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Abstract

Human planning is incredibly efficient. Even in complex sit-
uations with many possible courses of action, people are able
to make good decisions. Recent proposals suggest that a pri-
mary contributor to this efficiency is the intelligent use of cog-
nitive resources, but how people allocate these resources under
time constraints is not fully understood. In this work, we con-
duct a resource-rational analysis of planning in a large data
set of online chess games. We first demonstrate that players
spent more time thinking when they had more time to do so,
and that this effect was especially prevalent when computation
was more valuable. Then, we show that additional time spent
planning resulted in better selected moves when one existed,
and compare between signals of general and immediate time
pressure. Finally, we highlight the role of expertise in this set-
ting. Our results provide evidence that people make resource-
rational choices when planning under time pressure.

Keywords: decision-making; planning; resource rationality;
time pressure

Introduction

Decision-making in the real world often involves considering
many different courses of action and their consequences, a
process known as planning. A key characteristic of human
cognition is the ability to plan efficiently (Miller & Venditto,
2021; Mattar & Lengyel, 2022). Faced with a computation-
ally intractable number of alternatives to evaluate, people are
still able to make good decisions within a constrained time
budget. This is particularly evident in combinatorial games
such as chess (de Groot, 2014).

Recent work has taken the view that cognitive mechanisms
underlying processes like planning can be revealed by consid-
ering how to make optimal use of limited resources (Griffiths,
Lieder, & Goodman, 2015; Gershman, Horvitz, & Tenen-
baum, 2015). This approach of resource-rational analysis
strives towards optimality by deriving models of human be-
havior that take into account which cognitive operations are

available to people, how long they take, and how costly they387

are. Assuming that people select actions using mental strate-
gies that strike a balance between the utility of the chosen ac-
tion and the cognitive cost of making the decision generates
predictions about how people will navigate such tradeoffs.
Resource-rational analysis has advanced our understanding of
how individuals allocate cognitive resources, and has shown
that they are sensitive to the costs and benefits of executing
computations (Kool, Gershman, & Cushman, 2017; Lieder &
Griffiths, 2020; Fromer, Lin, Dean Wolf, Inzlicht, & Shenhav,
2021). Applied to planning, this hypothesis has been tested
by measuring how much time humans spent thinking before
acting in a large-scale online chess data set (Russek, Acosta-
Kane, van Opheusden, Mattar, & Griffiths, 2022). Players
spent more time thinking in board positions where additional
computation was more beneficial, and this relationship was
greater in stronger players.

A related but still open question is how people plan given
different time constraints. An attempt to answer this ques-
tion was made in a combinatorial game called 4-in-a-row
that is simpler than chess but more complex than the ma-
jority of tasks used in cognitive science (van Opheusden &
Ma, 2019). In this game, strong play requires thinking multi-
ple steps ahead, but the task is simple enough that it remains
amenable to process-level modeling. By fitting a computa-
tional model to human decisions, van Opheusden et al. (2023)
uncovered robust evidence for increased planning depth with
expertise. In a time pressure experiment where players were
given differing time limits per move, planning depth scaled
with each condition. However, no improvement in the par-
ticipants’ playing strength was found, potentially due to cor-
respondingly increasing attentional oversights. Historically,
time pressure has also been studied in the context of chess,
where manipulations that aim to selectively impair search
while leaving pattern recognition abilities intact seem to af-

7fect experts more than novices (Holding, 1992).
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Figure 1: Value of computation. (A) Board position with a low VOC (left). The move Qd8-d5 maximizes both Stockfish’s depth
1 and depth 15 evaluations, and thus the optimal move with no planning (m_.) and the optimal move with extensive planning
(m¢) are the same. Since computation does not cause the selected move to change, it provides no benefit (right). (B) Board
position with a high VOC (left). At depth 1, the move Bc8-£5 maximizes Stockfish’s evaluation. However, a depth 15 search
reveals that the move Qh3-£5 results in a more favorable board position advantage (U,), measured as the estimated probability
of winning from this position ignoring time remaining. Since this computation finds a better selected move, it provides a benefit

of approximately 0.15 (right).

Here, we merge these lines of research to provide a
resource-rational account of human planning under time con-
straints. We use chess as a setting to conduct this analysis,
in part to extend previous work but also due to the complex-
ity that chess positions present to the decision-maker. From
a researcher perspective, chess provides the opportunity to
explore the interaction between time pressure and expertise.
The popularity of online chess platforms, which have resulted
in massive behavioral data sets, and modern chess engines,
which provide better tools for characterizing human decision-
making and planning, enable our analysis. We leverage these
two developments to estimate the benefits of applying plan-
ning computations across different positions, selecting two
frequently occurring positions to investigate further. Disen-
tangling the various factors influencing a complex process
such as planning requires identifying repeating situations that
can be investigated in depth. Our data set facilitates this em-
pirical approach embedded in a naturalistic environment. We
demonstrate that move times and move quality are influenced
by time pressure, and that these effects are modulated by
the value of computation in each position. Finally, we high-
light the relationship between expertise, measured by playing
strength, with time spent planning across different time con-
trol settings.

Methods

Our approach to characterizing the effects of time pressure
on planning in chess is based on prior work (Russek et
al., 2022; Kuperwajs, van Opheusden, Russek, & Griffiths,
2024). Specifically, we make use of the open-source chess en-
gine Stockfish (https://stockfishchess.org)as well asa
large-scale data set of human decisions from the online chess
platform Lichess (https://lichess.org). In the following
sections, we outline the role that each of these components

play in our investigation.

Move evaluation

A central aim of our analysis is to uncover the effects of time
pressure in situations with varying costs and benefits. Stock-
fish provides us with an idealized model of computation in
order to do so. Like other modern chess engines (Campbell,
Hoane Jr, & Hsu, 2002; Silver et al., 2018) and models of
human planning in combinatorial games (van Opheusden et
al., 2023), Stockfish employs heuristic search to estimate a
player’s advantage from a given board position. This is done
in two parts: a static function that uses a neural network
trained through supervised learning to quickly map board
states to approximate evaluations, and an iterative deepen-
ing tree search that improves those evaluations by searching
board states over likely future positions.

With this tool, we can approximate the value of any move
in any board position in terms of the estimated probability
of winning from the resultant position. By repeating this
over many candidate moves, we can compute the optimal
move at any specified depth of search. We can thus compare
how move preferences shift with additional computational re-
sources. Following Russek et al. (2022), we abstract away
the particulars of node-to-node choices about where to search
and coarsely compare the effects of conducting a depth 1 and
a depth 15 search. Practically speaking, Stockfish serves as a
ground truth for evaluating actions in our data set. We used
Stockfish version 14 for all evaluations, and interfaced with
Stockfish through the Python chess package.

Value of computation

Rational metareasoning indicates that the decision of when to
spend resources planning should be based on a cost-benefit
comparison (Russell & Wefald, 1991; Horvitz, 1991). In
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Figure 2: Resource-rational behavior under time pressure. (A) Time taken to make a move measured in seconds as a function of
time control setting for the low and high VOC positions. Here and in all subsequent panels, the data are displayed as the mean
across all players, with error bars indicating the standard error of the mean if appropriate. (B) Quality of the move made by the
active player measured in centipawns as a function of time control setting for the low and high VOC positions. Negative units
of centipawns indicate a losing position for the active player. (C) Entropy of the distribution over all moves made by active
players as a function of time control setting for the low and high VOC positions.

chess, the benefit of planning is that it can lead a player to
make a move that results in a more favorable position and
thus increase the chances of winning. The cost of planning
is an opportunity cost, as spending time planning leaves less
time available to consider future moves. Using this fram-
ing, we define the value of computation (VOC) in a given
position. Here we provide sufficient details for understand-
ing VOC in the context of this work, but see Russek et al.
(2022) for further details. We assume that players start each
turn with an initial estimate of the utility of candidate moves,
U_., which involves no planning. Utility provides a measure
of the player’s board position advantage, where U =1 is a
certain win and U = 0 is a certain loss if the optimal move
is played. Players can then make the maximum utility move
that is available to them m_., or perform a planning compu-
tation. We assume that planning can provide the true utility
of moves U,, allowing players to select the optimal move m,.
Thus, VOC is defined as the difference in board position ad-
vantage between these two moves:

AU, =U.(m.)—U.(m_.). €))
Intuitively, VOC is high when planning changes the preferred
move and improves the resultant board position relative to the
previously preferred move. VOC is 0 when planning does not
change the preferred move. In our analysis, we operational-
ize m_. as the move that Stockfish would select following a
depth 1 search and m, as the move that Stockfish would select
following a depth 15 search. Note that at this depth, Stockfish
plays above grandmaster level (Ferreira, 2013).

Data

We use a data set consisting of games played on the online
chess platform Lichess. Each game contains the sequence

of moves that were made by each player. Games are played
across a variety of time control settings which denote the
amount of time that players start with on their clock and an in-
crement that is added back to the that clock after each move.
Players lose when they run out of clock time, enabling our
investigation of time pressure. Each player also maintains an
Elo rating that reflects their overall playing strength relative
to other players (Elo, 1978). Higher Elo indicates a stronger
player, and this rating is updated after each game depending
on the outcome.

To study the effects of time pressure, we wanted to find
board positions that repeat often in the data set across each
time control setting and avoid positions that occur in the
opening or ending of games as these can involve memorized
sequences of moves or abnormal play rather than planning.
To select positions for further analysis, we counted the fre-
quency of board positions from all games played in 2022 and
2023 that occurred after the 30th move ply and had at least 10
pieces on board. We then computed an associated VOC for
these positions. Stockfish returns evaluations in units of ei-
ther centipawns or distance that indicate the number of move
plys from mate. In computing VOC, to place these separate
units on a common scale, we converted each of these units to
a new measure of position advantage by fitting two logistic
regression models which mapped either centipawn advantage
or distance from mate to the probability that the active player
won the match. To select m,, we also control for the fact that,
due to the pruning heuristics that Stockfish employs, the best
move is not always identified at depth 15. We thus select m,
as the move with maximum value, out of a consideration set
consisting of each move Stockfish selects at each depth and
computing U, for each move in this set.

After this process, we selected one of the most frequently
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Figure 3: Resource-rational use of clock time. (A) Time taken to make a move measured in seconds as a function of the
remaining clock time for the low and high VOC positions. Here and in all subsequent panels, results are binned into 6 bins and
the data are displayed as the mean across all players, with error bars indicating the standard error of the mean if appropriate.
(B) Quality of the move made by the active player measured in centipawns as a function of the remaining clock time for the
low and high VOC positions. Negative units of centipawns indicate a losing position for the active player. (C) Entropy of
the distribution over all moves made by active players as a function of the remaining clock time for the low and high VOC

positions.

occurring positions with a VOC of 0 (Figure 1A) and another
of the most frequently occurring positions with a relatively
high VOC of approximately 0.15 (Figure 1B). This resulted
in 12,384 moves in the former case and 12,786 in the latter
case, distributed across 9 time control settings that each had
at least 100 moves per position. We note that, in contrast to
Russek et al. (2022), we intentionally control for board posi-
tion to characterize how use of time affects behavior. Time
control settings use the notation S+ / which indicates that
each player starts with S seconds on their clock and gets back
I seconds following each move as an increment. The condi-
tions included in our analysis that are treated as independent
categories are 60+ 0, 120+ 1, 180+ 0, 18042, 300 + 0,
600 + 0, 600 + 5, and 900 + 10. These make up 9 of the
11 default time control settings on Lichess, and we excluded
1800+ 0 and 1800 +- 20 due to a lack of data.

Results

Given a large set of moves made by chess players in a re-
peated low and high VOC board position, we now examine
how time pressure affects decision-making in these positions,
and how this changes with expertise.

Rational use of resources under time constraints

We hypothesized that time control settings might have an ef-
fect on three signatures of decision-making in chess: move
time, move quality, and move entropy. Additionally, we ex-
pected these relationships to vary across the two positions we
analyzed. We computed move times as the difference in clock
time between a player’s successive moves, minus the time
control specified increment. To measure move quality, we
once again used Stockfish to evaluate the move a player made
at a depth 15 search. Finally, we defined entropy H over the

distribution of moves made by all players p,, such that:

H ==Y pulog(p,). 2)

Using these metrics, we found evidence of resource-
rational behavior. As players had more time to play a game,
they spent longer thinking before making a move (Figure 2A).
This was modulated by the potential benefits of computation,
as move times increased much more rapidly as the time con-
trol setting became more relaxed in the high VOC as opposed
to the low VOC position. This indicates that players spent
more time thinking, and therefore planning, when presented
with the opportunity to spend more time in situations that
would reward doing so. This raises the question: did play-
ers actually find better moves as the time they spent thinking
increased? This was indeed the case, but only in the high
VOC position where there was the potential for move quality
to increase in the first place (Figure 2B). The increase in move
quality as a function of time control setting plateaued after an
initial increase, suggesting that perhaps there is a minimum
amount of time that is necessary in order to select the best
move. In the low VOC position, there was no effect of time
control setting on move quality. Finally, move entropy was
constant across all time control settings irrespective of VOC
(Figure 2C). As such, more allotted time did not reduce the
variance of moves selected by the population of players in our
data set.

Time control setting is ultimately a general indicator of
time pressure, as players select the setting they play under
and have that in mind as they make moves throughout the
game. In order to test if these results changed under immedi-
ate time pressure, we repeated the same analysis using clock
time. Since clock time changes as players spend time thinking
about a move and can result in losing the game altogether, it
has the potential to provide a more direct signal of time pres-
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Figure 4: Expertise modulates the effect of time pressure. (A) Distribution of playing strength measured as an Elo rating over
all players in the low VOC position. The following plots replicate those in Figure 2, but split by the players in the 20th and 80th

percentile of Elo ratings rather than by VOC. (B) Same as in (A), but for all players in the high VOC position.

sure. We found roughly the same effects of clock time on
move time, move quality, and move entropy, including how
these effects varied with VOC (Figure 3). The one exception
was time spent thinking in the high VOC position, which was
longer overall. This suggests that clock time and time control
setting largely have the same influence in driving resource-
rational behavior, but that more time on the clock signals to
players that they can spend more time selecting a move com-
pared to simply knowing what condition they are in.

The effects of expertise on planning

If modulation of move time relative to time pressure is a crit-
ical factor for efficient planning, we would expect this re-
lationship to be sensitive to expertise. To examine this in
the data, we tested whether our metrics varied with player
Elo rating. We compared between the subset of weakest and
strongest players in each VOC position, taking the 20th and
80th percentile of players respectively. In the low VOC set-
ting, there was a minimal impact of time control setting on
move time, move quality, and move entropy (Figure 4A). The
main visible effect is of expertise: experts spent less time
thinking, made better moves, and had less variance in the
distribution of moves they made compared to novices. The

intuition here is that players with a higher Elo rating are over-
all better in terms of their chess abilities, and as such need to
spend less time thinking in order to arrive at consistently good
moves regardless of the amount of time available to them.

By contrast, the high VOC position revealed a significant
interaction between time control setting, playing strength,
and move time, move quality, and move entropy (Figure 4B).
As expected, players spent more time thinking when they had
more time available. This was especially true of novice play-
ers, who likely needed the extra time to plan compared to
better players. This was validated by move quality, which
drastically increased for the weaker players as a function of
time control setting. Stronger players also found better moves
with more time, but already made quite good moves in the
most strict time control setting. Interestingly, we did find an
effect of time pressure on move entropy in this analysis. This
was particularly true in the case of stronger players, who con-
verged on similar moves with more time to plan. Note that
in the high VOC position, the general differences between
experts and novices present in the low VOC position were
preserved.
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Discussion

In this work, we analyzed whether people made decisions
consistent with resource rationality under time pressure. We
did this by first identifying frequently occurring chess posi-
tions in which players might need to rely on mental simula-
tion as opposed to memorization or other cognitive processes
in order to select a good move. Then, we compared players’
choices when the value of computation, or the benefit of plan-
ning as measured by the increase in board position advantage
calculated by a chess engine, was either O or relatively high.
We found that thinking times increased as players had more
time to plan, and that this effect was more pronounced in the
position with higher value of computation where players also
made better moves. We replicated these results using clock
time instead of time control setting in order to test a signal for
immediate as opposed to general time pressure. Finally, we
investigated the role of expertise in these decisions, highlight-
ing that playing strength modulates move time, move quality,
and move entropy, but only when there was a benefit to think-
ing ahead. Taken together, our results demonstrate that plan-
ning in complex environments such as chess shows signatures
of sensitivity to the benefits and costs of computation under
time constraints, and that this sensitivity is dependent on ex-
pertise.

While our analysis makes use of a large-scale chess data
set to identify positions that enable planning to occur, a limi-
tation is that we highlight two specific states across all of our
results. In future work, we plan to extend this to a wide range
of board positions that tile the entire VOC space such that
we capture subtle features of those positions that influence
decision-making. Additionally, we aim to categorize board
positions by different metrics, such as complexity estimated
by the number of nodes that need to be searched before the
best move is encountered or volatility estimated by the num-
ber of times the principal variation changes during search, to
study how our results generalize. We can also begin to ask
novel questions using our approach. For instance, does the
opportunity to search lead to more learning, and how does
the amount of training data given to individuals, measured by
the number of games they play, affect performance?

To properly contextualize our findings, we can return to
the two lines of research we set out to study simultaneously.
In terms of resource-rational analysis, we primarily extended
previous work on the benefit of computation in chess that ap-
plies a similar approach to focus on the added effect of time
pressure (Russek et al., 2022). Related studies have found re-
lationships with time remaining on a player’s clock, the dif-
ference in value between the best and second best move, and
position complexity (Sunde, Zegners, & Strittmatter, 2022) as
well as trained feature-based estimators to predict move times
(Burduli & Wu, 2023). Our work is consistent with these re-
sults. More broadly, a collection of experiments have shown
that human deployment of cognitive control and mental effort
is sensitive to variations in the rewards, costs, and efficacy
of control deployment (Hall-McMaster, Muhle-Karbe, My-

ers, & Stokes, 2019; Grahek, Fromer, Prater Fahey, & Shen-
hav, 2023). In these settings, the opportunity cost of spending
time is framed according to the average reward rate. By ex-
amining the consequences of resource rationality in a more
complex task like chess, we confirm that this framing contin-
ues to be informative when people’s goals differ from maxi-
mizing reward.

We can reach a similar conclusion with regards to the plan-
ning literature, as a number of theories have been proposed
which imply that the decision of when to plan should be sen-
sitive to principles of cost-benefit computation (Sezener, Dez-
fouli, & Keramati, 2019; Mastrogiuseppe & Moreno-Bote,
2022). One difference emerges when comparing with the
time pressure experiment in 4-in-a-row (van Opheusden et al.,
2023), which found that people plan more when given more
time per move but do not improve in terms of their playing
strength. In our case, we found that people did make better
moves in more relaxed time conditions. Reconciling this dis-
tinction is an important problem that our current analysis does
not address, but a possibility is that players in our data set did
not experience the same level of attentional oversights in re-
laxed time conditions because they were highly motivated to
win. To test this, we could look at blunder rates in known
positions as a measure of errors that players make when they
are not paying enough attention. An alternative explanation
is that move quality is more sensitive to time constraints than
Elo ratings are despite the two being correlated. Regardless,
we view our work as a first step towards more deeply under-
standing the effects of time pressure on planning.

Finally, although our findings provide evidence for human
behavior in chess that is resource-rational in relation to the
benefits of computation and time constraints, we do not ad-
dress the underlying process by which people produce such
behavior. In fact, developing process-level theories of hu-
man planning that accurately predict the moves of individ-
ual chess players has proven to be difficult (Gobet & Jansen,
1994; Gobet, 1997). Constructing such a model could use the
framework of heuristic search (Pearl, 1984; Bonet & Geffner,
1999) as a foundation to then include additional components
of planning models (Huys et al., 2012; Callaway et al., 2022;
Kuperwajs, Ho, & Ma, 2024) as well as knowledge specific
to chess (Chase & Simon, 1973; Campitelli & Gobet, 2004).
With this class of model, we can use derived model param-
eters and predictions to gain insight into human decision-
making. Large-scale data in tandem with modern computa-
tional methods will play a central role in the development of
this work.
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