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Abstract

Many human interactions involve pieces of information bepassed from one
person to another, raising the question of how this prockggamation trans-
mission is affected by the capacities of the agents involviedthe 1930s, Sir
Frederic Bartlett explored the influence of memory biasésenial reproduction”
of information, in which one person’s reconstruction of instus from memory
becomes the stimulus seen by the next person. These expésimere done us-
ing relatively uncontrolled stimuli such as pictures aratiss, but suggested that
serial reproduction would transform information in a wagttreflected the biases
inherent in memory. We formally analyze serial reproduttising a Bayesian
model of reconstruction from memory, giving a general reshéracterizing the
effect of memory biases on information transmission. Wen ttest the predic-
tions of this account in two experiments using simple omeettisional stimuli.
Our results provide theoretical and empirical justificatfor the idea that serial
reproduction reflects memory biases.

1 Introduction

Most of the facts that we know about the world are not learhedugh first-hand experience, but
are the result of information being passed from one persandther. This raises a natural question:
how are such processes of information transmission atldstéhe capacities of the agents involved?
Decades of memory research have charted the ways in whighemories distort reality, changing
the details of experiences and introducing events thatrreneurred (see [1] for an overview). We
might thus expect that these memory biases would affectaismission of information, since such
a process relies on each person remembering a fact acguratel

The question of how memory biases affect information traasion was first investigated in detalil
in Sir Frederic Bartlett's “serial reproduction” experims [2]. Bartlett interpreted these studies
as showing that people were biased by their own culture whey iteconstruct information from
memory, and that this bias became exaggerated through sspraduction. Serial reproduction
has become one of the standard methods used to simulateotesprof cultural transmission, and
several subsequent studies have used this paradigm & 4j).[However, this phenomenon has not
been systematically and formally analyzed, and most ottkaglies have used complex stimuli that
are semantically rich but hard to control. In this paper, arenally analyze and empirically evaluate
how information is changed by serial reproduction and haw phocess relates to memory biases.
In particular, we provide a rational analysis of serial oefuction (in the spirit of [5]), considering
how information should change when passed along a chairtiohed agents.

Biased reconstructions are found in many tasks. For exampeple are biased by their knowledge
of the structure of categories when they reconstruct simpteuli from memory. One common



effect of this kind is that people judge stimuli that crossibdaries of two different categories to
be further apart than those within the same category, altindlie distances between the stimuli
are the same in the two situations [6]. However, biases needefiect suboptimal performance.
If we assume that memory is solving the problem of extracting storing information from the
noisy signal presented to our senses, we can analyze thesgrotreconstruction from memory as
a Bayesian inference. Under this view, reconstructionsiishcombine prior knowledge about the
world with the information provided by noisy stimuli. Use mfior knowledge will result in biases,
but these biases ultimately make memory more accurate [7].

If this account of reconstruction from memory is true, we Wdoexpect the same inference process
to occur at every step of serial reproduction. The effectme@mory biases should thus be accumu-
lated. Assuming all participants share the same prior kedgs about the world, serial reproduction
should ultimately reveal the nature of this knowledge. Dingwon recent work exploring other pro-
cesses of information transmission [8, 9], we show that i@mat analysis of serial reproduction
makes exactly this prediction. To test the predictions & #tcount, we explore the special case
where the task is to reconstruct a one-dimensional stimusirsy the information that it is drawn
from a fixed Gaussian distribution. In this case we can petcisharacterize behavior at every step
of serial reproduction. Specifically, we show that this defia simple first-order autoregressive, or
AR(1), process, allowing us to draw on a variety of resultarabterizing such processes. We use
these predictions to test the Bayesian models of seriabdejgtion in two laboratory experiments
and show that the predictions hold serial reproduction betiwveen- and within-subjects.

The plan of the paper is as follows. Section 2 lays out the Biayeaccount of serial reproduction.
In Section 3 we show how this Bayesian account correspontifetdR(1) process. Sections 4 and
5 present two experiments testing the model’'s predictiah slerial reproduction reveals memory
biases. Section 6 concludes the paper.

2 A Bayesian view of serial reproduction

We will outline our Bayesian approach to serial reproductyy first considering the problem of
reconstruction from memory, and then asking what happerenine solution to this problem is
repeated many times, as in serial reproduction.

2.1 Reconstruction from memory

Our goal is to give a rational account of reconstruction frm@mory, considering the underlying
computational problem and finding the optimal solution tatthroblem. We will formulate the
problem of reconstruction from memory as a problem of imfigrand storing accurate information
about the world from noisy sensory data. Given a noisy stilswi] we seek to recover the true state
of the worldy that generated that stimulus, storing an estinjeite memory. The optimal solution
to this problem is provided by Bayesian statistics. Previexperience provides a “prior” distri-
bution on possible states of the worjg(y:). On observinge, this can be updated to a “posterior”
distributionp(u|x) by applying Bayes'’ rule

plulz) = p(z|p)p(p) 0

[ p(lp)p(p) du

wherep(z|u) — the “likelihood” — indicates the probability of observingif . is the true state of
the world. Having computeg(u:|x), a number of schemes could be used to select an estimate of
to store. Perhaps the simplest such scheme is sampling fi®@posterior, withi ~ p(u|z).

This analysis provides a general schema for modeling réwani®n from memory, applicable for
any form ofx and . A simple example is the special case wherand i vary along a single
continuous dimension. In the experiment presented latdrempaper we take this dimension to be
the width of a fish, showing people a fish and asking them tongtcact its width from memory, but
the dimension of interest could be any subjective quantithsas the perceived length, loudness,
duration, or brightness of a stimulus. Assume that prevexyserience establishes thathas a
Gaussian distribution, with ~ N (po, aé), and that the noise process means thhas a Gaussian
distribution centered op, z|u ~ N (i, o3). In this case, we can use standard results from Bayesian
statistics [10] to show that the outcome of Equation 1 is al$@aussian distribution, with(u|z)
beingN(Az + (1 — X))o, Ao2), whereh = 1/(1 + 02 /03).



The analysis presented in the previous paragraph makeargpetsliction: that the reconstructign
should be a compromise between the observed vahred the mean of the prigr, with the terms

of the compromise being set by the ratio of the noise in thafhto the uncertainty in the prior?.
This model thus predicts a systematic bias in reconstnudhiat is not a consequence of an error of
memory, but the optimal solution to the problem of extragtinformation from a noisy stimulus.
Huttenlocher and colleagues [7] have conducted severakiEmpnts testing this account of memory
biases, showing that people’s reconstructions interpdiatween observed stimuli and the mean of
a trained distribution as predicted. Using a similar notibnecosntruction from memory, Hemmer
and Steyvers [11] have conducted experiments to show tlegtlpdormed appropriate Bayesian
reconstructions for realistic stimuli such as images at,fand seemed capable of drawing on prior
knowledge at multiple levels of abstraction in doing so.

2.2 Serial reproduction

With a model of how people might approach the problem of retrotion from memory in hand,
we are now in a position to analyze what happens in seriabdemtion, where the stimuli that
people receive on one trial are the results of a previouswsnaction. On theuth trial, a participant
sees a stimulus,,. The participant then computgéu|z,,) as outlined in the previous section, and
stores a samplg from this distribution in memory. When asked to produce a metroiction, the
participant generates a new valug,; from a distribution that depends gn If the likelihood,
p(z|p), reflects perceptual noise, then it is reasonable to assahe,t, ; will be sampled from this
distribution, substitutingi for x. This value ofz,,; is the stimulus for the next trial.

Viewed from this perspective, serial reproduction definst®ahastic process: a sequence of random
variables evolving over time. In particular, it is a Markadvain, since the reconstruction produced
on the current trial depends only on the value produced orpteeeding trial (e.g. [12]). The
transition probabilities of this Markov chain are

P(Tpi1]zn) = /p(wn+1lu)p(u\wn) dpu 2

being the probability that,,, ;1 is produced as a reconstruction for the stimutys If this Markov
chain is ergodic (see [12] for details) it will converge taat®nary distributionr(x), with p(z,,|z1)
tending tor(z,,) asn — oo. That is, after many reproductions, we should expect theaiitity
of seeing a particular stimulus being produced as a reptmfuto stabilize to a fixed distribution.
Identifying this distribution will help us understand thensequences of serial reproduction.

The transition probabilities given in Equation 2 have a sgdiorm, being the result of sampling
a value from the posterior distributiop(u:|z,,) and then sampling a value from the likelihood
p(zny1|p). In this case, it is possible to identify the stationary ritisttion of the Markov chain
[8, 9]. The stationary distribution of this Markov chain Fefprior predictive distribution

n(z) = / plelu)p() du 3)

being the probability of observing the stimulusvheny is sampled from the prior. This happens
because this Markov chain is a Gibbs sampler for the joinridigion onz and 1 defined by
multiplying p(z|x) andp(r) [9]. This gives a clear characterization of the consequeinfserial
reproduction: after many reproductions, the stimuli bgangduced will be sampled from the prior
distribution assumed by the participants. Convergencheatior predictive distribution provides
a formal justification for the traditional claims that séneproduction reveals cultural biases, since
those biases would be reflected in the prior.

In the special case of reconstruction of stimuli that vamgngl a single dimension, we can also
analytically compute the probability density functions fiee transition probabilities and stationary
distribution. Applying Equation 2 using the results sumized in the previous section, we have
Tpi1|Tn ~ N(pn, (02 4 02)), wherep,, = Az, + (1 — Ao, ande? = Ao2. Likewise, Equation

3 indicates that the stationary distributionNg .o, (02 + o2)). The rate at which the Markov chain
converges to the stationary distribution depends on theavafi\. When is close tol, convergence
is slow sinceu,, is close tar,,. As A gets closer t@, 1., is more influenced by, and convergence is
faster. Since\ = 1/(1 + 02 /03), the convergence rate thus depends on the ratio of the ipartits
perceptual noise and the variance of the prior distributidio2. More perceptual noise results in



faster convergence, since the specific value,pfs trusted less; while more uncertainty in the prior
results in slower convergence, singgis given greater weight.

3 Serial reproduction of one-dimensional stimuli as an AR(Lprocess

The special case of serial reproduction of one-dimensistiauli can also give us further insight
into the consequences of modifying our assumptions abotag# and reconstruction from mem-
ory, by exploiting a further property of the underlying dtastic process: that it is a first-order
autoregressive process, abbreviated to AR(1). The gefoeralof an AR(1) process is

Tpt1 = C+ OTp + €ng1 4)

wheree,, .1 ~ N(0,02). Equation 4 has the familiar form of a regression equatioedigting one
variable as a linear function of another, plus Gaussiarendiglefines a stochastic process because
each variable is being predicted from that which precediessiéquence. AR(1) models are widely
used to model timeseries data, being one of the simplestisyfmeapturing temporal dependency.

Just as showing that a stochastic process is a Markov chaidps information about its dynamics
and asymptotic behavior, showing that it reduces to an AR(d¢ess provides access to a number
of results characterizing the properties of these prosesdep < 1 the process has a stationary
distribution that is Gaussian with meaf(1 — ¢) and variancer? /(1 — ¢?). The autocovariance at
alag ofn is "2 /(1 — ¢?), and thus decays geometrically¢n An AR(1) process thus converges
to its stationary distribution at a rate determinedgy

It is straightforward to show that the stochastic proce$mede by serial reproduction where a sam-
ple from the posterior distribution gmis stored in memory and a new valués sampled from the
likelihood is an AR(1) process. Using the results in the fmes section, at thén + 1)th iteration

Tnt1 = (1= Apo + AZn + €n41 ®)

where) = 1/(1 + 02/03) ande,, 1 ~ N(0, (02 + 02)) with 02 = Ao2. This is an AR(1) process
with ¢ = (1 — Mo, ¢ = A, ando? = o2 + o=. Since) is less tharl for anyo3 ando?2, we can
find the stationary distribution by substituting these eslinto the expressions given above.

Identifying serial reproduction for single-dimensiontirauli as an AR(1) process allows us to relax
our assumptions about the way that people are storing ands&acting information. The AR(1)
model can accommodate different assumptions about mertwage and reconstructidnAll these
ways of characterizing serial reproduction lead to the shaséc prediction: that repeatedly recon-
structing stimuli from memory will result in convergenceadistribution whose mean corresponds
to the mean of the prior. In the remainder of the paper we ésprediction.

In the following sections, we present two serial reprocucgxperiments conducted with stimuli
that vary along only one dimension (width of fish). The firspesiment follows previous research
in using a between-subjects design, with the reconstmgtid one participant serving as the stimuli
for the next. The second experiment uses a within-subjestigd in which each person reconstructs
stimuli that they themselves produced on a previous teatjiig the potential of this design to reveal
the memory biases of individuals.

4 Experiment 1: Between-subjects serial reproduction

This experiment directly tested the basic prediction that dutcome of serial reproduction will
reflect people’s priors. Two groups of participants wereed on different distributions of a one-
dimensional quantity — the width of a schematic fish — thatldgerve as a prior for reconstructing

In the memorization phase, the participant’s membigan be 1) a sample from the posterior distribution
p(ulzn), as assumed above, or 2) a value such that argmax,, p(u|z»), which is also the expected value
of the Gaussian posterigs(u|z~). In the reproduction phase, the participant’s reproductign; can be 1)

a noisy reconstruction, which is a sample from the likelih@¢d,1|/i), as assumed above, or 2) a perfect
reconstruction from memory, such thaty, = . This defines four different models of serial reproduction,
all of which correspond to AR(1) processes that differ only in the vaga? (although maximizing(u|z,)
and then storing a perfect reconstruction is degenerate gith 0). In all four cases serial reproduction thus
converges to a Gaussian stationary distribution with meamput with different variances.



similar stimuli from memory. The two distributions diffetén their means, allowing us to examine
whether the mean of the distribution produced by serialogpetion is affected by the prior.

4.1 Method

The experiment followed the same basic procedure as Bartiktssic experiments [2]. Participants
were 46 members of the university community. Stimuli weregame as those used in [7]: fish with
elliptical bodies and fan-shaped tails. All the fish stimried only in one dimension, the width of
the fish, ranging from 2.63cm to 5.76cm. The stimuli were @nésd on an Apple iMac computer
by a Matlab script using PsychToolBox extensions [13, 14].

Participants were first trained to discriminate fish-farmd asean fish. The width of the fish-farm
fish was normally distributed and that of the ocean fish wafotmiy distributed betweef.63 and
5.75cm. Two groups of participants were trained on one of the tistridutions of fish-farm fish
(prior distributions A and B), with different means and sast@ndard deviations. In condition A,
o = 3.66cm, g = 1.3cm; in condition B,ug = 4.72cm, oq = 1.3cm.

In the training phase, participants first received a block®frials. On each trial, a stimulus was
presented at the center of a computer monitor and partitsgaad to predict which type of fish it
was by pressing one of the keys on the keyboard and they sgtfsedback about the correctness of
the prediction. The participants were then tested for 20ston their knowledge of the two types of
fish. The procedure was the same as the training block exveis tvas no feedback. The training-
testing loop was repeated until the participants reach&é &rrect in using the optimal decision
strategy. If a participant could not pass the test after famtions, the experiment halted.

In the reproduction phase, the participants were told thayt tvere to record fish sizes for the fish
farm. On each trial, a fish stimulus was flashed at the centéineokcreen for 500ms and then
disappeared. Another fish of random size appeared at oneiopéssible positions near the center
of screen and the participants used the up and down arroméedjust the width of the fish until
they thought it matched the fish they just saw. The fish widdendy the first participant in each
condition were 120 values randomly sampled from a uniforstridiution from2.63 to 5.75cm.
The first participant tried to memorize these random samghekthen gave the reconstructions.
Each subsequent participant in each condition was thereptes with the data generated by the
previous participant and they again tried to reconstruaséhfish widths. Thus, each participant's
data constitute one slice of time in 120 serial reproduatizains.

At the end of the experiment, the participants were givenal B0-trial test to check if their prior
distributions had drifted. Ten participants’ data wereleged from the chains based on three cri-
teria: 1) final testing score was less than 80% of optimalgearénce; 2) the difference between
the reproduced value and stimulus shown was greater thadiffaeence between the largest and
the smallest stimuli in the training distribution on anyatri3) there were no adjustments from the
starting value of the fish width for more than half of the tial

4.2 Results and Discussion

There were 18 participants in each condition, resultingdigénerations of serial reproduction. Fig-
ure 1 shows the initial and final distributions of the recansions, together with the autoregression
plots for the two conditions. The mean reconstructed fistthgiggroduced by the first participants
in conditions A and B werd.22 and4.21cm respectively, which were not statistically significgntl
different ¢(238) = 0.09, p = 0.93). For the final participants in each chain, the mean recocistd
fish widths were3.20 and3.68cm respectively, a statistically significant differen¢€88) = 6.93,

p < 0.001). The difference in means matches the direction of the@iffee in the training provided
in conditions A and B, although the overall size of the diffiece is reduced and the means of the
stationary distributions were lower than those of the itigtions used in training.

The autoregression plots provide a further quantitatisedethe predictions of our Bayesian model.
The basic prediction of the model is that reconstructionuhdook like regression, and this is
exactly what we see in Figure 1. The correlation betweentitmeikisz,, and its reconstruction,,

is the correlation between the AR(1) model’s predictiond #re data, and this correlation was high
in both conditions, being 0.91 and 0.86 € 0.001) for conditions A and B respectively. Finally,
we examined whether the Markov assumption underlying oalyais was valid, by computing the
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Figure 1: Initial and final distributions for the two conditis in Experiment 1. (a) The distribution of
stimuli and Gaussian fits to reconstructions for the firstip@ants in the two conditions. (b) Gaus-
sian fits to reconstructions generated by the 18th partitspia each condition. (c) Autoregression
plot for x,, 1 as a function of:,, for the two conditions.

correlation between,, ., andz,_; givenz,. The resulting partial correlation was low for both
conditions, being 0.04 and 0.01 in conditions A and B respelgt(bothp < 0.05).

5 Experiment 2: Within-subjects serial reproduction

The between-subjects design allows us to reproduce theeggaaf information transmission, but

our analysis suggests that serial reproduction might ase promise as a method for investigating
the memory biases of individuals. To explore the potentfahs method, we tested the model

with a within-subjects design, in which a participant’sneguction in the current trial became the

stimulus for that same participant in a later trial. EacHipgrant’s responses over the entire exper-
iment thus produced a chain of reproductions. Each paatitiproduced three such chains, starting
from widely separated initial values. Control trials andefal instructions were used so that the
participants would not realize that some of the stimuli wiegr own reproductions.

5.1 Method

Forty-six undergraduates from the university researctigiaation pool participated the experiment.
The basic procedure was the same as Experiment 1, except iagloduction phase. Each partici-
pant’s responses in this phase formed three chains of 49, fiiae chains started with three original
stimuli with width values of2.63cm, 4.19cm, and5.76cm, then in the following trials, the stimuli
participants saw were their own reproductions in the previwials in the same chain. To prevent
participants from realizing this fact, chain order was @méized and the Markov chain trials were
intermixed with 40 control trials in which widths were drafvom the prior distribution.

5.2 Results and Discussion

Participants’ data were excluded based on the same crignised in Experiment 1, with a lower
testing score of 70% of optimal performance and one additioriterion relevant to the within-
subjects case: participants were also excluded if the tiraims did not converge, with the criterion
for convergence being that the lower and upper chains mossdhe middle chain. After these
screening procedures, 40 participants’ data were accept#d?1 in condition A and 19 in condi-
tion B. It took most participants about 20 trials for the ¢fsaio converge, so only the second half of
the chains (trials 21-40) were analyzed further.

The locations of the stationary distributions were measimecomputing the means of the repro-
duced fish widths for each participant. For conditions3%6¢cm) and B ¢.72cm), the average of
these means was32 and4.01cm respectively#(38) = 2.41, p = 0.021). The right panel of Figure
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Figure 3: Chains and stationary distributions for indiatiparticipants from the two conditions.
(a) The three Markov chains generated by each participgantirgy from three different values.
(b) Training distributions for each condition. (c) Gaussfis for the last 20 iterations of each
participant’s data. (d) Autoregression for the last 2Gaitieins of each participant’s data.

2 shows the mean values for these two conditions. The basdigbion of the model was borne
out: participants converged to distributions that diftesggnificantly in their means when they were
exposed to data suggesting a different prior. However, thans were in general lower than those
of the prior. This effect was less prominent in the contriall$; which produced means 8163 and
4.53cm respectively.

Figure 3 shows the chains, training distributions, the Giamsfits and the autoregression for the
second half of the Markov chains for two participants in tive tonditions. Correlation analysis
showed that the AR(1) model’s predictions are highly cated with the data generated by each
participant, with mean correlations being 0.90 and 0.81ctorditions A and B respectively. The

2Since both experiments produced stationary distributions with means loarethbse of the training dis-
tributions, we conducted a separate experiment examining the readimisuthat people produced without
training. The mean fish width produced by 20 participants 3vd3cm, significantly less than the mean of the
initial values of each chainl.19cm ((19) = 3.75, p < 0.01). This result suggested that people seem to have
anapriori expectation that fish will have widths smaller than those used as our categans, suggesting that
people in the experiments are using a prior that is a compromise betweerpkigation and the training data.



correlations are significant for all participants. The mpartial correlation between,, ; andx;_;
given x; was low, being 0.07 and 0.11 for conditions A and B respelgtivgiggesting that the
Markov assumption was satisfied. The partial correlatioasevgignificant < 0.05) for only one
participant in condition B.

6 Conclusion

We have presented a Bayesian account of serial reproduatidrtested the basic predictions of this
account using two strictly controlled laboratory expenitse The results of these experiments are
consistent with the predictions of our account, with semglroduction converging to a distribution
that is influenced by the prior distribution establishedtlgh training. Our analysis connects the
biases revealed by serial reproduction with the more géBagesian strategy of combining prior
knowledge with noisy data to achieve higher accuracy [7ldb shows that serial reproduction can
be analyzed using Markov chains and first-order autoregeessodels, providing the opportunity
to draw on a rich body of work on the dynamics and asymptoti@bi®r of such processes. These
connections allows us to provide a formal justification toe tdea that serial reproduction changes
the information being transmitted in a way that reflects tresds of the people transmitting it,
establishing that this result holds under several diffecbaracterizations of the processes involved
in storage and reconstruction from memory.
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