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Abstract

Some events seem more random than others. For example, when tossing a coin, a sequence

of eight heads in a row does not seem very random. Where do these intuitions about

randomness come from? We argue that subjective randomness can be understood as the

result of a statistical inference assessing the evidence that an event provides for having

been produced by a random generating process. We show how this account provides a link

to previous work relating randomness to algorithmic complexity, in which random events

are those that cannot be described by short computer programs. Algorithmic complexity is

both incomputable and too general to capture the regularities that people can recognize,

but viewing randomness as statistical inference provides two paths to addressing these

problems: considering regularities generated by simpler computing machines, and

restricting the set of probability distributions that characterize regularity. Building on

previous work exploring these different routes to a more restricted notion of randomness,

we define strong quantitative models of human randomness judgments that apply not just

to binary sequences – which have been the focus of much of the previous work on

subjective randomness – but also to binary matrices and spatial clustering.

Keywords: randomness; Bayesian inference; algorithmic complexity
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Subjective randomness as statistical inference

Imagine you are driving and approach a stoplight. You see eight cars in front of you,

all of which are black, and begin to wonder why all of these vehicles are the same color. At

the next stoplight you see eight cars all of varying colors and perceive the situation as

happenstance, thinking nothing of it. These two events strike us differently because of our

intuitions about randomness. The second event seems clearly a result of chance, but the

first event seems to suggest another explanation. But where do these intuitions about

randomness come from?

One naïve explanation purports that non-random events are simply low-probability

events, but multiple studies have confirmed that humans do not judge equally likely events

as equally random (Kahneman & Tversky, 1972; Tversky & Kahneman 1974). One of the

classic examples concerns flips of an fair coin: Asked to choose which of the following coin

flip sequences of length eight is more likely to occur, HHHHHHHH or HTHTTHTT, most people

will choose the latter, despite the fact that each sequence has the same probability of

occurring,
(

1
2

)8
. This intuition is surprisingly strong. Indeed, even trained statisticians

would likely be surprised to see a coin turn up heads eight times in a row. Despite knowing

that the two coin flip sequences are both equally probable, we still question whether we are

actually witnessing random flips of fair coin; it takes cognitive effort to believe the coin is

truly unbiased.1

For this reason, randomness has emerged as a central and persistent topic in the

cognitive sciences. Many studies (e.g., Lopes & Oden, 1987; Falk & Konold, 1997) suggest

that what people usually mean by randomness is the absence of certain detectable

patterns. Because this notion is at odds with ideas of randomness used in probability and

1A statistically-minded reader might be concerned that getting a sequence of the kind “eight heads in a
row” is less probable than getting a sequence of the kind “three heads and five tails.” However, randomness
isn’t just about the probability of different kinds of events. Griffiths and Tenenbaum (2007) discuss this
issue in detail, and provide counter-examples. For instance, HHHHTHTTHHHTHTHHTHTTHHH is an instance of the
kind “fifteen heads, eight tails” which is a less probable outcome of tossing a fair coin 23 times than HHHH
– “four heads in a row” – is for tossing a fair coin 4 times, even though the former would presumably be
considered more random.
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statistics, people seem to reason poorly about chance. As Nickerson (2002) puts it, “The

general conclusion that the results of these experiments in the aggregate seem to support is

that people are not very good at these tasks – that they find it hard to generate random

sets on request and to distinguish between those that have been produced by random

processes and those that have not” (p. 71). Bar-Hillel and Wagenaar (1993) conclude

“People either acquire an erroneous concept of randomness, or fail to unlearn it” (p. 388).

Cohen (1960) draws the strong conclusion that “nothing is so alien to the human mind as

the idea of randomness” (p. 42).

But are people really bad at reasoning about chance? Or are they solving a different

problem from merely judging the probability of different outcomes under a random

process? If subjective randomness is about detecting patterns, then it is intimately related

to intelligent action: “random” stimuli provide no help in predicting outcomes (e.g., what

information do eight cars of all different colors confer?), whereas “non-random” stimuli aid

our thinking (e.g., if you see eight black cars in a row you might infer that a foreign

dignitary is visiting your town). Consistent with this idea, several papers have connected

subjective randomness to formal frameworks for characterizing the amount of structure in a

stimulus, such as algorithmic complexity (Falk & Konold, 1997; Feldman, 2004; Gauvrit,

Zenil, Delahaye, & Soler-Toscano, 2014; Gauvrit, Singmann, Soler-Toscano, & Zenil, 2016;

Griffiths & Tenenbaum, 2003; 2004) and Bayesian inference (Griffiths & Tenenbaum, 2001;

Hsu, Griffiths, & Tenenbaum, 2010; Williams & Griffiths, 2013).

In this paper, we present a formal framework that unifies these previous approaches,

demonstrating that subjective randomness can be explained as a form of statistical

inference about the process that generated a stimulus. The key challenge for this approach

is characterizing the kinds of structure that people might identify in a stimulus – a problem

that algorithmic complexity theory solves by considering all regularities generated by short

computer programs (e.g., Li & Vitányi, 2008). This notion is too general to capture human

subjective randomness judgments, but by reformulating algorithmic complexity as a
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statistical inference we identify two ways in which it can be adapted: simplifying the kinds

of computing machines considered and restricting the set of possible regularities. We use

these two approaches to develop models of human randomness judgments for three different

kinds of stimuli: sequences of coin flips, binary matrices, and dot patterns in spatial arrays.

Phenomena and theories of subjective randomness

Much of the research regarding humans’ perceptions of randomness has concerned

sequences of numbers or binary outcomes. Reichenbach (1934/1949) is credited with

having made the original suggestion that mathematical novices will be unable to produce

random sequences of numbers, instead showing a tendency to overestimate the frequency

with which numbers alternate. Subsequent research has provided strong support for this

claim (reviewed in Bar-Hillel & Wagenaar, 1991; Tune, 1964; Wagenaar, 1972), with both

sequences of numbers (Rabinowitz, Dunlap, Grant, & Campione, 1989; Budescu, 1987;

Kareev, 1995a) and two-dimensional black and white grids (Falk, 1981). Most strikingly,

people believe that subsequent coinflips are more likely to alternate than to stay the same.

Basic probability tells us that we should expect the probability of alternation from H to T

(and vice versa) to be about 0.5, yet Falk and Konold (1997) provide a vast body of

evidence which shows that people perceive sequences with a probability of alternation

around 0.6 or 0.7 as most random. In addition to alternation, people are sensitive to

symmetries (e.g., HHHHTTTT) and duplications (e.g., HHTTHHTT) within sequences, and deem

sequences with these properties less likely to have been created by random processes (see,

e.g., Lopes & Oden, 1987; Hahn & Warren, 2009).

A number of theories have been presented in an attempt to account for the accuracy

of Reichenbach’s conjecture. One of the earliest such theories can be traced to Skinner

(1942), involving the suggestion that people develop a concept of “randomness” that differs

from the true definition of the term. More recently, a theory of this kind was endorsed by

Falk (1981). The claim that individuals hold a concept of randomness is supported by the
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finding that people consistently apply the same criteria in their judgments of randomness

(Budescu, 1987; Falk, 1981). However, some studies have failed to find this kind of

consistency (e.g. Wiegesma, 1982), and the difficulty of finding a useful definition of

randomness to which this subjective concept might be compared is viewed as a deficiency

of the theory (Lopes, 1982).

Other explanations have focused on the limitations that the human information

processing system places upon the generation of random numbers. Baddeley (1966) and

Wiegesma (1982) suggested that restrictions in short term memory span might account for

the high levels of alternation present in generated random sequences. This claim is

attractive, but fails to provide an account of why similar effects are obtained in grids and

other stimulus displays (Falk, 1981). Furthermore, Neuringer (1986) showed that biases in

the judgment of randomness could be removed by educating participants about the

statistical properties of random sequences. This result suggests that memory alone may

not provide a full explanation of the observed phenomena.

One account that has had a strong influence upon the wider literature of cognitive

psychology is Kahneman and Tversky’s (1972) suggestion that subjects may be attempting

to produce sequences that are “representative” of the output of the generating process. For

sequences, representativeness means that the number of elements of each type appearing in

the sequence will correspond directly to the overall probability with which these elements

occur. Kahneman and Tversky suggested that random sequences are also subject to the

constraint of “local representativeness,” such that small subsequences also maintain the

appropriate probabilities. This implies that a high degree of alternation is to be expected,

as it is the only means of guaranteeing the local representativeness of subsequences. This

claim receives support from the observation that people tend to generate random sequences

that maintain a good level of local representativeness (Budescu, 1987), but the idea of

“representativeness” is sufficiently loosely defined to make it difficult to apply to other

domains in which randomness may occur. For example, it is not immediately apparent how
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the number 7 could be representative of a process that selects random numbers between 0

and 9.

Recent theories have attempted to synthesize these positions. Kareev (1992; 1995b)

argued that the phenomena of random sequence generation could be explained through the

interaction of an attempt to produce typical sequences and the limitations imposed by a

restricted working memory capacity. Thus, local representativeness is enforced by the fact

that individuals can only maintain small subsequences in memory at any one time. Falk

and Konold (1997) suggested that the concept of “randomness” can be connected to the

subjective complexity of a sequence. Complexity here refers to the difficulty of defining a

rule by which the sequence could be generated, a definition consistent with the approach

taken to randomness in computer science (e.g., Wolfram, 1985). We will use this notion of

“algorithmic complexity” as the starting point for our formal investigation of subjective

randomness.

Algorithmic complexity and randomness

Research on subjective randomness is made complicated by the fact that clear

definitions of randomness are difficult to achieve (Falk, 1981; Kac, 1983). In particular,

attempting to apply the label of randomness to single events involves a potential confusion

between the randomness of a process and the randomness of its outcome (Spencer-Brown,

1957) – outcomes that appear non-random, such as HHHHHHHH, will still result from random

processes, such as flipping a fair coin.

Information theory provides a way to address these issues, resulting in a coherent

formal definition of randomness that can be applied to individual outcomes. The key ideas

come from a branch of information theory known as algorithmic complexity (see, e.g., Li &

Vitányi, 2008). The algorithmic complexity of an outcome, such as a binary sequence, is

defined to be the length of the shortest computer program required to produce it (see

Figure 1).2 If the length of the shortest program approaches the length of the sequence, the
2Technically, it is the shortest input to a universal Turing machine that will produce the sequence. A
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sequence is said to be random – the sequence has no more efficient description than itself.

The randomness of a sequence can thus be measured in terms of its algorithmic complexity

relative to its length. These ideas were independently developed by Kolmogorov (1965),

Solomonoff (1964), and Chaitin (1969).

Falk and Konold (1997) drew inspiration from this idea, arguing that subjective

complexity – the difficulty that people have in encoding a sequence – might account for

subjective randomness. Consistent with this hypothesis, they showed that sequences that

people find harder to memorize are considered more random. In an attempt to quantify

their theory, they found that traditional encoding difficulty measures such as second-order

entropy (Shannon, 1948), a measure of randomness from information theory based on

transition probabilities, failed to explain the randomness judgments of participants.

Instead, they argued that algorithmic complexity better describes human randomness

judgments.

One problem with the practical use of algoritmic complexity is that it is not

computable – finding the shortest program that generates a sequence is a computational

problem that is impossible to solve, an “incomputable” task (Li & Vitányi, 2008). Given

its incomputability, Falk and Konold (1997) proposed an approximation to algorithmic

complexity called the difficulty predictor (DP), intended to capture the difficulty of

memorizing a particular binary sequence. The DP value of a sequence assigns one point to

each subsequence which is a run (all heads or tails), and two points to each subsequence

which alternates. For example, the DP value of the sequence HHTTHTHTH is equal to 4,

Turing machine is an abstract machine defined by Turing (1936) in order to formally characterize the notion
of computation. Its input and output appear on a tape that is processed by the machine, which follows
an internal set of instructions indicating whether to move forward or backward along the tape and what
symbols to write in each position based on the symbols that it reads. A universal Turing machine is a
machine that can simulate the operation of any other Turing machine, with the instructions for that Turing
machine encoded in the input that is provided on the tape. These instructions constitute the “program”
followed by the universal Turing machine. The particular universal Turing machine does not need to be
specified, because we can always write a program to translate the input for one universal machine into input
for another universal machine, which would only add a constant to the length of the input. Likewise, we
can describe programs in an arbitrary programming language as it is always possible to write a program to
translate from one programming language to another. For simplicity we will simply talk about computer
programs and illustrate those programs using intuitive programming languages.
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because it can be parsed as two run subsequences (HH and TT), followed by an alternating

subsequence (HTHTH). Falk and Konold (1997) showed that the DP could explain why

people’s randomness judgments peaked when the probability of alternation of a sequence

reached about 0.6 – this was the value that maximized the mean DP of the sequences.

Formal measures of complexity, such as algorithmic complexity, have also been

advocated as accounts of other aspects of human cognition. Chater (1999) argued that

simplicity is the key principle that may unite all of cognitive science, with algorithmic

complexity providing a way to quantify this notion. Feldman (2000; 2003) expressed a

similar argument, using measures of the complexity of a concept to explain difficulty of

learning, and Feldman (2004) argued that people’s sense of surprise – which is related to

randomness – might be accounted for in terms of simplicity.

Despite the appeal of algorithmic complexity as a framework for understanding

human cognition, it has a major problem as the foundation of a theory of human subjective

randomness in addition to its incomputability: the set of all computer programs captures

many regularities that people simply do not detect. For example, a binary sequence

corresponding to the digits of π (HTHHHTHHTHTTTTTTHHHTTHHTTHTTHHTH...), can be

generated by a short program, but would presumably not be considered either simple or

non-random by a human observer. Thus, in order to adapt the idea of algorithmic

complexity to the structure of the human mind, we need to restrict the set of regularities

that might be expressed (and detected) in sequences. To do so, we first need to gain deeper

insight into the link between algorithmic complexity and statistical inference.3

Algorithmic complexity and statistical inference

Consider the problem of deciding whether a given binary sequence was generated by a

random process, such as flipping a fair coin. This is fundamentally a problem of statistical

3The connection between algorithmic complexity and statistical inference that we present here is one of the
core results of algorithmic information theory, as discussed in detail in Li and Vitanyi (2008). In psychology,
this connection has been explored by Griffiths and Tenenbaum (2003; 2004), Gauvrit et al. (2014; 2016).
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inference: based on the available data, we seek to determine the process that generated it.

Accordingly, a rational solution to this problem is provided by Bayesian inference.

Establishing two hypotheses – the sequence was generated from a random process, or a

regular process – we seek the probability of each of these hypotheses given the observed

data. The answer is given by Bayes’ rule, which we express here in its log-odds form:

log P (random|x)
P (regular|x) = log P (x|random)

P (x|regular) + log P (random)
P (regular) , (1)

where x is the observed sequence, P (x|random) is its probability under a random process,

P (x|regular) its probability under a regular process, P (random) and P (regular) are the

prior probabilities of these processes, and P (random|x) and P (regular|x) are their posterior

probabilities.

The only term in Equation 1 that depends on x is the log-likelihood ratio, so we use

the following for a definition of the randomness of the stimulus x:

randomness(x) = log P (x|random)
P (x|regular) = logP (x|random)− logP (x|regular). (2)

This is the amount of evidence that the sequence x provides for having been generated

from a random process. Consequently, we have an elegant way of addressing the potential

confusion between random processes and random outcomes that concerned Spencer-Brown

(1957): the randomness of an outcome is the evidence it provides in favor of having been

generated by a random source.

P (x|random) is usually straightforward to define. In the case where x is a sequence of

coin flips from a fair coin with length `(x), P (x|random) = (1
2)`(x) = 2−`(x). The more

difficult challenge is finding a way to express P (x|regular), the distribution over sequences

generated by regular outcomes. Since P (x|random) is fixed, this is what will determine the

randomness of a sequence.

Following the ideas in the previous section, we can choose to define P (x|regular)
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using algorithmic complexity. There are actually two ways to do this. The first is to use a

probability distribution over sequences defined by Solomonoff (1964). We choose a

universal Turing machine, and then provide it with a (potentially infinite) random binary

sequence as input.4 The probability that this machine generates the binary sequence x as

output is given by

m(x) =
∑

p:U(p)=x
2−`(p) (3)

where p is a program (ie. a binary input sequence), U(p) is the consequence of applying the

Turing machine to that sequence, and `(p) is the length of the program.

A second way to define a distribution that assigns higher probability to more regular

sequences is to start with the set of computable distributions. A computable distribution is

a probability distribution over the natural numbers in which the probability P (x) can be

computed for each input x.5 Each of these distributions can be thought of as expressing a

hypothesis about a regular generating process – something other than purely random

generation. If we want to define a distribution that captures all computable regularities,

then we can take a mixture of these computable distributions, defining

m(x) =
∑
n≥1

Pn(x)α(n) (4)

4Technically, we require this to be a universal “prefix” Turing machine, for which no program is the prefix
of any other program. A prefix Turing machine moves monotonically through its input, always going in one
direction from the first symbol on its tape to the last, as it follows its internal instructions. For some inputs it
processes the entire input and halts after producing meaningful output. For others it halts partway through
or never halts. Since it processes its input monotonically, the set of inputs which a prefix Turing machine
processes before halting has a special property: no such input is the prefix of any other. For example, if it
halted after processing the input 011 then it would halt partway through 0110 or 0111 or any other sequence
starting with 011. A universal prefix Turing machine is a prefix Turing machine that can simulate any other
prefix Turing machine, with the relevant instructions appearing on its input tape as a program. This means
that the programs themselves have the same property, with no program being a prefix of any other program.
This matters in defining Solomonoff’s probability distribution, as it means that the sum given in Equation
3 is bounded and thus defines a valid probability distribution. For further details see Li and Vitányi (2008).

5While we describe these as computable distributions, technically they are enumerable discrete semimea-
sures, ie. computable functions from the natural numbers N to the real numbers R such that

∑
x∈N P (x) ≤ 1

(as opposed to summing to 1, which would make this a true probability distribution or enumerable discrete
measure). The semimeasure defined in Equation 4 is known as the maximal enumerable discrete semimea-
sure, having the property that for any enumerable discrete semimeasure P there exists a constant cP such
that cP m(x) ≥ P (x) (Li & Vitányi, 2008).
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where Pn is the nth computable distribution, and α(n) is the weight assigned to that

distribution. The values of α(n) indicate how likely we think it is that each regularity will

be encountered – in the absence of any further information, our best guess as to what the

output of a regular generating process will be is obtained by averaging over all of the

hypothetical regularities weighted by their probability.

One of the most celebrated results in algorithmic information theory is that both of

these ways of defining a distribution yield the same result: the probability of a sequence can

be approximated (up to a multiplicative constant) by 2−K(x), where K(x) is the length of

the shortest program that generates x – its algorithmic complexity (Levin, 1974).6 We can

thus explore the consequences of using these distributions to define P (x|regular) by taking

P (x|regular) ≈ 2−K(x), (5)

so that more complex sequences have lower probabilities of being produced by a regular

process.

Substituting our definitions of P (x|random) and P (x|regular) into Equation 2, we

obtain

randomness(x) = log 2−`(x) − log 2−K(x) = K(x)− `(x) (6)

which yields precisely the definition of randomness used in algorithmic information theory:

the randomness of a sequence is the difference between its shortest description and its

length. Formulating randomness as a statistical inference is thus – under appropriate

assumptions about the kind of regular processes involved – equivalent to formulating it as a

judgment of complexity.

This reformulation still faces the problem that K(x) is both incomputable and

unrealistic as a characterization of the regularities that people will detect. However,

thinking in terms of statistical inference makes it clear that the key to defining an
6To get an intuition for why this might be the case for Solomonoff’s distribution, note that 2−K(x) is the

largest summand in Equation 3.
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appropriate metric of subjective randomness is in characterizing what comprises a regular

process. In the next section we explore two paths to restricting algorithmic complexity to

better characterize the regularities that people can detect, inspired by the two ways in

which we defined P (x|regular) in this section.

Adapting algorithmic complexity to model human minds

Algorithmic information theory suggests two strategies for defining P (x|regular):

specify the distribution in terms of computing machines, and specify it as a mixture of

distributions that capture different regularities. Using either universal Turing machines or

all computable distributions yields algorithmic complexity as a measure of randomness.

But each of these strategies can be applied to a more restricted set of possibilities. If the

possibilities are restricted in a manner reflecting prior knowledge and cognitive limitations,

the resulting measure should capture human randomness judgments (assuming people

judge randomness as a statistical inference problem). In the remainder of the paper we

explore this possibility, focusing first on binary sequences and then widening our lens to

consider other kinds of stimuli for which people find it easy to assess subjective randomness.

Gauvrit et al. (2014; 2016) investigated one method for defining a more restrictive

form for P (x|regular): using simple Turing machines. Building on previous work by

Delahaye and Zenil (2012), Soler-Toscano, Zenil, Delahaye and Gauvrit (2014) were able to

run all Turing machines with five states and two symbols to determine whether a given

machine halts and, if so, what output it produces. This makes it possible to calculate the

probability that a randomly selected (halting) machine produces a particular sequence as

output – an approximation to the algorithmic probability of that sequence. The result is

an extremely elegant constrained version of algorithmic complexity. Gauvrit et al. (2014)

used this complexity measure to analyze random sequence production by children, showing

that they produced sequences that were more complex on average than those produced by

flipping a coin – a result that is consistent with the human sense of randomness being
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related to this measure of complexity. Gauvrit et al. (2016) performed a similar analysis

with adults, and also showed that using a “local” measure of complexity (ie. the

complexity of substrings) could account for some of the variance in randomness judgment

for sequences of length 21.

An alternative way to pursue the strategy of defining distributions using computing

machines is to focus on computing machines that are simpler than a Turing machine.

Chomsky (1959) defined a hierarchy of computing machines based on their ability to

recognize different classes of languages. The Turing machine can recognize any computable

language, but successive restrictions to the machine limit the set of languages it can be

used to recognize. This provides a framework that allows us to flexibly explore different

forms for P (x|regular).

Figure 2 shows an augmented version of the Chomsky hierarchy with the simplest

machines on the left. As we move from left to right, the set of regularities the machine is

capable of recognizing increases in size. A finite state automaton takes the most basic

elements of a Turing machine – the ability to read symbols from an input sequence and to

change its internal state according to a set of instructions about how to process those

symbols – but discards the ability to move back and forth and modify the input sequence,

hence losing the capacity for memory. It can thus only recognize simple regularities, such

as a repeated pattern. There are two typical ways to extend a final state automaton.

Augmenting the finite state automaton with a queue, a first-in-first-out memory system

that can be consulted and modified, results in a queue automaton. Symbols can be written

to the queue, and read in the order they were written. The queue memory allows the

machine to remember a series of events in order, thereby permitting the machine to

recognize the regularity of duplication. Adding a pushdown stack, a last-in-first-out

memory system, to the finite state automaton results in a pushdown automaton. Symbols

can be written to the stack (“pushed” onto the stack), but only the most recent addition to

the stack can be read. The pushdown stack can recall a series of events in reverse order,
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enabling the pushdown automaton to recognize symmetrical patterns. Both symmetry and

duplication can be recognized by an automaton with a readable stack (henceforth “stack

automaton”), which has a special type of stack in which every element in the stack can be

read (items are still added to or removed from the first position in the stack).

The Chomsky hierarchy, with its familiar restrictions on the power of computing

machines and corresponding restrictions on the kinds of regularities – or languages – that

those machines can identify provides a natural starting point for defining distributions

based on simpler computing machines than the Turing machine. This first strategy is most

usefully applied to modeling the subjective randomness of binary sequences, since these are

the standard input and output of computing machines. We pursue the potential of this

approach in the next section.

The literature on human subjective randomness has explored a variety of different

kinds of stimuli that go beyond binary sequences. For these stimuli, following the second

strategy for defining P (x|regular) and taking a mixture of distributions that express

specific regularities provides a straightforward way of defining models of subjective

randomness. Rather than taking a mixture of all computable distributions, we take a

mixture of a set of distributions that we believe capture the kinds of regularities that

people might be sensitive to. This strategy is straightforward to apply in a wide range of

circumstances, and we use it to model human randomness judgments for binary matrices

and spatial arrays later in the paper.

Probabilistic machines and the Chomsky hierarchy

To define an appropriate approximation of P (x|regular) when x is a sequence of coin

flips, we can use probabilistic machines as a formal description of probabilistic rules and

patterns for generating sequences. A probabilistic machine defines a distribution

P (x|regular) based on the probability of x being generated by the machine. The structure

and fitted parameters of the probabilistic machine provides a formal description of the
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kinds of regularities that people identify in binary sequences.

We begin our analysis with a finite state automaton, the simplest machine in the

hierarchy shown in Figure 2, and evaluate how well it can reproduce people’s randomness

judgments. We use a specific type of probabilistic finite state automaton known as a

hidden Markov model (HMM). A finite state automaton processes an input sequence by

moving from one internal state to another as it reads each symbol from the sequence, with

the transitions between states resulting from a deterministic set of instructions. A hidden

Markov model allows these relationships to be probabilistic. Rather than starting with a

set of instructions for processing a sequence, it provides a procedure for generating a

sequence. Each state is associated with a probability distribution over symbols and a

probability distribution over other states. An initial state is selected randomly and a

symbol is generated from the probability distribution associated with that state. The next

state is then sampled from the probability distribution over states associated with the

current state and the process continues. Probabilistic inference can be used to infer the

sequence of states used to generate a sequence, and this inference process is a stochastic

generalization of the deterministic procedure followed by a finite state automaton. For

further details see Manning and Schütze (1999). .

More formally, assume that each symbol xi ∈ {H,T} in a sequence of length n,

x = x1x2...xn, can be seen as being produced by some latent state zi. This can be

interpreted as the current pattern being produced by the machine (e.g., repeating HT).

Making a first-order Markov assumption about the latent variables z = z1z2...zn forces the

probability distribution of zi to depend only on the state of its immediate predecessor,

zi−1.7 The conditional independence assumption allows inference for the parameters of a

HMM to be computationally tractable.

7We assume that sequences are produced from left-to-right. As our behavioral data comes from English
speakers, a left-to-right reading of stimuli is natural. However, it should be noted that the probability of
producing a sequence and its reverse differs by very little in the particular hidden Markov model we use as
what matters most is the number and length of particular subsequences, which does not change if the order
of the sequence is reversed.
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Under these assumptions, the joint probability distribution of x and z is given by

P (x, z) = P (z1)
n∏
i=2

P (zi|zi−1)
n∏
i=1

P (xi|zi). (7)

From this, the probability of generating a given sequence x can be found by marginalizing

out all possible latent states z that could have produced the observed sequence:

P (x) =
∑
z

P (x, z). (8)

The model is fully specified through the choice of states and the distributions P (xi|zi) and

P (zi|zi−1).

For reasons that will become clear shortly, we define an HMM with six hidden states

and organize the transitions between these states into four motifs (or subpatterns):

repeating heads, repeating tails, repeating heads-tails, and repeating tails-heads (see

Figure 3). In any state, we define the probability of continuing its corresponding motif to

be equal to δ ∈ [0, 1], and the probability of switching to a different motif to be

proportional to αk ∈ [0, 1], where k is the number of states within the motif. Thus, the

probability of entering a new motif decreases with the length of the motif, thereby

assigning less probability to more complex motifs. The matrix expressing these

unnormalized transition probabilities is thus

P (zi|zi−1) =



δ Cα Cα2 0 0 Cα2

Cα δ Cα2 0 0 Cα2

Cα Cα 0 δ 0 Cα2

Cα Cα δ 0 0 Cα2

Cα Cα Cα2 0 0 δ

Cα Cα Cα2 0 δ 0



, (9)
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where each row is a vector of unnormalized transition probabilities and C = 1−δ
2α+2α2 .8 For

example, the probability of transitioning to zi = 3 given that we are in state zi−1 = 5 is

located in the fifth row and third column of the matrix (it is Cα2). The initial hidden

states are given by unnormalized probability vector P (z1) ∝
(
Cα Cα Cα2 0 0 Cα2

)
.

The Difficulty Predictor as a special case

Recall Falk and Konold’s (1997) Difficulty Predictor (DP) for binary sequences,

which assigned one point for each repeating subsequence and two points for each

alternating subsequence. This model provides an intuitive way to measure the complexity

of a sequence, but it has some limitations. For one, DP does not account for sequence

length adequately: HHTHT and HHHHHHHHHHHHHHHHHTHT both have DP = 3 but the former

seems more random. In addition, DP fails to account for symmetry and duplication within

a sequence. If we can identify the assumptions behind DP, we can generalize those

assumptions to yield a more flexible model.

Using the HMM defined above to specify P (x|regular), we can show that DP is just a

special case of considering subjective randomness as statistical inference (Griffiths &

Tenenbaum, 2003). The HMM allows two classes of motifs – corresponding to repetition

and alternation. Switching between motifs is done with probability proportional to δ,

repetition is chosen with probability proportional to α, and alternation with probability

proportional to α2. For a choice of z indicating n1 runs and n2 alternating subsequences,

P (x, z) ∝ δn−n1−n2( 1−δ
2α+2α2 )n1+n2αn1+2n2 . Taking P (x|regular) to be maxz P (x, z), it is

straightforward to show that random(X) = −DP logα when δ = 0.5 and α =
√

3−1
2 . Having

identified this special case, we can see whether it is possible to get better results by

exploring other values for these parameters.

In Experiment 1 of Falk and Konold (1997), 97 participants gave apparent
8The choice of C is motivated by the concern that the sum of each row ought to be less than 1. It should

be noted that we do not require the rows to sum to 1 for now (this is relevant to establishing equivalence with
previous work). Instead, each state should be thought of carrying some positive probability of transitioning
to a state that has never been observed previously, i.e., a “null state.”
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randomness ratings on a scale of 1 to 10 for ten heads-tail sequences, each of length 21.

Each sequence contained between 2 and 20 alternations between heads and tails. On

average, a fair coin should produce a probability of alternation of about 0.5, meaning that

participants should have seen sequences with about 10 alternations as most random.

However, as shown in Figure 4, participants rated those sequences that had about 14

alternations as optimally random. To explain their results, Falk and Konold (1997) applied

their DP complexity measure to the data, yielding a correlation of r = 0.93.

We can find a better fit than DP for Falk and Konold’s (1997) data by optimizing our

general model: δ = 0.525 and α = 0.107 yields a correlation of r = 0.99 (see Figure 4).9

These new parameters also address some of the counter-intuitive predictions of DP . For

example, if δ > 0.5, increasing the length of a sequence but not changing the number of

runs or alternating subsequences reduces its randomness, because P (X|regular) decreases

more slowly than P (X|random). When we solve for these new unrestricted values of δ and

α, random(HHTHT) = 3.33, while random(HHHHHHHHHHHHHHHHHTHT) = 2.61.

Generalizing the model and predicting the classification of binary sequences

The finite state automaton effectively captures the bias people show towards avoiding

streaks when generating random sequences. But other regularities, such as symmetry,

cannot be encoded by the finite state automaton unless we include an unreasonable

number of states and motifs. Instead, symmetry can be incorporated by ascending the

Chomsky hierarchy and expanding the set of languages our machine can recognize from

regular languages to context-free languages. Context-free languages can be recognized by a

pushdown automaton, which is a finite state automaton with a stack. Similarly, we can

augment the finite state automaton with a queue to allow the machine to recognize

duplication. Comparing the performances of the pushdown and queue automata will allow

us to determine how sensitive people are to symmetry and duplication pattern grammars

9All parameter optimization is done using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
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when evaluating randomness.

For the pushdown automaton, we model two types of symmetry: mirror symmetry

(e.g., HHHTTHHH) and complement symmetry (e.g., TTTTHHHH). The model is augmented so

that P (x|regular) = maxz,MP (x, z|M)P (M), where M is a method of production. The first

half of the sequence is generated by the finite state automaton defined above, and the latter

half is generated either by repetition (i.e. the finite state automaton continues to produce

the remaining half of hidden states) or by affixing the symmetric or complement-symmetric

counterpart, according to probabilities P (M). The queue automaton uses a similar scheme,

where M can be either repetition or duplication. Further generalizing our machines along

the Chomsky hierarchy leads us to formulate the stack automaton, which can use methods

of production corresponding to symmetry, complement symmetry, and duplication.

In the first experiment of Lopes and Oden (1987), participants were split into two

groups.10 Both groups were given the task of classifying whether binary sequences of length

eight were generated from a random source or a non-random source whose nature was

unspecified. Half of the sequences that each group saw were created by an unbiased coin

flipping process (p = 0.5). The other half of the sequences were produced in a manner that

depended on which group the participant was placed in. For one group the other half of

the sequences was generated with a repetition bias. For another group the other half of

sequences was generated with an alternation bias. The top two panels of Figure 5 show the

performance of participants in the experiment, separating out sequences that were

symmetric and asymmetric. To evaluate the performance of different models on this task

we transform Equation 2 into a logistic regression model, with

P (random|x) = 1
1 + exp(−λ randomness(x)− ψ) , (10)

where λ weights the importance of randomness(x) and ψ = log P (random)
P (regular) is the log prior

odds. Note that setting λ = 1 corresponds to an appropriately-calibrated inference.
10We only analyze results from the uninformed condition of the experiment here.
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Using the finite state automaton as our definition for P (x|regular) and the model in

Equation 10, we fit the data from Lopes and Oden (1987) to yield δ = 0.638, α = 0.659,

λ = 0.128, and ψ = −2.75, with correlation r = 0.90. However, we can improve upon this

result by using the pushdown automaton to account for the fact that participants in their

experiment were likely to view symmetric sequences as non-random. Using the pushdown

automaton, we reach a correlation of r = 0.98 using parameters δ = 0.688, α = 0.756,

P (M = repetition) = 0.437, P (M = symmetry) = 0.491, P (M = complement symmetry) =

0.072, λ = 0.125 and ψ = −2.99. The high value for P (M = symmetry) is notable,

indicating that people clearly use symmetry as a factor to determine non-randomness.

Additionally, the value for ψ = −2.99 implies that P (regular) > P (random), suggesting

that people are biased towards classifying a sequence as non-random a priori. When we

impose the constraint λ = 1 so that the model is forced to use correct Bayesian inference,

the correlation only drops to r = 0.97, with δ = 0.656, α = 0.314, P (M = repetition) =

0.421, P (M = symmetry) = 0.504, P (M = complement symmetry) = 0.074, and φ = −1.64.

Unfortunately, Lopes and Oden (1987) did not study the effects of duplication, so we

cannot determine the efficacy of the queue automaton with these data.

While the data of Falk and Konold (1997) and Lopes and Oden (1987) provide a way

to evaluate some of the basic predictions of our models, they do not allow us to explore all

of the regularities that people might be sensitive to or to test which of the components of

the models are critical for fitting human data. These models are relatively complicated,

with multiple free parameters, and the quality of the estimates of those parameter values

depends on the scope and quantity of the data from which they are estimated. In order to

properly evaluate our models we need to collect a more comprehensive data set of human

subjective randomness judgments for binary sequences and use statistical methods to

evaluate the performance of different models.
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Experiment 1: Evaluating more complex models

In the last section, we introduced four probabilistic machines that differed by their

memory systems. This allowed us to define a set of models that generalize the Difficulty

Predictor in several ways, although they retain the same basic commitment to regularities

being based on repetition and alternation. We can add further complexity to the model by

increasing the number of motifs it can detect. For example, if we include all binary strings

up to length 4 that are not repeats of shorter motifs, we increase the total number of

motifs to 22 and the total number of states to 72. The result is a comprehensive model

that can capture a variety of regularities in binary sequences.11

In this section we present an experiment designed to evaluate the performance of this

more complex model. Our probabilistic machines differ in the kind of memory they use, so

we investigate the effects of memory constraints on randomness judgments by asking

participants to decide whether a coin flip sequence comes from a random or non-random

source. To test the effect of memory demands, each participant is placed under one of two

conditions: Sequential or Simultaneous. In the Sequential condition each coin flip in the

sequence appears one at a time, so that the participant is only able to view the current flip.

This is akin to the natural task of observing the outcomes of a person flipping a single coin

repeatedly. In the Simultaneous condition the full sequence appears all at once, as if the

results had been tallied and displayed. When the participant is asked to choose whether a

sequence is random or non-random, we do not specify the nature of the non-random

source; it is left to participants to decide what non-random means. Our experimental data

will allow us to test the efficacy of our four machines—finite state, pushdown, queue, and

stack—and help us decide how high the Chomsky hierarchy must be climbed to capture

11In addition, as we no longer need to compare to DP directly we will use a transition matrix in which the
rows sum to one. We alter the matrix by dropping C and normalizing each row, dividing each row by its
sum to ensure that each row sums to 1. This change carries some minor implications: for example, sequences
such as HHHH and HTHT now not only differ in their priors (α vs. α2), but also by their motif continuation
probabilities (each δ has a different normalization constant). Thus, the value of δ will be scaled higher for
some motifs and scaled lower for others, enabling a more fine-grained look at the structure of complexity. The
generative model still has only two parameters – α and δ – that generate all these transition probabilities.
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people’s intuitions.

Method

Participants. Participants were 40 undergraduates. Each participant was

randomly assigned to one of the two conditions.

Stimuli. Stimuli were sequences of heads (H) and tails (T) presented in 130 point

fixed width sans-serif font on a 19” monitor at 1280 × 1024 pixel resolution.

Procedure. Participants were seated at a computer and presented with a series of

heads and tails sequences. In the Simultaneous condition, the sequence was presented in its

entirety; in the Sequential condition, each element of the sequence was displayed after

another, with each character displayed for 300ms with a 300ms inter-stimulus interval.

Participants were instructed to classify each sequence as either coming from a random

process (flipping a fair coin) or by some other process which was not random. After a

practice session, each participant classified 128 unique sequences of length 8 in random

order.12 Participants took a short break every 32 trials.

Results

By measuring the proportion of participants classifying each sequence x as random,

our results provide an estimate of the distribution of P (x|random). From this, we can fit

the models using Equation 10. The models using 22 motifs outperformed those using 4

motifs; as such only the results of the 22 motif models are reported here. The results are

displayed in Figure 6.

Because some of the models are nested, we can perform log-likelihood ratio tests to

determine if the extra parameters contribute to a statistically significant model

improvement. We find that for the Simultaneous condition, the best fit is provided by the

stack automaton, while for the Sequential condition, the best fit is provided by the queue
12Presenting 128 sequences is sufficient if we assume that each sequence is equivalent to its complement,

e.g., HHTTHHTH is equivalent to TTHHTTHT. The choice of which of the equivalent sequences was displayed was
decided pseudo-randomly by the computer.
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automaton. A Bayesian model comparison framework using Bayes factors yielded similar

conclusions.13 To test if our models were overfitting the data, we used 5-fold

cross-validation14 to calculate the average out-of-sample correlation. We found that the

average out-of-sample correlations were 0.79 and 0.73 for the Simultaneous and Sequential

conditions, respectively.

These results suggest that when the full sequence is available to the participant in the

Simultaneous condition, the participant is sensitive to all three methods of production:

symmetry, complement symmetry, and duplication. However, when viewing each coin flip

one-by-one in the Sequential condition, participants are only sensitive to duplication.

Adding in symmetry and complement symmetry as methods of production does not

significantly improve the model’s fit (see Figure 6(d)). This aligns with what we know

about human cognition: working memory acts more like a queue than a pushdown stack.

Repeating this analysis at the level of individual participants also supported this

conclusion. In the Simultaneous condition, 3 participants were classified as best fit by the

Finite State model, 7 by the Pushdown, 3 by the Queue, and 7 by the Stack. In the

Sequential condition, 2 participants were classified as best fit by the Finite State model, 6

by the Pushdown, 10 by the Queue, and 2 by the Stack.

The stack automaton’s best fit parameters for the group data in the Simultaneous

condition are δ = 0.50, α = 0.03, λ = 0.33, ψ = −1.05, with production method

probabilities P (M = repetition) = 0.298, P (M = symmetry) = 0.494, P (M =

13A Bayes factor is defined as the relative evidence the data gives for one model over another model,
formally P (D|M1)

P (D|M0) , whereD is the data,M0 is the null model, andM1 is the alternative model. To compute the
Bayes factor, an integration over the parameters must be performed, with P (D|M) =

∫
P (D|θ,M)P (θ|M)dθ

where P (D|θ,M) is the model’s likelihood function and P (θ|M) is the prior distribution over the models
parameters. For the HMM, this value cannot be computed analytically, so a Monte Carlo estimate of the
probability of the data can found by sampling from the prior, as described in Kass and Raftery (1995). For
the models described in this section, we used uniform priors on δ and α, a Gaussian (normal) distribution
on λ with mean and standard deviation 1, a Gaussian distribution on φ with mean 0 and standard deviation
1, and a uniform distribution on the vector of probabilities for each method of production.

145-fold cross-validation is a standard technique to test for overfitting. The procedure works by randomly
partitioning the data into 5 equal parts, training on each distinct set of 4 parts, and calculating the out-of-
sample error for the remaining part. The 5 out-of-sample errors are then averaged to yield an estimate of
test error.



RANDOMNESS AS INFERENCE 25

complement symmetry) = 0.013, and P (M = duplication) = 0.195. Thus, symmetry and

repetition are by far the most important patterns used by our participants to evaluate

randomness. For the Sequential condition, the queue’s best fit parameters are δ = 0.50,

α = 0.04, λ = 0.30, ψ = −0.50, with production method probabilities

P (M = repetition) = 0.835 and P (M = duplication) = 0.165. Because δ is much greater

than α in both conditions, our models indicate that non-random sequences are biased

towards continuing, rather than switching, motifs.15

It is insightful to see how the stack automaton model’s predictions of randomness

vary with the number of heads in a sequence. In Figure 7, we plot the number of heads in

the sequence versus the model’s predicted randomness(x) score. We find that flipping one

bit of the sequence towards its majority symbol decreases the randomness of the sequence,

on average. There is a small deviation from the pattern when there are exactly four heads

and four tails–this is because perfect symmetry, HHHHTTTT or TTTTHHHH is perceived as

quite non-random.

Comparing different strategies for defining simple machines

The models that we explored in the previous sections focused on one method for

defining simple machines: specifying probabilistic automata on the Chomsky hierarchy.

Gauvrit et al. (2014; 2016) presented a different method of measuring complexity using

simple machines: explicitly calculating the probability of a sequence being produced by a

15Since these models have a large number of parameters, we conducted a parameter recovery analysis
to confirm that our estimation procedure could identify the correct parameter values for simulated data.
For each of the four models (Finite State, Pushdown, Queue, Stack), sets of randomly simulated data were
generated. To generate a set of simulated data, parameters from the parameter space of the each model were
uniformly sampled. Once we have the parameters, we can produce a P (random|X) value for each of the
unique 128 binary sequences X1, ..., X128. Then, we can simulate data in that same format as Experiment
1, sampling judgments for 128 binary sequences. Here, we choose to simulate the data 1,000 times–this is
as if 1,000 participants had rated the 128 sequences. This procedure is repeated 5,000 times. To test for
identifiability, we compute the correlation between the randomly sampled set of “true” parameters and the
parameter values found when fit to the simulated data generated from the “true” parameters. There was a
close correspondence between the true and estimated parameter values – of the 25 resulting correlations, 10
were greater than .95, 7 were between .90 and .95, 7 were between .85 and .90 and the lowest (the weight of
repetition in the Pushdown model) was .81.
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small Turing machine. The results of Experiment 1 provide a way to compare these two

approaches.

Following Gauvrit et al. (2014), we took P (x|regular) to be the proportion of

sequences produced by Turing machines with five states and two symbols that matched x.

This model is referred to as D(5) by Gauvrit et al. Since the sequences used in Experiment

1 were all of length 8, we can filter this distribution to contain only those sequences – this

contributes just a normalizing constant that disappears in our subsequent analysis.

Taking this definition of P (x|regular), we can compute randomness(x) as specified in

Equation 2. We can evaluate model performance by calculating the log-likelihood from the

same logistic regression model we used for evaluating the other models presented above:

P (random|x) = 1
1 + exp(−λrandomness(x)− ψ) (11)

where the parameters λ and ψ are optimized for best fit with the data. Fitting this model

to the Sequential and Simultaneous conditions of Experiment 1 yielded best fitting

parameters of λ = 0.696, ψ = 0.162, and λ = 0.749, ψ = 0.229 respectively.

The log-likelihood score for this model can be compared against the log-likelihood

produced by the models based on the hidden Markov model, and the correlation between

model predictions and data provides a sense of how well the predicted and observed

probabilities of sequences being judged random correspond to one another. For the

Sequential condition, the HMM (Queue) model has a log-likelihood of −1648.62 and

r = 0.75, while the D(5) model gives −1715.80 and r = 0.45. For the Simultaneous

condition, the HMM (Stack) model has a log-likelihood of −1531.59 and r = 0.83, while

the D(5) model gives −1697.10 and r = 0.38. Admittedly, one of the advantages of the

D(5) model is that it is parameter-free; for this experiment we only use the logistic

transformation to stretch and scale its output. To evaluate each model’s relative strengths,

we can use information criteria such as the Akaike Information Criterion (AIC; Akaike,
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1973) and the Bayesian Information Criterion (BIC; Schwarz, 1978) which explicitly

penalize the number of parameters. Smaller values of these criteria correspond to better

fitting models taking into account any differences in the number of parameters. In the

Sequential condition, AIC = 3307, BIC = 3339 for the HMM, AIC = 3436, BIC = 3449 for

D(5); in the Simultaneous condition, AIC = 3077, BIC = 3123 for the HMM, AIC = 3398,

BIC = 3411 for D(5). Choosing the model which minimizes AIC and BIC for both cases,

we find that the HMM outperforms D(5) on this experimental evidence.

To see why the D(5) model is performing worse in each condition, we can analyze the

total squared error for each of the different kinds of regularity expressed by the stimulus

sequences. The stack automaton model has the ability to produce symmetry, complement

symmetry, and duplication – 18.8% of sequences have at least one of these features. The

percentages of squared error contributed by sequences that are symmetric, complement

symmetric, or duplicated, in the HMM models were 17.5% and 12.3% in the Simultaneous

and Sequential conditions respectively. This indicates that these sequences contributed

about as much error as other sequences. However, for the D(5) model, 43% of the error

came from those special sequences in the Simultaneous condition, and 31% in the

Sequential condition, indicating that an outsize proportion of error results from

misclassifying sequences containing symmetry, complement symmetry, and/or duplication.

Analyzing the patterns of errors shows that the D(5) model systematically

overestimated P (random|x) for sequences that display symmetry, complement symmetry,

or duplication. In other words, people perceive sequences with the features to be less

random than predicted by the model. This makes a certain amount of sense – these are

high-level regularities that might be rare among the products of very simple Turing

machines. However, this is not the only factor behind the success of the probabilistic

automata – even the simplest automaton model, without these regularities, produced a

better fit to the human data than the D(5) model.

The use of simple Turing machines to define a constrained measure of algorithmic
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complexity is extremely elegant, and the resulting parameter-free model does an impressive

job of capturing the human data. However, getting a closer match to human judgments of

randomness, including how factors such as memory constraints arise based on presentation

format, may require a broader exploration of ways that simple computing machines can be

linked to randomness. Here, we focused on different kinds of automata in the Chomsky

hierarchy, but it may be possible to achieve similar results within the framework

introduced by Gauvrit et al. by looking at a wider range of distributions defined using

Turing machines of different sizes.

Exploring P (x|regular)

Experiment 1 provided clear results indicating what kinds of regularities people are

sensitive to under different memory conditions. The main limitation of this experiment is

that the proportion of participants classifying a particular sequence as random is, at best, a

noisy estimator of the perceived randomness of the sequence. Furthermore, it is difficult to

analyze any individual differences between participants’ perceptions of randomness.

To explore our account of subjective randomness further, we devised an experiment

designed to directly estimate P (x|regular). The experiment is based on a commonly-used

tool in statistics and machine learning known as Markov chain Monte Carlo, a stochastic

approximation method used to sample from complex distributions that cover a

high-dimensional space (Gilks, Richardson, & Spiegelhater, 1996). In a traditional Monte

Carlo simulation, an algorithm is used to generate samples from a particular probability

distribution directly. In contrast, Markov chain Monte Carlo algorithms produce a series of

samples – a “chain” – from a series of probability distributions. If the algorithm is run for

long enough, the probability distribution from which the samples are drawn converges to

the probability distribution of interest, and the samples can be treated as samples from

that distribution.

Sanborn, Griffiths, and Shiffrin (2010) proposed using Markov chain Monte Carlo as
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the basis for experiments with people that are intended to estimate psychological quantities

that can be expressed as probability distributions. Markov chain Monte Carlo with People

(MCMCP) is an adaptive experimental method that can be used to elicit participants’

beliefs without explicitly asking them. MCMCP has been used to infer people’s

expectations about categories composed of high-dimensional stimuli such as stick-figure

animals (Experiment 3, Sanborn et al., 2010) and facial expressions (Martin, Griffiths, &

Sanborn, 2012). In our experiment, we use the Markov chain Monte Carlo technique known

as Gibbs sampling (Geman & Geman, 1984) to estimate people’s beliefs about regular

sequences.

Assume there is an n-dimensional probability distribution P (x1, x2, . . . , xn) that we

wish to sample from. In the case of a distribution on binary sequences, we would have n

binary variables each corresponding to the value of each element in the sequence. The

sequence HHTHTHTT would be n = 8 and x1 = H, x2 = H, x3 = T and so on. If we can

efficiently sample from the conditional distributions P (xi|x1, . . . , xi−1, xi+1, . . . , xn), then

we can use Gibbs sampling to generate samples from P (x1, x2, . . . , xn). The algorithm is

simple: First, we arbitrarily assign values to x1, x2, . . . , xn. Then we draw a new value for

x1 given the current values assigned to x2, . . . , xn, sampling from P (x1|x2, . . . , xn). We

continue this process, drawing new values for x2, x3, and so on, in each case replacing the

value of xi with a sample from P (xi|x1, . . . , xi−1, xi+1, . . . , xn). One pass through all n

variables is a single iteration of the Markov chain. After this process is repeated enough

times (called the “burn-in” period), the Markov chain converges to the target distribution

and the values of x1, x2, . . . , xn behave as samples from P (x1, . . . , xn).

We can adapt this procedure to a behavioral experiment that can be used to estimate

P (x|regular). Instead of sampling from a pre-defined conditional probability distribution to

perform Gibbs sampling, we “sample” from people’s implicit expectations over coin flip

sequences.16 To perform this task, in each trial of our experiment the participant views a

16The procedure samples from people’s subjective distributions as long as their choices can be described
in terms of Luce’s choice rule (for the underlying assumptions of the method see Sanborn et al., 2010).
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sequence of coin flips with one flip covered up by a black square, e.g.,

HTTH�TTH

and indicates whether he or she believes the black square is covering an H or a T, given that

the sequence was created by a non-random process. In other words, the participant is

choosing a new value for xi, which is covered by a black square, conditioned on the values

of all other xk, k 6= i. This is exactly the distribution that is required for Gibbs sampling.

Once the new value for xi is set, the participant views the same sequence on a later trial

but with a different location covered by a black square. Performing this process repeatedly

creates a chain of binary sequences which will ultimately behave as samples from

P (x|regular).

Figure 8 illustrates our approach. The initial states of three chains are sampled at

random (without replacement). We set the chain length to 16, so that each element in the

coin flip sequence is sampled twice. The participant completes a set of trials corresponding

to one iteration in each of the chains in a random order before moving onto the next

iteration in each chain so as to prevent the participant from detecting that their choices are

affecting future trials. The box locations are selected as random permutations of the eight

possible locations for each chain, with one full random permutation selected for the first

eight steps in the chain and another random permutation for the second eight steps. Our

experiment used 40 chains, each of length 16, resulting in a total of 640 trials for each

participant to complete.

Experiment 2: Sampling from P (x|regular)

Method

Participants. Participants were 25 undergraduates participating for course credit.

Two participants were excluded after examination of their data revealed they had

repeatedly entered a single response, yielding usable data from 23 participants.
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Stimuli. Stimuli were sequences of heads and tails of length 8, as in Experiment 1.

Procedure. In each of the 640 trials each participant completed, the computer

prompted the participant to examine a coin flip sequence of length eight with one flip

outcome hidden and to respond with whether they thought an H or T belonged where the �

appeared. The instructions read:

The sequence of heads (H) and tails (T) below was produced by a process that

is NOT random. One outcome has been hidden with a box. Do you think what

was underneath the box was heads or tails?

Each participant completed 640 trials, corresponding to 40 chains each of length 16. After

every 40 trials, the participant was encouraged by a computer prompt to take a short break.

The binary sequences used to initialize the chains were sampled uniformly over all

binary sequences of length eight without replacement so that no two chains began with the

same sequence. Participants completed the trials in all 40 chains before moving onto the

trials corresponding to the next iteration of those 40 chains. In each set of 40 trials, the

chains from which the trials were drawn were presented in randomly permuted order. In

addition, the location of the � in each chain was randomly permuted so that the location

of the box appeared at each index in the sequence exactly twice.

Results

We use the chains-crossing criterion (Johnson, 1996) to determine convergence. Once

two or more chains cross at a particular step, all future realizations of sequences in the

converged chains are aggregated into the estimate of the target distribution P (x|regular).

Because we are working with a discrete probability distribution, a cross occurs when the

same binary sequence is present in two or more chains at a particular iteration. We call the

estimate of P (x|regular) found from the MCMCP experiment P̂ (x|regular). Data from the

experiment coincides with observations made in other studies of human subjective

randomness, validating the MCMCP approach. For example, the most common sequence,
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TTTTTTTT, made up 8.5% of the mass of P̂ (x|regular), and the second-most common

sequence, HHHHHHHH, made up 6.8% of the mass. The least common sequence, HHTTTTHT,

made up only 0.01% of the mass. A full ranking of all sequences from least to most random

can be seen in Figure 9.

Table 1 shows the goodness-of-fit characteristics of all models considered. For each

model, we computed a log-likelihood by calculating the probability of the samples

generated by people under the distribution implied by the model. To provide a heuristic

measure of fit, we also computed the Pearson correlation coefficient between P̂ (x|regular)

and P (x|regular) under the model. We calculated the average out-of-sample correlation

using 5-fold cross validation; we found that increasing the complexity of the models did not

reduce the out-of-sample correlation, which suggests the models are not overfitting. The

4-motif and 22-motif stack automatons provide the best fits for our data set, yielding

correlations of r = 0.91 and r = 0.92, respectively. Because the 4-motif and 22-motif stack

automata are not nested models, we cannot formally apply a log-likelihood ratio test to see

if the 22-motif machine lends a statistically significant improvement in fit. However, since

the performance is similar despite the difference in complexity these results would seem to

favor the 4-motif model.

A comparison of the 4-motif models using log-likelihood ratio tests (see Figure 10)

reveals that the stack automaton yields the best fit for the data, corroborating the results

found for the Simultaneous condition in Experiment 1. A Bayesian model comparison

analysis using Bayes factors (also shown in Figure 10) produced the same conclusion.17

The fact that the stack automaton outperforms the other models indicates once again that

people use the pattern grammars of symmetry, complement symmetry, and duplication to

evaluate randomness.

The optimal parameters found for the 4-motif stack automaton are δ = 0.5493,

α = 0.2073, with production method probabilities P (M = repetition) = 0.7074, P (M =

17The same priors for δ, α and the methods of production in Experiment 1 were used for this analysis.
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symmetry) = 0.1631, P (M = complement symmetry) = 0.0652, and

P (M = duplication) = 0.0984. These yield transition matrix and initial state vector:

P (zi|zi−1) =



0.6497 0.2491 0.05063 0 0 0.05063

0.2491 0.6497 0.05063 0 0 0.05063

0.2078 0.2078 0 0.5421 0 0.0422

0.2078 0.2078 0.5421 0 0 0.0422

0.2078 0.2078 0.0422 0 0 0.5421

0.2078 0.2078 0.0422 0 0.5421 0



P (z1) =
(

0.4155 0.4155 0.0845 0 0 0.0845
)

The difference between the motif continuation probabilities (0.6497 vs. 0.5421) illustrates

that participants perceive alternating subsequences as less likely to continue than a

repeating heads or repeating tails motif.

To check the robustness of the best-fitting parameters from Experiment 2, we use the

data in the Simultaneous condition from Experiment 1 to re-fit Equation 10 while keeping

the parameters found for the 4-motif stack automaton from this experiment fixed. In other

words, the randomness(x) component in Equation 10 is fixed, but we freely vary λ and ψ.

We find that λ = 1.018 and ψ = −0.0057, with r = 0.75. In Experiment 1, the best fit was

provided by λ = 0.33 and ψ = −1.05, with r = 0.83. The new value for ψ is notable:

because ψ = log P (random)
P (regular) , a value near zero implies random and regular events are

approximately equally likely. The new value for λ further validates the MCMCP

experiment: the log-likelihood is weighted correctly when λ = 1, implying that the

responses of the participants are conforming more closely to Bayesian inference with this

choice of P (x|regular).

Another advantage of using MCMCP is that we can examine individual participants’

differences in randomness judgments. Because each participant only worked on 40 chains,
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requiring a chain to converge before its sequences are allowed into the estimation procedure

would reduce the workable data from each participant to an unusably low size. Instead, we

can estimate the models from the choices the participant makes in each trial. If we assume

that the participant chooses heads or tails in proportion to their probability, we can

construct a likelihood function and identify which model provides the best fit for each

participant.

Analyzing all 23 participants, 13.04% of participants made randomness judgments

best characterized by the pushdown automaton, while the randomness judgments of the

remaining 86.96% were best characterized by the stack automaton.18 Hence, all

participants utilized the notions of symmetry and complement symmetry to make

randomness judgments, but a small minority did not associate duplication with

non-randomness. For some participants, sequences such as HHHTHHHT look very random,

even though they contain duplication. We are not generally arguing that some people’s

cognitive processes do not parse duplicated patterns, as HHHT repeated enough times would

surely make people reject the sequence’s randomness; but for our particular domain of

binary sequences of length eight, existence of duplication may not provide enough evidence

for some participants to reject the hypothesis of randomness.

The results of this experiment can also be used to further evaluate the performance of

definitions of subjective randomness based on simple Turing machines (Gauvrit et al.,

2014; 2016). Using the D(5) model to define P (x|regular), we can compare the results

directly to those for the probabilistic automata. The D(5) model yields a log-likelihood of

−47, 092 and correlation of r = 0.65 (AIC = BIC = 94184), while the stack automaton

gives a log-likelihood of −44, 820 and correlation of r = 0.92 (AIC = 89650, BIC = 89685).

As in Experiment 1, these results show that defining algorithmic complexity using simple

Turing machines does well in predicting human judgment, but indicate that a closer fit to

human data can be produced by using probabilistic automata to characterize the

18The same result was achieved whether the 22-motif or 4-motif model was used.
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regularities people are sensitive to in binary sequences.

One weakness of the MCMCP approach is that drawing samples from P (x|regular)

will not provide uniformly good estimates of the randomness of sequences. The issue is

that sampling will provide better estimates of P (x|regular) for sequences where this

probability is relatively high, simply because it will produce more samples of those

sequences. By contrast, sequences with low probability under this distribution will, by

definition, appear only rarely. This means that we get better estimates of highly regular

sequences than highly random sequences.

While we do not perform such a study here, one strategy for addressing this weakness

is to recursively apply MCMCP, drawing samples that push into increasingly low

probability regions of the space. More formally, one can construct a sampling procedure

that samples from the distribution that results from conditioning P (x|regular) such that

P (x|regular) < ε for some probability ε. First, one uses MCMCP to get a rough estimate of

P (x|regular). Then, one identifes all x such that the estimated probability under this

distribution is greater than ε. Then one runs another round of MCMCP, but automatically

rejects choices that fall into this set. The result will be a sample from P (x|regular)

renormalized over low-probability values of x. This procedure can be repeated until a

sufficiently high-resolution estimate of the distribution is obtained.

Mixtures of restricted distributions

Defining P (x|regular) using simpler computing machines is an effective strategy for

defining a model of the subjective randomness of binary sequences: using this approach, we

have been able to account for existing data on randomness judgments (Falk & Konold,

1997; Lopes & Oden, 1982), predict how people will classify binary sequences, and capture

the kinds of regularities people seem to view as violations of randomness. However, it is

not obvious how this approach can be applied with other kinds of stimuli. People have no

difficulty assessing the randomness of individual numbers or arrays of points in space, but
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these stimuli are harder than binary sequences to link to hypothetical computing machines.

To address subjective randomness judgments with a wider range of stimuli, we turn

to the second approach to specifying P (x|regular): mixture distributions. Equivalence of

statistical inference and algorithmic complexity is obtained when we take P (x|regular) to

be a mixture of all computable distributions, as shown in Equation 4, but by restricting

this set in specific domains we can obtain models of subjective randomness that are

adapted to human judgments.

More precisely, we assume that in a given domain people maintain a set of hypotheses

h about the kinds of regularity that can be exhibited in that domain. We then define

P (x|regular) to be a mixture of the distributions associated with those hypotheses, namely

P (x|regular) =
∑
h

P (x|h)P (h|regular) (12)

where P (x|h) is the distribution over stimuli x associated with hypothesized regularity h,

and P (h|regular) corresponds to the weights with which these distributions are mixed,

capturing the expected prevalence of those regularities.

In the remainder of the section we apply this approach to two other kinds of stimuli

that have played a prominent role in the literature on subjective randomness: binary

matrices and spatial clustering.

Binary matrices

Zhao, Hahn, and Osherson (2014) presented a series of experiments exploring human

judgments of randomness in binary matrices. In particular, their Experiment 3 was

designed to provide evidence against the idea that randomness is related to complexity as

measured by encoding difficulty – the “encoding hypothesis” advocated by Falk and

Konold (1997). In this section we show that these results are not problematic for our

framework, and can in fact be accommodated with a relatively simple choice of regular

generating process.
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The experiment conducted by Zhao et al. had two conditions. In one condition, the

researchers investigated the relative perceived randomness for 16× 16 binary matrices. On

every trial, the participant viewed a mirror matrix and a switch matrix. Each mirror

matrix was generated by randomly sampling equiprobable values along one half of the

matrix, and then reflecting the values over one of the matrix’s diagonals to create

symmetry. Each switch matrix was generated by populating its squares in either row-major

or column-major order with a process which stochastically alternated with probability p

between 0.1 and 0.9 in increments of 0.05. Participants were asked to indicate which

matrix they thought was more random. The results are shown in Figure 11 — we see a

familiar U-shape, where high and low rates of alternation increase the chance the

participant views the mirror matrix as more random.

In the other condition of the experiment, participants were shown two matrices in

succession and were asked whether a change had occured. On each trial, the computer

programs randomly chose to either flip or not flip 10 bits from the first matrix. The results

showed that participants were able to detect changes in switch matrices more easily than

mirror matrices for every alternation rate – a different pattern of results than that seen for

randomness judgments. Zhao et al. suggested that these results provide evidence against

Falk and Konold’s (1997) encoding hypothesis, which predicts that people would be able to

encode less random-looking matrices into memory more quickly, and thus be able to detect

changes more easily. Because their experiment showed that (1) mirror matrices are less

random, and (2) changes in mirror matrices are more difficult to detect, they argued that

the encoding hypothesis cannot be true.

Zhao et al.’s argument was specifically directed at Falk and Konold’s (1997)

interpretation of the relationship between complexity and randomness in algorithmic

information theory. However, these results do not rule out the more general approach of

explaining randomness perception in terms of algorithic complexity, particularly when

subjective randomness is interpreted in terms of statistical inference rather than encoding.
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Under the view we have presented in this paper, the reason why complexity matters to

randomness is the evidence that it provides about the underlying generating process, which

is independent of any kind of cognitive processing difficulty.

In support of this account, it is straightforward to show that the randomness

judgments produced by the participants in Zhao et al.’s experiment can be accommodated

within our framework. Assume that the participant evaluates randomness(x) for both the

mirror matrix Xm and the switch matrix Xs(p), and chooses the matrix for which this

quantity is largest. Then we obtain the model

P (choose Xm) = 1
1 + exp(−ψ − λ[randomness(Xm(p))− randomness(Xs)])

, (13)

where λ and ψ have a similar interpretation to our previous models: ψ is the log prior odds

in favor of the mirror matrix and λ is the weight given to the statistical evidence of

randomness.

We then need to define P (X|regular). We assume the same generative model as Zhao

et al.: that regular matrices are generated by a switching process with unknown switching

probability θ, giving

P (X|θ) = θs(1− θ)n−s (14)

where s is the number of switches and n the total number of possible switches. We further

assume that θ follows a Beta(α, β) distribution,

P (θ) = Γ(α + β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1 (15)

where Γ denotes the generalized factorial function, with Γ(n) = (n− 1)! when n is an

integer. The mean of this distribution is α/α + β, so the relative values of α and β encode

the bias towards or against switches in the prior. The shape of the distribution depends on

the values of α and β: when both are greater than 1, it concentrates probability around the
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mean; when both are less than 1, it concentrates probability around values of θ that are

close to 0 and 1. Having defined this model in this way allows us to integrate over values of

θ, to define P (X|regular) to be a Beta-Binomial(α, β) distribution,

P (X|regular) =
∫
P (X|θ)P (θ) dθ (16)

=
∫ Γ(α + β)

Γ(α)Γ(β)θ
s+α−1(1− θ)n−s+β−1 (17)

= Γ(α + β)Γ(s+ α)Γ(n− s+ β)
Γ(α)Γ(β)Γ(n+ α + β) . (18)

Under this distribution, all that matters is the number of switches in the matrix s and the

size of the matrix n.

Since the mirror matrices were generated by flipping a fair coin and then reflecting,

the number of switches in those matrices is roughly constant. As a result, our model

simplifies to

P (choose Xm) = 1
1 + exp(−ψ + λrandomness(Xs(p)))

(19)

where ψ absorbs the constant for the randomness of Xm. The data collected by Zhao,

Hahn, and Osherson (2014) did not include the specific matrices their participants saw

because they were generated on the fly. As a result, we do not know what Xm or Xs(p)

look like on each trial. Fortunately, we can sample from a population of matrices to

generate statistics with which we can build a model. We then estimate the mean number of

switches that appears in a switch matrix Xs(p) for each alternation rate p with a simple

Monte Carlo estimate.

The model parameters were estimated by fitting to the data from Zhao et al., yielding

α = 0.617, β = 0.566, λ = 13.2, ψ = 2.98. This corresponds to a distribution P (X|regular)

in which switching and not-switching are considered roughly equally likely, but where

matrices that contain either a lot of switches or very few are both given high probability.

The results are shown in Figure 11. While the absolute probabilities depend on ψ and λ,
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the U-shape depends only on α and β (and is also produced with any other value of α and

β less than 1). The resulting model yields a rank-order correlation coefficient of ρ = 0.97.

These results demonstrate that there is no theoretical obstacle to explaining the results of

this experiment within a framework based on algorithmic complexity.

Spatial clustering

During the second World War London was repeatedly hit by German rockets. When

newspapers published the locations of such bombings, people saw a pattern: the Germans

seemed to be targeting certain parts of London more than others, especially the poorer

parts (Johnson, 1981). After the war, an analysis by Clarke (1946) revealed that the

pattern of bombings did not deviate from a uniform distribution over the city – the

apparent clusters were the result of chance.

What makes people think an array of points in space is not random? This question

can be answered using the framework we have developed so far. Under P (x|random), each

bomb i = 1, . . . , n falls in a location xi sampled uniformly at random. P (x|regular) is

defined by taking a mixture of hypotheses. In each hypothesis, each bomb i is aimed at a

common target location µ with probability α and is otherwise strikes a random location

with probability 1− α. To account for the possibility that the rocket misses the common

target, we assume that the actual location where the bomb explodes, xi, is selected from a

two-dimensional Gaussian distribution with mean µ and covariance matrix Σ.

The distributions used in Bayesian inference are then as follows. For P (x|random) we

have

P (x1, . . . , xn|random) ≈
(

1
|R|

)n
(20)

where R is the region over which the bombs are falling and |R| is its area. For



RANDOMNESS AS INFERENCE 41

P (x|regular), we have the mixture

P (x1, ..., xn|regular, Lc,Σ) =
∫ ∫ n∏

i=1

(
αφ(x|µ,Σ) + (1− α) 1

|R|

)
dµ dΣ (21)

where φ(x|µ,Σ) is the probability density function of the two-dimensional Gaussian with

mean µ and covariance matrix Σ.

With these two distributions defined we can once again use our measure of

randomness, Equation 2, to see how well the model predicts human judgments about

random clustering in two-dimensional space. To evaluate the predictions of the model we

conducted an experiment in which we asked people to judge the randomness of different

spatial arrays.

Experiment 3: Spatial clustering

Method

Participants. Participants were 118 undergraduates, participating for course

credit.

Stimuli. The stimuli were taken from Griffiths and Tenenbaum (2007), and

consisted of 12 images which contained points at different locations within a 10 by 10

square, with each axis spanning from -5 to 5. No markings or axes were displayed to the

participants; they are only described here to make our calculations sensible to the reader.

Nine of the stimuli were generated from the mixture of the uniform and Gaussian

distributions described above, each using a different set of parameters. The varied

parameters were (1) number of bombs, n, (2) proportion of bombs generated from the

clustering point, α, (3) the location of the cluster, µ, and (4) the spread of the cluster, Σ.

Each parameter had a basic value, each of which was varied twice to yield nine different

images. The range of parameter values is shown in Table 2. The remaining three stimuli

were generated by sampling from the uniform distribution over the square.
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Procedure. Participants completed the questionnaire for this experiment as part of

a booklet of other short psychology experiments. Each participant saw all 12 images, in

one of six random orders. The instructions read as follows:

Each of the images below shows where bombs landed in a particular part of

London for a given month, with a single point for each bomb. On the lines at

the bottom of the page corresponding to each image, please rate HOW

RANDOM the distribution of bombs seems to you. Use a scale from 1 to 10,

where 1 means ‘Not at all random’, and 10 means ‘Very random’.

Participants then provided ratings for all 12 images, presented in one of six random orders.

Results and Discussion

Model predictions were evaluated using the Monte Carlo method outlined in Griffiths

and Tenenbaum (2007). The mean responses given by participants and the model’s

predictions are shown in Figure 12. The rank-order correlation between the randomness

model’s predictions and the responses (which makes no assumption about the form of the

relationship other than that it is monotonic) is ρ = 0.769. The values given by the model

shown in the figure were transformed by the equation y = sign(z)abs(z)γ where

z = randomness(x) and γ = 0.05, and yield linear correlation of r = 0.951 with the data.

The model does a fairly good job of capturing people’s intuitions about randomness,

or at least the distinction between arrays that are considered random and arrays that are

not. However, there are also some discrepancies between the model predictions and the

data. For example, the Bayesian model predicts an effect of the number of points in the

array that is not observed in the human data. This may be a consequence of a floor effect,

since the judged randomness of these stimuli is consistently low, but it may also indicate

that people are less sensitve to this aspect of the data than an account based on statistical

inference would predict. For example, human perception may group together points and

therefore prevent forming an accurate estimate of the number that appear within a cluster.
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The fact that our simple statistical model does so well in the absence of any perceptual

modeling is thus all the more impressive.

General Discussion

One of the challenges of understanding subjective randomness is developing an

appropriate definition of randomness that we can use to make sense of human cognition. In

this paper we have argued that such a definition can be found if we recognize that

subjective randomness is fundamentally a statistical inference – an inference about the

process that generated observed data. Under this definition, stimuli that seem random are

those that provide the strongest evidence for a random generating process over some other

more regular process. The challenge is then to define what constitutes a regular generating

process.

Algorithmic information theory provides a starting point for characterizing regularity

– defining regular generating processes using distributions specified using universal Turing

machines results in a standard definition of randomness in terms of algorithmic complexity.

However, this characterization of regularity is far too general – it includes regularities

people are unlikely to detect and is incomputable. In order to develop an account of human

subjective randomness based on this approach, we need to restrict the kinds of regularity

included in the model. Inspired by the two ways of defining probability distributions based

on computing machines, we have shown how restrictions can be introduced either on the

computing machines used to define the distributions (as in previous work by Griffiths and

Tenenbaum (2003; 2004) and Gauvrit et al. (2014; 2016)) or on components of a mixture of

regular distributions.

Our results illustrate how these two approaches can be used to capture human

subjective randomness for a range of different stimuli. For the binary sequences that have

classically been studied in the psychological literature on subjective randomness, a model

in which regularity is defined using a finite state automaton augmented with the capacity
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to identify symmetry and duplication provides a good characterization of people’s

randomness judgments and of the kind of regularities they expect to see in binary

sequences (with symmetry not being necessary if those sequences are presented

sequentially, one element at a time). This approach also outperforms an approach based on

using simple Turing machines (Gauvrit et al., 2014; 2016), although this approach shows a

lot of promise as an alternative way of constraining algorithmic complexity. For binary

matrices, a simple model of regularity can explain results that have previously been taken

as providing evidence against accounts of subjective randomness based on complexity.

Finally, taking a mixture of possible clusters allows us to predict whether people will

consider a spatial array of dots to be random or not.

In the remainder of the paper we consider four questions raised by these results:

Where do regularities come from? Are people bad at assessing randomness? How does

randomness generation relate to perception? And how is randomness linked to

coincidences?

Where do regularities come from?

A key insight behind our approach is that defining randomness really requires

defining regularity: to provide evidence for a random generating process, a stimulus needs

to be inconsistent with expectations about regular generating processes. In each of the

domains we studied, the set of regularities we considered was different – one of the

disadvantages of abandoning the universality of algorithmic complexity is that we need to

consider a distinct set of detectable regularities in each domain. This is not a weakness of

the approach – it is necessary in order to actually develop an account of subjective

randomness in each of these domains, and the experimental method that we used in

Experiment 2 shows how regular generating processes can be identified and then used to

model randomness judgments. However, an important question remains: in each domain,

why are these the regularities that people are sensitive to?
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In the spirit of Anderson’s (1990) approach of rational analysis, we anticipate that

the answer to this question lies in the environment in which human cognition and

perception are carried out. Detecting randomness is not, in itself, an ability that is likely to

have adaptive consequences, but detecting violations of randomness – recognizing that a

pattern may be present – is an important human ability. The regularities that we expect

people to be sensitive to are thus those that are likely to indicate an underlying causal

relationship, capturing the kinds of patterns that appear (and have consequences) in

human environments. For example, the simple clustering model used in Experiment 3 can

naturally be described in terms of a causal process that influences the location of points

(see Griffiths & Tenenbaum, 2007, for examples of such descriptions).

Placing the source of regularity in the environment raises the tantalizing idea that we

might be able to develop appropriate models of P (x|regular) by measuring the structure of

human environments. Support for this idea comes from the results of Hsu, Griffiths, and

Schreiber (2010), who showed that people’s judgments of the randomness of small binary

arrays (4× 4 grids in which each cell was colored black or white) could be predicted well by

the frequency with which a similar pattern appeared in images of natural scenes. Patterns

that were less frequent were considered more random, just as would be expected if

P (x|regular) assigned higher probability to those patterns that appeared in the natural

world. Conducting similar studies with other stimuli would provide a way to evaluate

whether this account holds more broadly.

Are people bad at assessing randomness?

As we discussed at the start of the paper, much previous research on subjective

randomness has argued that people are irrational and have a flawed notion of the workings

of chance. While it is certainly true that people make mistakes when reasoning about

chance – such as considering HHHHHHHH to be less likely than HTHTTHTT as the result of

flipping a fair coin – we have argued that at least some of people’s inferences can be
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reconciled with probability and statistics when the problem that they seem to be solving is

appropriately characterized. Specifically, if we consider people to be inferring the process

that generated a stimulus – computing P (random|x) rather than P (x|random) – then their

judgments can be seen to be consistent with the Bayesian models we have presented in this

paper.

This view of subjective randomness as a relatively well-calibrated statistical inference

is consistent with other recent research on randomness judgment. Williams and Griffiths

(2013) showed that judging the randomness of binary sequences is fundamentally a difficult

problem: analzing the task as one of Bayesian inference, they showed that it is only ever

possible to obtain weak evidence in support of a random generating process (while regular

processes can receive strong evidence). This asymmetry in the strength of evidence is

characteristic of randomness judgments but not of other kinds of decision tasks – it is an

intrinsic consequence of the structure of the statistical problem being solved. Once this is

taken into account, people turn out to be no worse at judging randomness than making

other kinds of statistical decisions, and in fact perform very similarly to optimal Bayesian

models.

In line with these results, the models we used to capture people’s assessment of

binary sequences in this paper indicate that a surprisingly high proportion of coin flip

sequences should be classified as non-random. Equation 10 measures the probability that a

sequence x being random. Using the equation, we can employ a classification procedure: if

P (random|x) < 0.5, then the sequence is classified as non-random, as there is more

evidence indicating it is non-random. To simplify our analysis, we fix λ = 1 (corresponding

to a well-calibrated Bayesian inference), and use the best-fit parameters for the stack

automaton in Experiment 3 as the definition of randomness(x) to yield an equation whose

only unknown variable is ψ, the log prior odds

P (random|x) = 1
1 + exp(randomness(x)− ψ) (22)
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where positive values of ψ indicate a bias in favor of the random process. We can now plot

Equation 22 as a function of ψ (Figure 13). We find that even when ψ = 0, which

corresponds to no a priori bias towards either random nor regular events, the percentage of

sequences classified as non-random is 28.15%. When ψ = −0.5, indicating that the

observer has a slight bias towards perceiving regular events, 46.09% of sequences are

classified as non-random. Depending on the choice of ψ, our ideal observer analysis

suggests that about one quarter to one half of the 256 possible coin flip sequences are seen

as non-random occurrences. This intrinsic asymmetry is an important factor in

understanding why judging randomness is hard, and why we should expect people to have

difficulty with such tasks even when they are approaching optimal performance.

How does randomness generation relate to perception?

Our focus in this article has been on explaining the perception of randomness.

However, an equally fascinating question is how people generate randomness. The

emphasis that we are placed on perception is a consequence of the significant role that

detecting deviations from randomness may have played in the evolution of human

cognition. By contrast, the primary function of randomness generation arises in adversarial

settings, where one needs to act in a way that cannot be predicted by an opponent. In such

settings, acting in a way that is genuinely random is less important than acting in a way

that an opponent perceives to be random. As a consequence, we should expect that

people’s perception of randomness should also play a role in the generation of randomness.

That is, we should expect that people are trying to generate sequences that they

themselves perceive to be random.

Griffiths and Tenenbaum (2001) explored this possibility, showing that the kind of

statistical model of subjective randomness we have defined here could be leveraged in order

to predict people’s generation of binary sequences. During the 1930s the Zenith Radio

Corporation conducted a series of broadcasts in which they tried to test people’s psychic
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abilities. During the broadcast a psychic would transmit a binary sequence of length five,

and listeners will write down the sequence that they “received” and mail it to the radio

station. The results provide a nice picture of human randomness generation for binary

sequences. Griffiths and Tenenbaum suggested that these data could be modeled by

assuming that each time people generated the next element in their sequence, they were

considering the contribution that element would make to its overall randomness. For

example, having already generated HHT they would evaluate the relative randomness of

HHTH and HHTT when deciding whether the next element should be H or T. Using a model

similar to that we used for binary matrices, where only the relative number of heads and

tails mattered, Griffiths and Tenenbaum showed that this approach could provide a

remarkably good account of the Zenith radio data.

The analysis presented by Griffiths and Tenenbaum revealed two interesting features

of randomness generation. First, in order to account for people’s behavior they had to

assume that the evaluation of the randomness of the binary sequences being produced also

included its most recent subsequences. So in evaluating HHTT, people also considered the

randomness of HTT and TT. This kind of sensitivity to local structure is compatible with

the idea of “local representativeness” that Kahneman and Tversky (1972) appealed to in

their discussion of subjective randomness. Second, the most significant failure of the model

was predicting the most probable random sequence to be HTHTH, which people actually

generated with relatively low probability. This is perhaps a consequence of the global

symmetry of the sequence, something that the more sophisticated models we have

considered in this paper may be able to redress. Having developed more accurate models of

randomness perception opens the door to exploring randomness generation across a variety

of domains.
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How does randomness link to coincidences?

Subjective randomness is just one of many phenomena related to the perception of

chance. Another equally striking phenomenon is that of coincidence: when we observe an

event and it strikes us as being unlikely to be the result of chance. Intuitively, randomness

and coincidences seem related to one another. Our formal framework makes this

relationship explicit.

Griffiths and Tenenbaum (2007) presented a mathematical definition of coincidences:

events that provide strong evidence for a hypothesis that was previously considered

unlikely to be true. When the current hypothesis is that no causal relationship or causal

force exists, and the alternative is that it does, this becomes the comparison of the

hypothesis of randomness against some other, more regular process. Consequently, Griffiths

and Tenenbaum (2007) defined the strength of a coincidence to be the likelihood ratio in

favor of the hypothesis of a regular generating process over a random generating process

coincidence(x) = log P (x|regular)
P (x|random) . (23)

Comparison of this equation with Equation 2 reveals a clear prediction of our account: that

randomness and coincidence should be inversely related.

The stimuli we used in Experiment 3 were drawn from an experiment conducted by

Griffiths and Tenenbaum (2007) in which participants were asked to judge the strength of

coincidence of different patterns of bombing. As a consequence, we can directly compare

the coincidence judgments and the randomness judgments that were given for these

stimuli. The correlation between the two sets of judgments was r = −0.96, consistent with

the prediction that the should be inversely related. Randomness and coincidences may thus

be considered two sides of the same (tossed) coin, both being an inference about generating

processes but supporting opposite conclusions.
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Conclusion

We have shown that people’s judgments of subjective randomness for a range of

different stimuli can be captured in a single formal framework, which has deep links to

ideas from statistics and algorithmic information theory. At the heart of this framework is

the idea that subjective randomness is statistical inference: an inference about the process

that generated the observed data. This idea helps to clarify how randomness can be a

property of a stimulus, not just a process, and provides a foundation for exploring what

makes something random – and, conversely, what regularities people are sensitive to – in

any domain of interest. In addition to evaluating this formal framework, our results

illustrate how it can be extended to other domains, providing an empirical method for

identifying regular generating processes. Using these tools, it should be possible to pin

down what makes something seem random – and what does not – across the full scope of

human experience.
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Table 1
Performance of probabilistic models approximating P (x|regular).

No. of Motifs Machine Type Log-Likelihood Corr. 5-Fold CV Corr.

4

Finite State -46,240 0.74 0.59
Pushdown -45,084 0.86 0.76
Queue -45,478 0.84 0.66
Stack -44,820 0.91 0.77

22

Finite State -45,866 0.80 0.28
Pushdown -44,864 0.90 0.43
Queue -45,286 0.87 0.40
Stack -44,647 0.92 0.47
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Table 2
Parameters used for stimuli in Experiment 3.

Property Parameters
Number n = 20 n = 50 n = 200
Proportion α = 0.5 α = 0.3 α = 0.1

Location µ =
[
−3
−3

]
µ =

[
0
0

]
µ =

[
3
3

]

Spread Σ =
[
2 0
0 2

]
Σ =

[
1
2 0
0 1

2

]
Σ =

[
1
5 0
0 1

5

]

Note: The default values of the parameters for the experimental stimuli were n = 50, α = 0.3,

µ =
[
3
3

]
, and Σ =

[
1
2 0
0 1

2

]
. The stimuli shown in Figure 12 thus correspond to modifying

one parameter setting away from this default, with the order matching that given here.
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A longer program is required to A shorter program can produce
produce sequences of high complexity. sequences of low complexity.

function complexSequence(): function notSoComplexSequence():
print(H) for i = 1..8:
print(T) print(H)
print(T)
print(H)
print(H)
print(T)
print(H)
print(T)

Figure 1 . Algorithmic complexity. Random sequences are more complex, being harder to
generate using simple programs. The function complexSequence outputs the sequence
HTTHHTHT, and the function notSoComplexSequence outputs the sequence HHHHHHHH.
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Figure 2 . Hierarchy of computing machines. The regularities each machine is capable of
recognizing is written below in parentheses. Each machine to the left is a special case of
the right.



, Figure 3

Figure 3 . State diagram for the hidden states in the hidden Markov model. Solid arrows
indicate continuation of a motif, whereas dashed arrows indicate permissible changes
between motifs. The numbers used for each state correspond to the rows in the transition
matrix (Equation 9).
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Figure 4 . Subjective randomness and probability of alternation. The solid line shows the
participants’ mean apparent randomness ratings of binary sequences plotted against the
number of alternations from Experiment 1 in Falk and Konold (1997). The dashed line at
10 provides a baseline for the number of alternations expected from a binary sequence of
length 20. The two other lines show the predictions of the DP and our finite state
automaton.



, Figure 5

Figure 5 . Results from Experiment 1 of Lopes and Oden (1987). The top-left panel shows
the percentage of correct responses (“random” or “non-random”) given by participants
when the non-random source was composed of repetition-biased sequences. The top-right
panel shows the same information but for the group that saw alternation-biased sequences.
The results are decomposed into two plots, depending on whether the sequence shown was
symmetric or asymmetric. The dashed line shows the theoretical performance of an
observer who had perfect knowledge of the nature of the non-random source. The bottom
four panels show the results that are obtained if we use our model of randomness, where the
underlying machine used to judge non-random sequences is either a finite state automaton
or a pushdown automaton. The pushdown automaton is able to capture the effects of
symmetry, and thus more closely approximates people’s intuitions about randomness.
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Figure 6 . Results of Experiment 1 for (a) the Simultaneous condition and (b) the
Sequential condition. The horizontal axis measures the fraction of participants labeling a
sequence as random and the vertical axis shows the model’s prediction. Each point is
categorized according to its highest probability parse under each model—the legend can be
found on the right side beneath the stack model in (a). For example, for the stack model in
the Simultaneous condition, the sequence HHHHHHHH reaches its highest-probability
representation when the machine produces it via symmetry; thus, the sequence is
represented on the graph as a blue circle. Diagrams (c) and (d) show the χ2 values,
denoted L (df, p), and twice the natural logarithm of the Bayes factor, denoted B, of each
model comparison. Listed alongside the B value value is the recommended interpretation
of the relative evidence in favor of the alternative model according to the criteria used in
Kass and Raftery (1995).



, Figure 7

Figure 7 . Effect of number of heads on the predictions of the stack automaton model used
in Experiment 1. Deviations from an even division between heads and tails are predicted to
be more random.
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Figure 8 . Experiment 2 uses Gibbs sampling with people to obtain an estimate of
P (x|regular). 40 initial sequences are generated for each participant at random (only three
are shown here to demonstrate). In each trial of the experiment, the participant views a
sequence of coin flips with one symbol completely covered by a black box. In this figure the
black box is made transparent in order to help explain the method – it was completely
opaque for participants. The participant is asked to evaluate whether heads or tails would
be more likely to appear in the missing spot if the sequence were generated by a
non-random process. Participant responses are displayed in green. Notice how the
participant’s selection modifies the sequence for the next step in each chain. The
participant completes trials corresponding to each iteration fo the three different chains in
random order—one potential order is indicated by the numbers in the upper left corner of
each sequence. In this case the first trial corresponds to the first chain, the second trial to
the third chain, the third trial to the second chain, and then the fourth trial goes back to
the second chain and the fifth to the third chain.



, Figure 9

Figure 9 . Rankings of binary sequences from the subjective stationary distribution
P̂ (x|regular), where a head is encoded as a black square, and a tail is encoded as a white
square. The least random sequence appears at the top of the leftmost column. Rankings
proceed down and then across columns.



RANDOMNESS AS INFERENCE 10

Figure 10 . Statistical tests of models of P (x|regular) from Experiment 2. Along each edge
are the results of the log-likelihood ratio tests χ2 scores, denoted L (degrees of freedom,
p-value), and twice the logarithm of the Bayes factor for the comparison, denoted B, with
its intepretation in parentheses as designated by Kass and Raftery (1995).



, Figure 11

Figure 11 . The dashed line shows the proportion of times participants classified the mirror
matrix as more random than the switch matrix in Experiment 3 of Zhao, Hahn, and
Osherson (2014). The solid line shows our model predictions.
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Figure 12 . Randomness judgments for spatial arrays. On the left are the images shown to
the participants, organized along each varied dimension. On the right, the mean
randomness responses (from 1 to 10) from the human participants and the predictions from
the Bayesian model. The error bars signify one standard error.



, Figure 13

Figure 13 . Percentage of sequences classified as non-random according to Equation 22 as a
function of ψ. A point is starred where there is no a priori bias towards regular or random
events (ψ = 0). Shifting the bias towards non-random events (ψ < 0) rapidly increases the
number of events classified as non-random.


