
Visual Concept Learning: Combining Machine Vision
and Bayesian Generalization on Concept Hierarchies

Supplementary Materials

Yangqing Jia1, Joshua Abbott2, Joseph Austerweil3, Thomas Griffiths2, Trevor Darrell1
1UC Berkeley EECS 2Dept of Psychology, UC Berkeley

3Dept of Cognitive, Linguistics, and Psychological Sciences, Brown University
{jiayq, joshua.abbott, tom griffiths, trevor}@berkeley.edu

joseph.austerweil@brown.edu

Abstract

In the supplementary materials, we present more details to the data collection pro-
cedure, and more details about the training of our image classification component,
including the large-scale classifier training and the confusion matrix estimation.

1 Data Collection

To construct the large-scale concept learning dataset, participants that were recruited online through
Amazon Mechanical Turk were presented with a display that contained example images of a concept
and query images, where participants could easily click what query images belong to the given
category or not. Following previous work [1, 7], participants were told that “Mr. Frog” had picked
out some examples of a word in a different language, and that “Mr. Frog” needed help picking
out the other objects that could be called that word (see Figure 1 for the precise wording). Figure 1
shows an example display that a participant could have seen, and Figure 2 shows a possible response
from a participant for a given trial. See the main text for further details about the experiment.

2 More on Training Large-scale Classifiers

We will elaborate a little more on how we learn the classifiers, that gives the prediction ŷ of an image
as

ŷ = f(x) = argmax j θ>j x, (1)

where 1 < j < K where K is the number of classes, and {θ}K1 are the classifier outputs. Basi-
cally, we focus on training large-scale linear multinomial logistic regressors, which optimizes the
following objective function when given a set of training data:

L(θ) = λ‖θ‖22 −
∑M

i=1
ti logui, (2)

where ti is a 0-1 indicator vector where only the yi-th element is 1, and ui is the softmax of the
linear outputs

uij = exp(θ>j xi)/
∑K

j′=1
exp(θ>j′xi), (3)

where xi is the feature for the i-th training image.

To perform training, for each iteration t we randomly sample a minibatch from the data to estimate
the gradient gt, and perform stochastic gradient descent updates. To achieve quasi-Newton pefor-
mances we adopted the Adagrad [3] algorithm to obtain an approximation of the diagonal of the

1

Figure 1: The Mechanical Turk interface.

2

Figure 2: The Mechanical Turk interface with a turker’s predictions.

3

f,g
Prefetch next batch
when working on
the current one

Minibatches
on each node

Collective calls to
compute func & grad

Figure 3: The overall architecture of our system.

Hessian as
H = σI+

∑t−1

n=1
diag(gng

>
n), (4)

where σ is a small initialization term for numerical stability, and perform parameter upgrade as

θt = θt−1 − ρH+gt, (5)

where ρ is a predefined learning rate.

We took advantage of parallel computing by distributing the data over multiple machines and per-
forming gradient computation in parallel, as it only involves summing up the per-datum gradient. As
the data is too large to fit into the memory of even a medium-sized cluster, we only keep the mini-
batch in memory at each iteration, with a background process that pre-fetches the next minibatch
from disk during the computation of the current minibatch. This enables us to perform efficient
optimization with an arbitrarily large dataset. The overall architecture is visualized in Figure 3.

In terms of the libraries we used, we mainly adopted the Python + numpy framework for scientific
computation (which is on par with commercial scientific computation software as long as it is based
on an optimized BLAS library, which is most likely the case), which is fully open-source. The code
runs on single machines, as well as over different machines in a distributed way. For distributed
computation, we used the OpenMPI library and MPI4py as a Python interface, both of which are
often used for scientific computation and only requires secure connections between machines to
work.

We made the assumption that the machines will be up running during the whole computation time,
and did not consider machine failures as in the Google system [2]. We believe that this design
assumption is reasonable for single computers or medium-sized clusters, allowing us to simplify the
implementation.

For the image features, we followed the pipeline in [6] to obtain over-complete features for the
images. Specifically, we extracted dense local SIFT features, and used Local Coordinate Coding
(LCC) to perform encoding with a dictionary of size 16K. The encoded features were then max
pooled over 10 spatial bins: the whole image and the 3× 3 regular grid. This yielded 160K feature
dimensions per image, and a total of about 1.5TB for the training data in double precision format.
The overall performance is 41.33% top-1 accuracy and a 61.91% top-5 accuracy on the validation
data, and 41.28% and 61.69% respectively on the testing data. For the computation time, training
with our toolbox took only about 24 hours with 10 commodity computers connected on a LAN. Our
toolkit is implemented in Python and will be publicly available open-source at [hidden for double-
blind review].

3 More on Confusion Matrix Estimation

Given a classifier, evaluating its behavior (including accuracy and confusion matrix) is often tackled
with two approaches: using cross-validation or using a held-out validation dataset. In our case,
we note that both methods have significant shortcomings. Cross-validation requires retraining the
classifiers multiple rounds, which may lead to high re-training costs. A held-out validation dataset
usually estimates the accuracy well, but not for the confusion matrix C due to insufficient number
of validation images. For example, the ILSVRC challenge has only 50K validation images versus 1
million confusion matrix entries, leading to a large number of incorrect zero entries in the estimated
confusion matrix.

4

Smoothing Source Perplexity
training 94.69

Laplace validation 80.52
unlearned 46.95
training 214.30

Kneser-Ney validation 68.36
unlearned 46.27

Table 1: The perplexity (lower values preferred) of the confusion matrix estimation methods on the
testing data.

(a) Training (b) Validation (c) Unlearned
train val unlearn

0

0.5

1

train
val
unlearn

(d)

Figure 4: (a)-(c): Visualization of the zero estimations (averaged over 4 × 4 blocks for better read-
ability) for non-zero testing entries obtained from multiple sources. (d): the proportion of zero
estimations.

Instead of these methods, we approximate the classifier’s leave-one-out (LOO) error on the training
data with a simple gradient descent step to “unlearn” each image to estimate its LOO prediction,
similar to the early unlearning ideas [4] proposed for neural networks. We will focus on the use of
multinomial logistic regression, which minimizes L(θ) = λ‖θ‖22 −

∑M
i=1 ti logui, where ti is a

0-1 indicator vector where only the yi-th element is 1, and ui is the softmax of the linear outputs
uij = exp(θ>j xi)/

∑K
j′=1 exp(θ

>
j′xi), with xi being the feature for the i-th training image.

Specifically, given the trained classifier parameters θ, it is safe to assume that the gradient g(θ) = 0.
Thus, the gradient for the logistic regression loss when removing a training image xi could be
computed simply as g\xi

(θ) = (ui − ti)x
>
i . Also, notice that the accumulated matrix H obtained

from Adagrad serves as a good approximation of the Hessian matrix1, allowing us to perform one
step quasi-Newton least-square update as

θ\xi
= θ − ρ′H+g\xi

. (6)

Note that we put an additional step size ρ′ instead of ρ′ = 1 as would be the case for exact least
squares. We set ρ′ to the value that yields the same LOO approximation accuracy as the validation
accuracy. We use the new parameter θ\xi

to perform prediction on xi as if xi has been left out
during training, and accumulate the approximated LOO results to obtain the confusion matrix. We
then applied Kneser-Ney [5] smoothing on the confusion matrix for a smoothed estimation.

Table 1 gives the perplexity values of the various sources to obtain the confusion matrix from: the
training data (without unlearning), the validation data, and our approach (named as “unlearned”).
Two different smoothing approaches are also adopted to test the performance: Laplace smoothing
and Kneser-Ney smoothing, with the former smoothes the matrix by simply adding a constant term to
each entry, and the latter taking a more sophisticated approach and utilizing the bigram information
(see [5] for exact math). In general, our approach obtains the best perplexity over all choices.

Figure 4 visualizes the confusion matrix entries that are non-zero for the testing data, but incorrectly
predicted as zero by the methods. Specifically, the dark regions in the figure shows incorrect zero
estimates, so the darker the matrix is, the worse the estimation is. We also compute the proportion of

1See supplementary material for details. In practice, we tested the Adagrad H matrix and the exact Hessian
computed at Θ, and found the former to actually perform better, possibly due to its overall robustness.

5

zero estimates, defined as the number of non-zero testing entries that are estimated as zero, divided
by the total number of non-zero testing entries. The matrix is averaged over 4 × 4 blocks for
better visualization. Overall, matrices estimated from the training and validation data both yield a
large proportion (>70%) of incorrect zero entries due to over-fitting and lack of validation images
respectively, while our method gives a much better estimation with incorrect zero entries <25%.
Note that the problem of the remaining sparsity is further alleviated by the smoothing algorithms.

References
[1] J.T. Abbott, J.L. Austerweil, and T.L. Griffiths. Constructing a hypothesis space from the Web for large-

scale Bayesian word learning. In Proceedings of the 34th Annual Conference of the Cognitive Science
Society, 2012.

[2] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M.A. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Ng. Large scale distributed deep networks. In NIPS, 2012.

[3] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic opti-
mization. JMLR, 12:2121–2159, 2010.

[4] L. K. Hansen and J. Larsen. Linear unlearning for cross-validation. Advances in Computational Mathe-
matics, 5(1):269–280, 1996.

[5] D. Jurafsky and J. H. Martin. Speech & Language Processing. Pearson Prentice Hall, 2000.

[6] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang. Large-scale image classification:
fast feature extraction and svm training. In CVPR, 2011.

[7] F. Xu and J.B. Tenenbaum. Word learning as Bayesian inference. Psychological Review, 114(2):245–272,
2007.

6

	Data Collection
	More on Training Large-scale Classifiers
	More on Confusion Matrix Estimation

