
had an average of.29 neighbors with the same value and and the second was labeled “Not Random.” They were in-

Fitting the model to image data

Method

1.01 neighbors with a differing pixel value. structed to press the button corresponding to their iriti
. o about which process generated the stimulus. In order to fa-
Testing the model predictions miliarize participants with this procedure, the first 5 stlim

If we return to the definition of subjective randomness intro were presented as practice trials, followed by the 20 stimul
duced in above, we can now examine the predictions that rahat constituted the main experiment.



People’s Classification of 20 Images as Random or Not Random

100

Percentage of people who thought the image was random

Images ordered by randomness score from least random to most
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Figure 3: Results of the experiment. The actual stimuli usdtle experiment appear along the bottom of the figure, edler
from lowest to highest value of rand@¥), computed using the distribution estimated from naturahss as?(X|regulaj.

Bars show the proportion of participants who classified esichulus as having come from a random source. There is a close
correlation between the predictions of the Bayesian mauklae subjective randomness of the stimuli.

Results scenes.

The results of the experiment are shown in Figure 3. A one-

way ANOVA showed a statistically significant effect ofimage The results show a strong correspondence between a stimu-
(F(19,456) =15.18,MSE = 0.16, p < .001). If we order the lus having higher probability under the distribution estted
stimuli by randongX), as was done in the figure, we can seefrom natural images than under the chance distribution and
the locus of this effect: as randdK) increases, so does the people deciding that the stimulus was not random. Very few
percentage of participants who classified a stimulus asigavi people thought that the images that were more likely to be
been generated by the random process. The linear correlfrom the “regular” distribution were random. The images
tion between rando(X) and the probability of the stimulus whose statistics were on the border between regular and ran-
being classified as random was- 0.87, and the rank-order dom split people’s opinions. The stimuli that were lease lik
correlation (taking into account only the relative ordgrof ~ the images were almost unanimously declared to be random.
these different measures) wps=.82. Notably, the model On the whole, these results bear out the predictions of the
has no free parameters: the randomness of a stimulus is dBayesian model, and indicate that the distribution esthat
termined solely byP(X|random), which is fixed a priori, and  from images of natural scenes provides a reasonable candi-
P(X|regulay, which is estimated from the images of natural date forP(X|regulay.
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