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Abstract

We examine factors influencing whether people perceive two-
dimensional binary arrays as random. Accounts of subjective
randomness often appeal to the idea that people consider stim-
uli random when they cannot detect any regularities charac-
terizing the structure of those stimuli. We explore the pos-
sibility that the kinds of regularities people can detect are
shaped by the statistics of their natural environment. For two-
dimensional binary arrays – grids of black and white pixels –
we can measure these statistics directly from images of natu-
ral scenes. By estimating the parameters of a Markov random
field from these images, we obtain a potential explanation for
why people find arrays in which cells differ in value from their
neighbors more random, with the reverse being more char-
acteristic of structured images. We present an experiment in
which we find a correlation between the extent to which peo-
ple consider an array random, and the evidence it provides for
having been generated by chance rather than nature.

Keywords: subjective randomness; Markov random fields;
Boltzmann machine; Gibbs sampling; natural scenes

Introduction
People are very sensitive to deviations from their expectations
about randomness. For example, the game Yahtzee involves
repeatedly rolling five six-sided dice. If you were to roll all
sixes six times in a row, you would probably be quite sur-
prised. The probability of such a sequence arising by chance
is 1/630. However, the low probability of such an event is
not sufficient to explain its apparent non-randomness, as any
other sequence of the same number of dice rolls has the same
probability. Consequently, recent accounts of human subjec-
tive randomness – our sense of the extent to which an event
seems random – have focused on the regularities in an event
that suggest a process other than chance might be at work
(Griffiths & Tenenbaum, 2003, 2004; Falk & Konold, 1997).
The basic idea behind these accounts is that stimuli will ap-
pear random when they do not express any regularities.

An important challenge for any account of subjective ran-
domness based on the presence of regularities is explaining
why people should be sensitive to a particular set of regulari-
ties. In the example given above, we might be able to appeal
to the fact that systematic runs of the same number suggest
loaded dice, or some other non-random process influencing
the outcomes. However, for other kinds of stimuli, such as
the one- or two-dimensional binary arrays used in many sub-
jective randomness experiments, explanations are more diffi-
cult to come by. A common finding in these experiments is
that people consider arrays in which cells take different val-
ues from their neighbors (such as the one-dimensional array

0010101101) more random than arrays in which cells take the
same values as their neighbors (such as 0000011111) (Falk &
Konold, 1997). These results make it clear that people are
sensitive to certain regularities, such as cells having thesame
values as their neighbors. However, it is difficult to explain
why these regularities should be more important than others
that seema priori plausible, such as neighboring cells differ-
ing in their values.

In this paper, we explore a possible explanation for the ori-
gins of the regularities that influence subjective randomness
judgments for one class of stimuli: two-dimensional binary
arrays. These stimuli are essentially images, consisting of a
grid of black and white pixels (see Figure 1), and we might
thus expect that the kinds of regularities detected by the visual
system should play an important role in determining their per-
ceived randomness. A great deal of recent research suggests
that the human visual cortex efficiently codes for the structure
of natural scenes (Olshausen & Field, 2000; Simoncelli & Ol-
shausen, 2001). We consider the possibility that the kinds of
regularities that people detect in two-dimensional binaryar-
rays are those that are characteristic of natural scenes. We
show that the statistics of images of natural scenes providean
explanation for why arrays in which neighboring cells differ
in value should be considered more random, and describe an
experiment illustrating that a Bayesian model of subjective
randomness that evaluates whether a particular array is more
likely to be generated by chance or be part of a natural scene
provides good predictions of human randomness judgments.

The plan of the paper is as follows. The next section
presents a formal definition of subjective randomness from
the perspective of Bayesian statistics. This establishes the
need to define a distribution over stimuli based on a “regular”
process, which we approach by introducing a simple statis-
tical model for images. We then describe how the parame-
ters of this model can be estimated from natural scenes and
outline the predictions that result from using this model as
part of the Bayesian account of subjective randomness, before
going on to present an experiment testing those predictions.
We conclude by discussing the implications and limitations
of this experiment.

Subjective randomness as Bayesian inference
One explanation for human randomness judgments is to view
them as the result of an inference as to whether an observed
stimulus,X , was generated by chance, or by some other more



Figure 1: An example of a two-dimensional binary array. Thisis a screenshot from the experiment described in the main text,
indicating how participants made their responses.

regular process (Griffiths & Tenenbaum, 2003, 2004). If we
let P(X |random) denote the probability ofX being generated
by chance, andP(X |regular) be the probability ofX under the
regular generating process, then Bayes’ rule gives the poste-
rior odds in favor of random generation as

P(random|X)

P(regular|X)
=

P(X |random)
P(X |regular)

P(random)
P(regular)

(1)

whereP(random) andP(regular) are the prior probabilities
assigned to the random and regular processes respectively.
Only the first term on the right hand side of this expression,
the likelihood ratio, changes as a function ofX , making it a
natural measure of the amount of evidenceX provides in fa-
vor of a random generating process. Hence, we can define the
randomness of a stimulusX as

random(X) = log
P(X |random)
P(X |regular)

(2)

where the logarithm simply scales the result.
The measure of subjective randomness defined in Equa-

tion 2 has been used to model human randomness judg-
ments for single digit numbers and one-dimensional binary
arrays (Griffiths & Tenenbaum, 2001, 2003, 2004). Here,
we consider how it might be applied to two-dimensional bi-
nary arrays, of the kind shown in Figure 1. A reasonable

choice ofP(X |random) is to assume that each cell in the ar-
ray takes on a value of 1 or 0 with equal probability, making
P(X |random) = 1/2n, wheren is the number of cells in the
array. However, definingP(X |regular) is more challenging.
In the remainder of the paper, we develop and test a model in
whichP(X |regular) is chosen to reflect the statistics of natural
scenes.

A statistical model for images
In order to defineP(X |regular), we need to be able to spec-
ify a statistical model for two-dimensional binary arrays that
captures the structure of natural images. A standard model
for images is a Markov random field (MRF) (Geman & Ge-
man, 1984; Pérez, 1998). We can view a digital image as a
set ofm pixel values and model each pixel value as a random
variableXi, whereX is the set of possible values of eachXi.
Using X to denoteX1,X2, . . . ,Xm, the joint distribution over
all of the pixels isP(X). To define this distribution, we lay
a two-dimensional lattice over the pixels (as shown in Fig-
ure 2), and assume that the value of each pixel (a node in the
lattice) is independent of the value of all other pixels when
conditioned on its neighbors in the lattice.

If we constrainX to contain just two values – 0 and 1 – then
we can draw on work on Ising models in statistical physics
(Newman & Barkema, 1999) and Boltzmann machines in
neural network research (Hinton & Sejnowski, 1986) to de-
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Figure 2: The dependency structure of a Markov random field
for a distribution over images. Each variable corresponds to
one pixel in the image, and the variables are connected in a
lattice reflecting their spatial layout. Each variable is inde-
pendent of all others when conditioned on its neighbors in
the lattice. However, variables are dependent on their neigh-
bors, making it possible to capture regularities involvingre-
lationships between neighboring pixels. The probability of a
particular image depends on a set of functions defined over
neighboring pairs of variables, illustrated with ellipses.

fine a distribution over images based on a global energy func-
tion E(X). Specifically, we take

E(X) = λ1∑
i

ψ(Xi)+ λ2 ∑
i< j

ψ(Xi,X j) (3)

whereψ(Xi) = 2Xi−1,ψ(Xi,X j) is 1 if Xi = X j and−1 other-
wise, and the final sum is constrained such thatXi andX j are
neighbors in the lattice. We can then define the distribution

P(X |λ1,λ2) =
exp{−E(X)}

Z(λ1,λ2)
(4)

whereZ(λ1,λ2) = ∑X exp{−E(X)} is thepartition function
of the distribution. This is apairwise MRF, since the distri-
bution onX depends only on functions computed over neigh-
boring pairs of variables. The properties of the resulting dis-
tribution depend on the values of the parametersλ1 andλ2.
If λ1 > 0, it will favor images in which more pixels take the
value 0, and ifλ2 > 0, it will favor images in which pixels
tend to differ from their neighbors.

Estimating the statistics of natural scenes
The statistical model introduced in the previous section pro-
vides a coarse-grained means of defining a distribution over
two-dimensional binary arrays that will reflect the statistics
of our visual world: takeP(X |regular) = P(X |λ1,λ2), and es-
timateλ1 andλ2 from images of natural scenes. However, in
order to do this we need to define an algorithm for estimating

the parameters of this model. In this section, we outline such
an algorithm and describe its application to images of natural
scenes.

Finding λ1 and λ2

The simplest way to estimateλ1 andλ2 is to use the learn-
ing algorithm for Boltzmann machines (Hinton & Sejnowski,
1986), which is gradient descent on the log-likelihood of a
collection ofn imagesX = {X (1),X (2), . . . ,X (n)}. If we as-
sume that each of the images is generated independently from
the distributionP(X |λ1,λ2) defined by the MRF, we have the
log-likelihood

logP(X|λ1,λ2) =
n

∑
i=1

logP(X (i)|λ1,λ2)

= −

(

λ1

[

n

∑
i=1

(m1
i −m0

i )

]

+λ2

[

n

∑
i=1

(m=
i −m 6=

i )

])

−
n

∑
i=1

logZ(λ1,λ2)

= −

(

λ1

[

n

∑
i=1

(m1
i −m0

i )

]

+λ2

[

n

∑
i=1

(m=
i −m 6=

i )

])

−n logZ(λ1,λ2)

wherem1
i andm0

i are the number of pixels in imagei taking

values 1 and 0 respectively, andm=
i andm 6=

i are the number
of neighboring pixels in imagei of equal and different value
respectively. Differentiating the log-likelihood with respect
to λ1 gives

∂
∂λ1

= −

(

n

∑
i=1

(m1
i −m0

i )

)

−n ·

∂Z(λ1,λ2)
∂λ1

Z(λ1,λ2)

= −

(

n

∑
i=1

(m1
i −m0

i )

)

+ n ·EP(X |λ1,λ2)[(m
1−m0)] (5)

whereEP(X)[ f (X)] is the expectation of the functionf (X)
with respect to the distributionP(X). The last line follows
from the fact that

∂Z(λ1,λ2)
∂λ1

Z(λ1,λ2)
=

∂
∂λ1

∑X exp{−λ1(m1−m0)−λ2(m= −m 6=)}

Z(λ1,λ2)

= −∑
X

(m1−m0)
exp{−E(X)}

Z(λ1,λ2)

= −∑
X

(m1−m0)P(X |λ1,λ2). (6)

A similar calculation forλ2 gives

∂
∂λ2

= −

(

n

∑
i=1

(m=
i −m 6=

i )

)

+ n ·EP(X |λ1,λ2)[(m
=−m 6=)] (7)

providing us with all we need in order to apply gradient de-
scent.

The expectations in Equations 5 and 7 cannot be com-
puted analytically, and thus need to be approximated. We
follow the procedure used in (Hinton & Sejnowski, 1986), ap-
proximating these expectations using a Markov chain Monte
Carlo algorithm (Newman & Barkema, 1999; Andrieu, Fre-
itas, Doucet, & Jordan, 2003). The basic idea behind these
algorithms is to repeatedly sample from a Markov chain until



it converges to its stationary distribution. If we construct the
chain carefully, the stationary distribution will be the distri-
bution from which we want to sample. Gibbs sampling (Ge-
man & Geman, 1984) provides one way to construct such a
chain. To perform one sweep of Gibbs sampling, we iter-
ate over all pixels in the image, drawing that pixel from its
conditional distribution given the current values of all other
pixels. This procedure defines a Markov chain which will,
after many sweeps, converge to the distributionP(X |λ1,λ2),
providing us with samples from that distribution. We simply
take the average of the quantities that appear in the expecta-
tions over the samples produced by the Markov chain.

Fitting the model to image data
We estimated the parameters of a 16× 16 pixel Markov
random field model from a dataset of 62 images of natu-
ral scenes, each 1000× 1280 pixels in size (Doi, Inui, Lee,
Wachtler, & Sejnowski, 2003). From each of these images,
we sampled 10 sub-images at each of 16× 16, 32× 32,
64× 64, 128× 128 and 256× 256 pixels in size uniformly
at random. We then resized each of these images down to
16×16 pixels, giving us a set of images at different resolu-
tions. Finally, the images were converted to binary by finding
the median pixel value of all 3100 images, and mapping all
pixel values less than the median to black (0) and all other
pixel values to white (1). This procedure guaranteed that
white and black pixels occurred equally often across the en-
tire dataset, but preserved some of the variation in intensity
across different images.

Gradient descent was used to find the values ofλ1 andλ2

that maximized the log-likelihood logP(X|λ1,λ2). Inspection
of Equations 5 and 7 reveals that the derivative is zero if the
expected number of white pixels and of matching neighbors
underP(X |λ1,λ2) equals the empirical average observed in
the images. The gradient descent algorithm thus consisted of
using Gibbs sampling to compute the expectations that appear
in the gradients, and then modifyingλ1 andλ2 in the direc-
tion indicated by those gradients. We ran the Gibbs sampler
for 250 sweeps in each gradient descent step, and halted the
algorithm after 100 iterations, when the log-likelihood had
stabilized.

The estimates ofλ1 andλ2 for the binary arrays produced
from the natural scenes were−0.001 and−0.189. The value
of λ1 is approximately 0 because we ensured an equal number
of black and white pixels through the thresholding procedure
used to construct the binary images, and thus simply indi-
cates the validity of our method of estimating these param-
eters. The value ofλ2 reflects this propensity for neighbor-
ing pixels in our natural scenes to take on the same intensity
value: in our training set of 3100 image samples, each pixel
had an average of 2.99 neighbors with the same value and
1.01 neighbors with a differing pixel value.

Testing the model predictions
If we return to the definition of subjective randomness intro-
duced in above, we can now examine the predictions that re-

sult from using our simple model of images of natural scenes
asP(X |regular). Using the definition of randomness given in
Equation 2 and takingP(X |random) to be the probability re-
sulting from choosing pixel values with equal probability,we
obtain

random(X) = λ1∑
i

ψ(Xi)+ λ2 ∑
i< j

ψ(Xi,X j)+C (8)

whereC is a constant that absorbs the log partition func-
tion and logP(X |random). Thus, the randomness of an ar-
ray depends on the number of white pixels and the number of
matching neighbors, with the nature of this dependency being
determined by the values ofλ1 andλ2.

Based on the estimates ofλ1 and λ2 obtained from nat-
ural images, we should expect that people will find images
with pixels that tend to be the same as their neighbors less
random than images with pixels that tend to differ from their
neighbors. This is consistent with previous subjective ran-
domness experiments, as mentioned in the introduction, and
potentially provides an explanation for why a match between
the values of neighboring pixels should constitute a regular-
ity: it is something that is more characteristic of structured
natural scenes than of images produced by chance. Beyond
these qualitative predictions, the model makes quantitative
predictions about which images will be considered random.
We conducted an experiment to test those predictions.

Method

Participants Participants were 25 members of the Brown
university community.

Stimuli Participants were shown 16× 16 pixel black and
white binary arrays that were generated from one of two dis-
tributions: P(X |random) and P(X |regular). Two thousand
images were generated from each distribution, with the im-
ages fromP(X |regular) being produced by 300 sweeps of
Gibbs sampling. In order to ensure a range of randomness
values under the model, random(X) was computed for each
image was using Equation 8. The 4000 images were sorted
according to this score, and 20 images that evenly spanned the
range of values of random(X) were selected, together with
another 5 practice images. These 25 images were used as
stimuli in the experiment.

Procedure Participants were told that the stimuli were cre-
ated using either a random process or another undefined pro-
cess. They were asked to decide which process generated
each stimulus. Below the stimulus were two buttons, as
shown in Figure 1. The first button was labeled “Random”
and the second was labeled “Not Random.” They were in-
structed to press the button corresponding to their intuition
about which process generated the stimulus. In order to fa-
miliarize participants with this procedure, the first 5 stimuli
were presented as practice trials, followed by the 20 stimuli
that constituted the main experiment.
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Images ordered by randomness score from least random to most

People’s Classification of 20 Images as Random or Not Random

Figure 3: Results of the experiment. The actual stimuli usedin the experiment appear along the bottom of the figure, ordered
from lowest to highest value of random(X), computed using the distribution estimated from natural scenes asP(X |regular).
Bars show the proportion of participants who classified eachstimulus as having come from a random source. There is a close
correlation between the predictions of the Bayesian model and the subjective randomness of the stimuli.

Results

The results of the experiment are shown in Figure 3. A one-
way ANOVA showed a statistically significant effect of image
(F(19,456) = 15.18,MSE = 0.16, p < .001). If we order the
stimuli by random(X), as was done in the figure, we can see
the locus of this effect: as random(X) increases, so does the
percentage of participants who classified a stimulus as having
been generated by the random process. The linear correla-
tion between random(X) and the probability of the stimulus
being classified as random wasr = 0.87, and the rank-order
correlation (taking into account only the relative ordering of
these different measures) wasρ = .82. Notably, the model
has no free parameters: the randomness of a stimulus is de-
termined solely byP(X |random), which is fixed a priori, and
P(X |regular), which is estimated from the images of natural

scenes.

The results show a strong correspondence between a stimu-
lus having higher probability under the distribution estimated
from natural images than under the chance distribution and
people deciding that the stimulus was not random. Very few
people thought that the images that were more likely to be
from the “regular” distribution were random. The images
whose statistics were on the border between regular and ran-
dom split people’s opinions. The stimuli that were least like
the images were almost unanimously declared to be random.
On the whole, these results bear out the predictions of the
Bayesian model, and indicate that the distribution estimated
from images of natural scenes provides a reasonable candi-
date forP(X |regular).



Summary and conclusions

Accounts of subjective randomness that appeal to people’s
ability to detect regularities in stimuli need to be able to char-
acterize those regularities, and their origins. For example, if
subjective randomness is viewed as the statistical evidence
that a stimulus provides for having been produced from a
random generating process rather than one with more regu-
lar structure (Griffiths & Tenenbaum, 2003, 2004), we need
to know what distribution over stimuli is induced by the more
regular process,P(X |regular). Studying the subjective ran-
domness of two-dimensional binary arrays provides one way
to approach this problem, making it possible to explore the
hypothesis that the regularities that people detect in these
arrays, and the resulting evaluation of their randomness, is
influenced by the statistical structure of our visual world.
This statistical structure can be estimated from images of
natural scenes, providing an objective method for estimating
P(X |regular).

In this paper, we explored the consequences of using a
very simple image model to estimateP(X |regular): a pairwise
Markov random field. This model captures an important as-
pect of images of natural scenes – that neighboring pixels are
more likely to have the same value than would be expected by
chance – which provides a potential explanation for the com-
mon finding that people give higher randomness ratings to
arrays in which neighboring cells take different values (Falk
& Konold, 1997). Our experiment indicates that the quantita-
tive predictions of a model using this choice ofP(X |regular)
(and with no free parameters) correspond quite well to human
randomness judgments.

These results illustrate that it is possible to define good
models of subjective randomness using objective sources of
regularities – in our case, the statistics of natural scenes.
However, a more complete analysis of the hypothesis that
these statistics can explain human randomness judgments
would require using a more sophisticated model of images.
The simple MRF that we used in this paper can only cap-
ture very limited aspects of the structure of natural scenes.
In particular, with the current parameter values, it predicts
that the scene with the lowest probability (and hence the one
that is most random) is one in which the pixels alternate per-
fectly, as on a chess board. Intuitively, such a stimulus would
seem to be quite non-random, suggesting that we might need
to investigate more sophisticated image models (e.g., Free-
man, Pasztor, & Carmichael, 2000; Gimel’farb, 1996; Roth
& Black, 2005; Zhu, Wu, & Mumford, 1998) in order to be
able to capture all of the nuances of subjective randomness
judgments for two-dimensional binary arrays, and to provide
a more exhaustive exploration of how these judgments corre-
spond to the between natural statistics of our visual environ-
ment.
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