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Abstract. We consider the problem of determining the maximal α ∈ (0, 1] such that every
matching M of size k (or at most k) in a bipartite graph G contains an induced matching of size at
least α|M |. This measure was recently introduced in [N. Alon et al., Adv. Neural Inf. Process. Syst.,
2017, pp. 2097–2106] and is motivated by computational models in cognitive neuroscience as well as
by modeling interference in radio and communication networks. We prove various hardness results for
computing α either exactly or approximately. En route to our results, we also consider the maximum
connected matching problem: determining the largest matching N in a graph G such that every two
edges in N are connected by an edge. We prove a nearly optimal n1−ε hardness of approximation
result (under randomized reductions) for connected matching in bipartite graphs (with both sides of
cardinality n). Toward this end we define bipartite half-covers: a new combinatorial object that may
be of independent interest. To our knowledge, the best previous hardness result for the maximum
connected matching problem was that it is hard to approximate within some constant β > 1. Finally,
we demonstrate the existence of bipartite graphs with n vertices on each side of average degree d,
achieving α = 1/2 − ε for matchings of size sufficiently smaller than n/d. This nearly matches the
trivial upper bound of 1/2 on α which holds for any graph containing a path of length 3.
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1. Introduction. A matching in an undirected graph G is a set of vertex dis-
joint edges. An induced matching M in G is a matching such that no two edges in M
are connected by another edge in G. Matchings and induced matchings can be used
to measure the capacity of a parallel network of processers. Here we study computa-
tional and combinatorial aspects of such a measure [2] arising from radio and wireless
networks as well as computational neuroscience. Some of our findings build on a new
hardness of approximation result concerning the problem of computing a maximal
connected matching in a bipartite graph (see Definition 2.3 for a formal definition)
which may be of independent interest.
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886 ALON ET AL.

When using matchings to study parallel and distributed systems, the object of
study is oftentimes a set of units that transmit or receive information. For example,
in the communication setting there is a bipartite network G = (S,R,E) consisting of
senders (S) and receivers (R).1 Given a set of edges E′ = {(si, ri)}16i6` ⊆ E every
sender si ∈ S wishes to send a message to its neighbor ri ∈ R. The assumption is that
each sender si sends a message to a unique receiver, and in order for a receiver to suc-
cessfully receive a message, he can have only a single incident edge carrying a message
at a given time, as messages arriving on multiple incident edges create interference
with each other. This is captured by a condition which we term the matching con-
dition: A subset E′ ⊂ E can be used for concurrent interference-free communication
if it forms a matching in G, i.e., no two edges in E′ share a common vertex. How-
ever, in several communication settings, such as radio and wireless networks [4, 8, 1],
a more constrained setting is considered: the senders cannot choose which edges to
broadcast, but instead, if they choose to transmit, then they automatically broadcast
on all their incident edges. This leads to the stronger induced matching condition: A
subset E′ ⊂ E of edges can be used for concurrent interference-free communication if
it forms an induced matching in G.

Similar interference assumptions, directed toward understanding multitasking
constraints in neural systems, have been proposed in computational neuroscience [9,
11, 20, 19]. These works seek to understand the reason behind multitasking limita-
tions: The limited ability of people to execute control-dependent processes concur-
rently, a central and ubiquitous finding in cognitive psychology [24]. Inspired by the
parallel distributed processing framework [23], the main idea in these works is that
such limitations arise from interference between computational units responsible for
transmitting inputs to outputs and not, as commonly assumed, because of limited
resources. [11, 20, 19] present a formal model to study multitasking where given a bi-
partite graph G = (S, T,E) (task graph), every vertex s ∈ S is associated with a set of
inputs Is, every vertex t ∈ T is associated with a set of outputsOt, and the edge (s, t) is
associated with a function (“task”) fs,t : Is → Ot. Every function fs,t is implemented
by a neural network Ns,t. Given a set of ` edges E′ = (si, ti)16i6` the set of functions
fsi,ti can be performed concurrently (“multitasked”) if E′ is an induced matching.
The rationale for the matching condition for interference-free parallel processing is
similar to the exclusive read exclusive write (EREW) assumption in parallel RAM: If
the set of edges is not a matching, problems may occur as two different values may be
stored simultaneously in the same output vertex in T . Alternatively, if two different
tasks share the same input vertex in S, this may inhibit independent processing of
these tasks as the input to both tasks has to be identical. The rationale for the induced
matching assumption arises from the idea that if two tasks (s1, t1) and (s2, t2) (with
s1 6= s2 and t1 6= t2) are performed, then if the tasks (s1, t2) or (s2, t1) exist they are
performed automatically as well, interfering with computing fs1,t1 and fs2,t2 . We refer
to [11, 20, 19, 2] for further study and justifications of this interference model. Finally
we comment that this model assumes a selection mechanism which selects at a given
moment which set of tasks (edges) are to be performed (see, for example, [20, 19]).

Based on these interference assumptions [11] suggested using the cardinality of a
maximal induced matching in G to measure the parallel processing capacity of a task
graph G. One potential issue with this definition is that a task graph can contain
a “large” induced matching even though some subset of tasks allows for very poor

1To simplify matters, we consider the synchronous setting where transmissions occur in discrete
time slots.
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MULTITASKING CAPACITY: HARDNESS RESULTS 887

multitasking. For example, consider a graph H consisting of two bipartite cliques
H1 = Km,m and H2 = Km,m, with H1 connected to H2 by an induced matching of
cardinality 2m. While H contains an induced matching of size 2m, there are sets of
m tasks (edges) out of which only a single edge can be executed without interference.
Furthermore, by taking a perfect matching in H1 one can find such a set of m “bad
edges” that forms a matching in H.

In [2] a new measure has been proposed to capture how well task graphs allow for
interference-free processing (Definition 1.1 below). The idea behind this measure is to
consider a parameter k 6 n and ask whether every matching M of size k (or of size at
most k) contains a large induced matching M ′ ⊆M . By considering every matching
this measure is no longer agnostic to subgraphs that are “badly multitaskable,” such
as bipartite cliques. Unless stated otherwise we will always assume that graphs are
bipartite and that both sides of the bipartition have cardinality n.

Definition 1.1. Let G = (A,B,E) be a bipartite graph, and let k ∈ N be a
parameter. For α ∈ (0, 1] we say that G is a (k, α)-multitasker if for every matching
M in G of size |M | = k, there exists an induced matching M ′ ⊆M such that

|M ′| > α|M |.

Define αk(G) to be the maximal α such that G is a (k, α)-multitasker if G contains a
matching of size k, and define αk(G) = 1 if G does not contain a matching of size k.
We call the parameter αk(G) ∈ (0, 1] the multitasking capacity of G for matchings of
size k.

Also, define α6k(G) = min16`6k α`(G) and call it the multitasking capacity of G
for matchings of size at most k.2

The parameters αk and α6k measure how resilient to interference G is. The larger
these parameters are, the better G is considered as a multitasker. One motivation
for this definition is the distinction between interference effects that result from a
violation of the matching condition to those that result from a violation of the induced
matching condition. That is, the above multitasking measure allows us to assess the
fraction of tasks that can be performed concurrently conditioned on not violating the
matching condition. We omit the dependence of α on G when it is clear from the
context.

In [2] several properties of α6n(G) have been proven. For example, it was shown

that α6n(G) 6 9√
d

for all d-regular graphs and that α6n(G) 6 O(( logn
d )1/3) for all

graphs of average degree d. This upper bound supports a previous hypothesis [11]
suggesting that there is an inherent tradeoff between density and multitasking capac-
ity: for every task graph as the average degree diverges to infinity, the multitasking
capacity inevitably decrease to 0.3 Observe that such a tradeoff does not hold when
multiasking capacity is defined as the maximum cardinality of induced matching (nor-
malized by the number of vertices of the graph) as a graph can have average degree
Ω(n) and still contain an induced matching of size Ω(n). Finally, it was also shown
in [2] how to construct graphs with desirable multitasking properties, namely, graphs
for which α6k(G) > τ for τ = Ω(1) provided that k = O(n/d1+τ ), where d is the
average degree of G.

The results in [2] leave several questions.

2Since we consider the minimum, the definition of αk ensures that values of r 6 k for which there
is no matching of size r have no influence on α6k(G).

3In the irregular case this tradeoff holds assuming the average degree satisfies d� logn.
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888 ALON ET AL.

Question 1.2. Given a graph G and a parameter k, can we compute αk(G) or
α6k(G) efficiently?

Indeed, if we are to use αk(G) or α6k(G) to evaluate how prone to interference
parallel architectures are, then a natural question is whether it is possible to compute
or approximate these quantities in polynomial time. Hence to evaluate the usefulness
of αk(G) in graph-theoretic models of multitasking it is desirable to have efficient
methods to compute αk(G) exactly or approximately.

Another question is whether it is possible to construct multitaskers with near-
optimal capacity. While [2] provides graphs with average degree d and α6k(G) = Ω(1)
for k 6 n/dO(1), the best constant value of α6k(G) they achieve is bounded away
from the natural barrier α6k(G) 6 1/2 (if a network contains a path of length 3, then
trivially α6k(G) 6 1/2 for all k > 3). We thus raise the following question.

Question 1.3. Is there an infinite family of graphs Gn of average degree d such
that α6k(Gn) > 1/2− ε for arbitrarily small ε > 0 and k > n/df(ε) for some function
f > 0?

Here we address these two questions. For Question 1.2 we show that under stan-
dard complexity theoretic assumptions αk(G) and α6k(G) cannot be computed effi-
ciently, thus giving a negative answer to this question. Toward this end we give new
hardness of approximation results for computing the size of a maximum connected
matching (Definition 2.3) in bipartite graphs. For Question 1.3 we give a positive
answer, by showing how to construct bipartite graphs Gn (each side in Gn has n ver-
tices) of average degree d such that α6k(Gn) > 1/2−ε for arbitrarily small ε > 0 and
k > n/df(ε) for some function f > 0. Our proof is algorithmic in the sense that given
any matching M in Gn with |M | 6 k there is a simple polynomial time algorithm
that recovers an induced matching M ′ ⊆ M , where |M ′| > (1/2 − ε)|M |. We note
that while for regular graphs it is proven in [2] that if k � n/d, then α6k = od(1), we
do not know if one can achieve α6k bounded away from 0 for k � n/d for irregular
graphs and arbitrary4 d. Resolving this question is left for future work. Finally we
show that αk(G) = 1/2 enforces k to be logarithmic in n (assuming the average degree
of G is larger than 8): Namely, for every bipartite graph G with average degree d > 8
there is a matching M in G of size O(log n/ log d) that does not contain an induced
matching of size |M |/2.

1.1. Our results. A useful notion in studying the computational hardness of
computing the multitasking capacity is that of a connected matching, which is a match-
ing in which every two edges are connected by a third edge. Connected matchings have
been studied in several contexts, such as Hadwiger’s conjecture [16, 22, 12]. Motivated
by applications to other optimization problems [15], algorithms for finding connected
matchings of maximum cardinality have been studied in special families of graphs such
as chordal [6] and bipartite chordal graphs [15]5 and bipartite permutation graphs [13].

In section 3 we establish hardness of approximation for the size of the largest
connected matching to within a factor of n1−ε assumingNP 6= coRP. Previously, this
problem was known to be NP-hard to approximate within some constant factor [22]
for general (nonbipartite) graphs. We also prove that deciding whether a bipartite
graph G = (A,B,E) with |A| = |B| = n contains a connected matching of size n is
NP-hard.

4For d = O(log logn) it is shown in [2] that there are graphs of average degree d with α6n(G) >
1/3.

5Observe that bipartite chordal graphs are not necessarily chordal. See [15] for details.
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Table 1
Hardness of approximation results for computing the multitasking capacity. In each row, the

stated variant of the multitasking capacity (either αk(G) or α6k(G)) is hard to approximate under
the stated assumption up to a multiplicative factor f , for the stated values of k and f .

Variant Assumption k f (approximation factor) Remarks

αk(G) P 6= NP n n1−ε for any ε > 0
αk(G) P 6= NP n O(d/poly log d) G has maximum degree d
α6k(G) NP 6= coRP n some constant

α6k(G) NP 6= coRP n1−ε arbitrarily large constant

α6k(G) ETH n1−1/polyloglog(n) n1/polyloglog(n)

In section 4 we prove several hardness results for computing the multitasking
capacity. To be more precise, we define the decision problem of computing the mul-
titasking capacity as follows.

Definition 1.4. Let MT be the problem of deciding whether for a given graph G,
a positive integer k ∈ N, and a rational number η > 0 it holds that αk(G) > η.

The problem MT belongs to the second level of the polynomial hierarchy, Π2,
since the statement αk(G) > η can be expressed as for all M∃M ′P (G, k;M,M ′),
where P is the predicate checking that M is a matching in G of size k, and M ′ is an
induced matching (P is clearly computable in time poly(|G|).) We note that it is not
clear whether it belongs to NP or to coNP, and in fact, we give evidence that MT
belongs to neither of the classes. Specifically, we show that MT is both NP-hard and
coNP-hard; thus, if MT ∈ NP ∪ coNP, then the polynomial hierarchy collapses to
the first level.

Furthermore, we show various hardness of approximation results for computing
αk(G) and α6k(G). Most notably, we show under standard complexity theoretic
assumptions that (1) αn(G) is inapproximable to within n1−ε for any ε > 0, and,
(2) α6k(G) is inapproximable to within any constant for k = n1−ε for any ε > 0.
Furthermore, under a stronger assumption, we improve the inapproximability ratio
for α6k(G) to n1/polyloglog(n) for k = n1−1/polyloglog(n). Our hardness results are
summarized in Table 1.

In section 6, we prove the existence of multitaskers with near-optimal capacity.
For integers d, n with n > d and ε ∈ (0, 1), we show how to construct multitasker
graph G on 2n vertices with average degree d and α6k(G) > 1/2 − ε, where k =
Ω(n/d1+O(1/ε)). In particular, for d = no(1) this implies that ε can be taken to be
o(1), and thus α6k(G) tends to its natural barrier 1/2 as n grows.

1.2. Our techniques.
Hardness results. With respect to multitasking, connected matchings are the

worst possible multitasking configuration for a matching of size k. In particular, it
holds trivially that αk(G) > 1/k and α6k(G) > 1/k, and the equality holds if and only
if G contains a connected matching of size k. This fact, together with the extremal
Ramsey-type bound on the size of independent sets, turns out to be instrumental in
proving hardness results for computing the multitasking capacity.

Construction of multitaskers. The starting point of our multitaskers with nearly
optimal multitasking capacity is based on locally sparse graphs, similarly to [2]. They
used the local sparsity with Turan’s lower bound on independent sets in graphs with
a given average degree in order to establish the existence of sufficiently large inde-
pendent sets (which translate to induced matchings). However, the use of Turan’s
bound necessarily entails a constant loss, which makes the final multitasking capacity
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890 ALON ET AL.

bounded away from 1/2. We circumvent this roadblock by also requiring that the
graph has large girth and use this fact along with local sparsity in order to carefully
construct for any matching M a matching M ′ ⊆M of size (1/2− ε)|M |.

2. Preliminaries. All graphs considered in this work are undirected. A match-
ing in a graph G = (V,E) is a collection M ⊆ E of vertex disjoint edges. We say
that a vertex v ∈ V is covered by M if it is one of the endpoints of an edge in M .
We say that a matching M is induced in G if no two edges in M are connected by
an edge in E, i.e., the vertices in M span only the edges in M and no other edges.
Given a graph G and an edge e = (u, v) ∈ E, we define the contraction of e to be
the operation that produced the graph G \ e, whose vertex set is (V ∪ ve) \ {u, v},
the vertex ve is connected to all vertices in G neighboring u or v, and for all other
vertices x, y ∈ V \{u, v}, they form an edge in G\e if and only if they were connected
in G. Contracting a set of edges, and in particular contracting a matching, means
contracting the edges one by one in an arbitrary order.6 A connected graph G has
radius r if r is the minimal number such that there exists a vertex v with every vertex
in G of distance at most r from v.

Below we define two combinatorial optimization problems that we will relate to
when proving hardness of approximation results for the parameters αk and α6k.

Definition 2.1. Given an undirected graph G, an independent set in G is a set
of vertices that spans no edges. The maximum independent set problem (MIS) is the
problem of finding a maximum cardinality of an independent set in G.

Definition 2.2. Given a graph G = (V,E), we say that two disjoint subsets of
the vertices A,B ⊆ V form a bipartite clique (biclique) in G if (a, b) ∈ E for all
a ∈ A and b ∈ B. We say that the biclique (A,B) is balanced if |A| = |B|. In the
maximum balanced biclique problem we are given a bipartite graph G and a parameter
k, and the goal is to decide whether G contains a balanced biclique with k vertices on
each size.

Definition 2.3. Given a graph G, a connected matching in G is a matching M
such that every two edges in M are connected by an edge in G. We use νc(G) to
denote the size of the maximum cardinality of a connected matching in G. In the
connected matching problem, we are given graph G and parameter k and our goal is
to determine whether νc(G) > k.

Given an optimization (minimization or maximization) problem Π over graphs, we
denote by OPTΠ(G) > 0 the value of the optimal solution of Π for G. An algorithm
A for a maximization (minimization) problem is said to achieve an approximation
ratio ρ > 1 if for every input G the algorithm returns a solution A(G) such that
OPTΠ(G) > A(G) > OPTΠ(G)/ρ (resp., OPTΠ(G) 6 A(G) 6 ρ ·OPTΠ(G)).

We assume familiarity with complexity classes such as NP, coNP, coRP,Π2, and
the polynomial-time hierarchy. Precise definitions of these terms are omitted and can
be found, e.g., in [21].

3. Hardness results for maximum connected matchings. In this section,
we prove hardness results for finding large connected matchings in graphs.

3.1. Hardness of approximating the size of a maximum connected
matching. We start by showing an almost optimal hardness of approximation re-
sult for the connected matching problem.

6We remark that the graph obtained from contracting a set of edges, indeed, does not depend
on the order.
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Theorem 3.1. Given a bipartite graph G with n vertices on each side, it is NP-
hard to approximate νc(G) within a factor of n1−ε for any ε > 0 under a randomized
polynomial time reduction.

More precisely, given a bipartite graph G with n vertices on each side, it is NP-
hard to distinguish between the case where νc(G) > n1−ε and the case where νc(G) 6
nε for any ε > 0.

A natural approach to prove hardness of approximation results for connected
matching is to reduce the clique problem to it. Namely, given a graph G = ([n], EG)
for which we wish to determine if G contains a k-clique, replace every vertex i by
an edge ei = (ui, vi) and add two edges (ui, vj) and (uj , vi) for every edge (i, j) in
G. Call the resulting graph after these transformations G′. While it is clear that a
large clique in G translates to a large connected matching in G′, it is not clear that
a large connected matching in G′ implies a large clique in G. The difficulty is that
a connected matching might contain “bad” edges of the form (ui, vj), where i 6= j.
An illustrative example is the case where G = Kn/2,n/2 is a biclique; in this case,
the largest clique in G has size only 2 but the resulting graph G′ contains a large
connected matching of size as large as n.

To overcome this problem, we first observe that instead of adding both (ui, vj)
and (uj , vi) to the graph G′ for every edge (i, j) in G, it suffices to add only one of
the two to retain a large connected matching in the YES case. Then, the insight is
that, when we choose the edge to add independently at random for each (i, j), we can
control the number of bad edges in every connected matching in G′

We formalize the described ideas below, starting with the main gadget of our
reduction.

Definition 3.2. Fix n ∈ N. A bipartite graph HCn = (A = {u1, . . . , un}, B =
{v1, . . . , vn}, EH) is said to be a bipartite half-cover of Kn if (1) for every {i, j} ⊆ [n],
(ui, vj) ∈ EH , or (uj , vi) ∈ EH and (2) for every i ∈ [n], (ui, vi) /∈ EH .

The reduction used in the proof of Theorem 3.1 uses the existence of such bipartite
half-covers of Kn that do not contain a large connected matching. Such graphs can
be easily constructed using a randomized algorithm as shown below.

Claim 3.3. There is an O(n)-time randomized algorithm that on input n ∈ N
outputs a graph HCn, which is a bipartite half-cover of Kn such that νc(HCn) 6
O(log n) with probability 1− o(1).

Proof. We construct HCn by choosing for each {i, j} ⊆ [n] to add to EH either
(ui, vj) or (uj , vi) independently with probability 1/2. Clearly, HCn is a bipartite
half-cover of Kn. Below we show that νc(H) 6 O(log n) with probability 1 − o(1).
We prove this in two steps: first, we will prove the O(log n) upper bound on a special
class of connected matching and, then, we will show that any connected matching
contains a large (constant fraction) matching of this type.

Let M ⊆ EH be any matching in H. We say that the matching is nonrepetitive
if, for each i ∈ [n], at most one of ui or vi appears in M . We will now argue
that with probability 1 − o(1), any connected nonrepetitive matching has size less
than D := 20 log n. To do so, consider any ordered tuple (i1, j1, . . . , iD, jD), where
i1, . . . , iD, j1, . . . , jD are all distinct. The probability that (ui1 , vj1), . . . , (uiD , vjD ) is
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a connected matching is at most

Pr[∀1 6 k < ` 6 D, (uik , vj`) ∈ EH ∨ (ui` , vjk) ∈ EH ]

=
∏

16k<`6D

Pr[(uik , vj`) ∈ EH ∨ (ui` , vjk) ∈ EH ]

=
∏

16k<`6D

(3/4) = (3/4)D(D−1)/2,

where the first two equalities use the fact that i1, . . . , i1, j1, . . . , jD are distinct, mean-
ing that the events considered are all independent. Hence, by union bound over all
such sequences, we can conclude that the probability that H contains a connected non-
repetitive matching of size D is at most n2D · (3/4)D(D−1)/2 = (n2 · (3/4)(D−1)/2)D =
o(1).

Finally, observe that any matching M ⊆ EH contains a nonrepetitive matching
M ′ ⊆ M of size at least |M |/3. Indeed, given a matching M we can construct M ′

iteratively by picking an arbitrary edge e = (ui, vj) ∈ M , remove e and all edges
touching vi or uj from M , and add e to M ′. We repeat this procedure until M = ∅.
Since we add one edge to M ′ while removing at most three edges from M , we arrive
at a nonrepetitive M ′ ⊆ M of size at least |M |/3. As a result, the graph HCn does
not contain any connected matching of size at least 3D = O(log n) with probability
1− o(1).

Remark 1.
1. We remark that a deterministic polynomial time construction of such graphs

would imply that the hardness result in Theorem 3.1 holds under a determin-
istic reduction (as opposed to the randomized reduction, currently stated).

2. We comment that there is a connection between Ramsey graphs and half-
cover of Kn with small νc(HCn). Specifically, if we can deterministically
construct half-cover for Kn with νc(HCn) 6 f(n), then we can deterministi-
cally construct n-vertex (f(n) + 1)-Ramsey graphs. This is because we can
think of half-cover HCn as a bichromatic Kn, where (i, j) for i < j is a col-
ored red if (ui, vj) ∈ EH and it is colored blue otherwise (i.e., (uj , vi) ∈ EH).
It is easy to check that any monochromatic clique of size r in Kn implies a
connected matching of size r − 1 in HCn. While there are explicit construc-
tions of Ramsey graphs, it is unclear (to us) how to construct such half-cover
from these constructions.

3. Using a different approach we can show that it is NP-hard to compute νc(G)
under a deterministic reduction. See Appendix A for details.

3.1.1. Proof of Theorem 3.1. With the gadget from Claim 3.3 we are ready
to prove Theorem 3.1. This is done in the following claim.

Claim 3.4. Let G = (VG = [n], EG) be an n-vertex graph, and let H = (A =
{u1, . . . , un}, B = {v1, . . . , vn}, EH) be a balanced bipartite graph. Let G � H =
(A,B,EG�H) be the balanced bipartite graph with n vertices on each side, where (1)
for every {i, j} ⊆ [n], (ui, vj) ∈ EG�H if and only if (ui, vj) ∈ EH and (i, j) ∈ EG,
and (2) for every i ∈ [n], (ui, vi) ∈ EG�H .

Then, for any such G we have νc(G�H) 6 ω(G) + 3νc(H), where ω(G) denotes
the clique number of G. Furthermore, if H is a bipartite half-cover of Kn, then
ω(G) 6 νc(G�H).

Claim 3.4 immediately implies Theorem 3.1. Indeed, by [14, 27] given an n-vertex
graph G it is NP-hard to decide between the case where ω(G) > n1−ε/2 and the case
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where ω(G) 6 nε/2. Therefore, we can define a randomized reduction that given an
n-vertex graph G constructs (with high probability) HCn, the bipartite half-cover of
Kn, with νc(HCn) 6 O(log n), and outputs G�H, which can be clearly constructed
in time that is linear in the size of G. In the YES case, if ω(G) > n1−ε/2, then
by the “furthermore” part of Claim 3.4 we have νc(G � HCn) > ω(G) > n1−ε/2,
and in the NO case, if ω(G) 6 nε/2, then by Claim 3.4 we have νc(G � HCn) 6
ω(G) + νc(HCn) 6 nε/2 +O(log n). This completes the proof of Theorem 3.1.

We now turn to the proof of Claim 3.4.

Proof of Claim 3.4. First, we will show that νc(G � H) 6 ω(G) + 3νc(H). Let
M ⊆ EG�H be any connected matching in G�H. We partition M into two disjoint
sets M‖ and M×, where M‖ = M ∩ {(ui, vi) | i ∈ [n]} and M× = M \M‖. We will
show that |M‖| 6 ω(G) and |M×| 6 3νc(H).

To show that |M‖| 6 ω(G), suppose that M‖ = {(ui1 , vi1), . . . , (uit , vit)}. By the
definition if (ui, vi) is connected to (ui′ , vi′) in G �H, then (i, i′) ∈ EG. Therefore,
{i1, . . . , it} induces a clique in G and ω(G) > t = |M‖| follows.

Next, we show that |M×| 6 3νc(H). Let us first define nonrepetitive matching in
the same way as in the proof of Claim 3.3. Using the same argument as in that proof,
we can conclude that M× contains a nonrepetitive connected matching M ′× ⊆M× of
size at least |M×|/3. We claim that M ′× is also a connected matching in H. Indeed,
since every edge in M ′× belongs to EH , the nonrepetitiveness implies that any pair of
edges in M ′× is connected by an edge that also belongs to EH . As a result, we can
conclude that |M×| 6 3|M ′×| 6 3νc(H).

Combining the above two bounds yields νc(G�H) 6 ω(G) + 3νc(H) as desired.
Finally, assume that H is a bipartite half-cover of Kn. For any clique C ⊆ VG

in G, it is not hard to see that the matching MC = {(ui, vi) : i ∈ C} is a connected
matching in G�H. Indeed, for each distinct i, j ∈ C we have either (ui, vj) ∈ EH or
(uj , vi) ∈ EH (from definition of bipartite half-cover of Kn), and hence either (ui, vj)
or (uj , vi) belongs to EG�H . Therefore, νc(G � H) > ω(G), which completes our
proof.

3.2. Hardness of finding a connected perfect matching. In this section
we show that given a bipartite graph G with n vertices on each side, it is NP-hard
to find a connected matching of size n.

Theorem 3.5. Given a bipartite graph G = (A,B,E) with |A| = |B| = n it is
NP-hard to determine whether νC(G) = n.

Proof. By Theorem 3.1 given a graph G = (A,B,EG) with N vertices of each
side it is NP-hard to decide whether G contains a connected matching of size k =
N1−ε. Consider the reduction that given a graph G = (A,B,EG) outputs H =
(A ∪ A′, B ∪ B′, EH) as follows. The sets A′ and B′ are two disjoint sets that are
also disjoint from A,B with |A′| = |B′| = N − k. The set of edges EH is defined as
EH = EG ∪ {(i, j) : i ∈ A′, j ∈ B ∪ B′} ∪ {(i, j) : i ∈ A ∪ A′, j ∈ B′}. That is, the
graph H contains the graph G as the induced graph on the vertices A ∪ B, and in
addition, every vertex in A′ is connected to all vertices in B ∪ B′, and every vertex
in B′ is connected to all vertices in A ∪A′.

The graph H is a balanced bipartite graph with n = 2N −k vertices on each side.
We claim that νC(G) = k if and only if νC(H) = n.

In one direction, suppose that G has a connected matching MG = {e1, . . . , ek} of
size k. We construct a matching M ′ of size 2N−k as follows. For each vertex v ∈ A∪B
not covered by MG, we pick a distinct element wv ∈ A′ ∪ B′ that is a neighbor of v.

D
ow

nl
oa

de
d 

04
/0

7/
21

 to
 1

37
.1

19
.1

06
.1

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

894 ALON ET AL.

Define a matching in H to be M ′ = M∪N , where N = {(v, wv) : v ∈ V (G)\V (MG)}.
By the construction of H, each edge in N is connected to every other edge in M ′ using
an edge between A′ and B′. Every pair of edges in MG are connected since MG is a
connected matching in G. Thus, M ′ is a connected matching of size n in H.

Conversely, suppose H has a connected matching MH of size n. Then, there must
be a submatching M ⊆MH of size |M | = k such that no edge in M contains a vertex
in A′ ∪B′. Thus, M is a matching in G, and since MH is a connected matching so is
M . It follows that G has a connected matching of size k, as required.

4. Hardness results for computing αk(G). In this section we study the
computational complexity both of the decision problem MT as well as the problem
of computing αk(G) exactly or approximately. We first show an almost optimal
inapproximability result for αn(G), which is stated and proved below.

Theorem 4.1. For any ε > 0, given a bipartite graph G with n vertices in each
part, it is NP-hard to approximate αn(G) within a factor n1−ε.

Furthermore, given a bipartite graph G with n vertices in each part, where the
degree of each vertex is at most d it is NP-hard to approximate αn(G) within a factor
O( d

log4(d)
) and it is UG-hard to approximate αn(G) within a factor O( d

log2(d)
).

Proof. The proof is by a reduction from the MIS problem. Given an n vertex
graph H = (UH , EH) instance of the MIS we construct a bipartite graph G as follows.
Denote the vertices of H by UH = {u1, u2, . . . , un}. Then the vertices of the bipartite
graph G = (VG = A∪B,EG) are defined by A = {vi : i ∈ [n]} and B = {v′i : i ∈ [n]},
and the edges of G are EG = {(vi, v′i) : i ∈ [n]} ∪ {(vi, v′j) : i < j ∧ (ui, uj) ∈ EH}.
Note that the only perfect matching in G, i.e., a matching of size n, is the match-
ing N = {(vi, v′i) : i ∈ [n]}. Indeed, suppose there exists another matching M with
|M | = n. Then M has at least one edge of the form e = (vi, v

′
j) with i < j and

suppose that e is such that i is minimal (where the minimum is taken with respect to
all edges not in N). If any edge in M covers v′i, then it cannot belong to N as M is
a matching. By the definition of EG there cannot be an edge in M that covers v′i by
the minimality of i. As all vertices of H must be matched in order for |M | = n, we
get a contradiction showing that N is indeed the unique matching of size n.

We claim that H contains an independent set of size at least α if and only
if αn(G) > α

n . Indeed, a set I ⊆ VH is an independent set in H if and only if
M ′ = {(vi, v′i) : i ∈ I} is an induced matching contained in M . Hence if H contains
an independent set of size α, then M contains an induced matching of size α. Con-
versely, If M contains an induced matching of size α, then H has an independent set
of size α. It is well known that for any δ < 1/2 it is NP-hard to distinguish between
n-vertex graphs that contain an independent set of size at least n1−δ (YES case) and
graphs that do not contain an independent set of size at least nδ (NO case) [14, 27].
By the reduction described above it is NP-hard to distinguish between a bipartite
graph G′ with sides of cardinality n satisfying αn(G′) > n1−δ/n = n−δ to a graph
G′′ satisfying αn(G′) 6 nδ/n = nδ−1 as this would enable distinguishing between the
YES and NO cases described above. The result now follows by taking δ to equal ε/2.

The result for graphs of maximum degree d follows by noting that if the maximal
degree of H is at most d, then the maximal degree of G is upper bounded by d + 1.
Therefore, since it is NP-hard to approximate MIS in graphs of maximum degree d
within a factor of O( d

log4(d)
) [7] and UG-hard to approximate MIS in graphs of maxi-

mum degree d within a factor of O( d
log2(d)

) [3], the analogous hardness computing αn
also follows.
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We remark that by adding isolated vertices to the graph, the above hardness
result also implies hardness of approximating αk(G) to within factor of k1−ε for every
ε > 0 and every k > nδ for any constant δ ∈ (0, 1).

Recall the decision problem MT from Definition 1.4. As mentioned in the intro-
duction, MT clearly belongs to the class Π2. We show the following.

Theorem 4.2. The decision problem MT is NP-hard and coNP-hard.

Proof of Theorem 4.2. By Theorem 4.1 if follows that that there is a reduction
from any problem in NP that produces a graph G and a parameter k = n such that
in the YES case αk(G) > 1/nε, and in the NO case αk(G) 6 1/n1−ε. In particular,
this implies that MT is NP-hard.

In order to prove that MT is coNP-hard we use Theorem 3.5. Indeed, observe
that αn(G) 6 1/n if and only if G contains a connected matching of size n, and hence
there is a reduction from any problem in NP that produces a graph G and k = n
such that in the YES case αk(G) 6 1/k, and in the NO case αk(G) > 2/k. This
completes the proof of Theorem 4.2.

Using Theorem 3.5, we demonstrate that it is unlikely that MT belongs to NP ∪
coNP.

Corollary 4.3. If the decision problem MT belongs to NP ∪ coNP, then the
polynomial-time hierarchy collapses to the first level.

Indeed, this follows from the fact that if NP ⊆ coNP, then NP = coNP (see,
e.g., [21, Proposition 10.2]), and hence the polynomial hierarchy collapses to the first
level.

We end this section with several remarks.
1. Note that the proof of Theorem 4.1 shows that the problem of computing
αn(G) is NP-hard on graphs with n vertices on each side even if G contains
a unique perfect matching.

2. Note also that the hardness result in Theorem 4.1 for bounded degree graphs
cannot hold for d regular graphs (as opposed to graphs with degree at most
d) unless P = NP. This is because in [2] it is shown that αn(G) 6 O(1/

√
d)

for every d-regular graph G. In particular, this implies that it is easy to
approximate αn(G) within a factor of O(

√
d) for d-regular graphs.

5. Hardness results for computing α6k(G). Here we prove that it is hard
to calculate the parameter α6k(G).

5.1. Hardness results for computing α6n(G). We first consider the k = n
case.

Theorem 5.1. Given a bipartite graph G = (A,B,E) with |A| = |B| = n, it is
NP-hard to compute α6n(H).

Proof. It is immediate that α6n(H) > 1/n and that equality holds if and only if
H contains a connected matching of size n. The theorem follows from Theorem 3.5.

We proceed and consider approximating α6n(G).

Theorem 5.2. Unless NP = coRP, there is no polynomial algorithm for approx-
imating α6n(H) within some constant factor.

Proof. We first use the fact that it is NP-hard to distinguish between n-vertex
graphs with cliques of size b · n to graphs with no clique of size a · n, where a, b are
some constants satisfying 1/2 < a < b < 1. Indeed it is well known that there are
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a, b ∈ (0, 1) such that it is NP-hard to distinguish between n-vertex graphs with
cliques of size b · n and graphs with no clique of size a · n (e.g., [14]). The fact now
follows by taking a graph G of n vertices, adding to it a clique of size n, and connecting
all vertices in this clique to all vertices of G.

Given a graph G apply the reduction in Claim 3.4 (with H being the random
graph described in Claim 3.3) and call the resulting graph G′. If there is a clique G
of size b · n, then clearly α6n(G′) 6 b

n . Suppose there is no clique of size a · n in G.
Then by Claim 3.3, with high probability there is no connected matching in G′ of size
greater than (a + δ) · n, where δ > 0 can be taken to be arbitrarily small. It follows
that for c > a+δ, every connected matching in G contains a induced matching of size
at least 2. Therefore, for (a + δ) < c < 1 we have that conditioned on the existence
of a matching of size k, αk(G′) = 2

cn >
1

(a+δ)·n . Indeed, 2
c >

1
a+δ as a+ δ > 1/2. As

for k < (a+ δ)n it clearly holds that αk(G′) > 1
(a+δ)n , and we have that in this case

α6n(G′) = a+δ
n . This implies that approximating α6n(H) within a ratio smaller than

b
a+δ in polynomial time would allow one to determine whether G contains a clique of

size b ·n or no clique of size a ·n. Taking δ such that b
a+δ > 1 concludes the proof.

5.2. Hardness results for computing α6k(G) for k < n. We now turn to
the problem of proving hardness of approximation results for α6k(G) for k < n; for
certain values of k, we show that α6k(G) is NP-hard to approximate to within any
constant factor under randomized reduction. One approach to prove this is to use the
reduction in Theorem 4.1. However, this approach does not seem to work, as it allows
one to consider also matchings that contain “diagonal edges” of the form (ui, v

′
j) and

it is not clear how to apply the analysis in Theorem 4.1 to such matchings. Instead, we
build upon the hardness of the connected matching problem given in Theorem 3.1. We
claim that the reduction in Theorem 3.1 shows that it is hard to approximate α6k(G)
for k = n1−ε. Note that in the YES case, if νc(G) = k > n1−ε, then α6k(G) = 1/k.
The NO case is a bit subtle, and it is, a priori, not clear why νc(G) 6 nε implies that
any matching of size at most k contains a large induced matching. We resolve this
problem using the following Ramsey-theoretic fact (see, e.g., [5, 10]).

Fact 5.3. Let G be an n-vertex graph not containing a clique of size k + 1
and suppose k > 2 log n. Then G contains an independent set of size at least s =
log n/ log(k/ log n).

Coupled with Theorem 4.1 we prove the following result.

Theorem 5.4. For any constants ε ∈ (0, 1/2) and ρ > 1, it is NP-hard (under
randomized reduction) to approximate α6k(G) within a factor of ρ on bipartite graphs
with n vertices on each side for k = n1−ε.

Proof. By Theorem 3.1 given a bipartite graph G it is NP-hard to distinguish
between the case where νc(G) > n1−ε and the case where νc(G) 6 nδ for δ = 1/(2ρ).

For the YES case if νc(G) > n1−ε, then clearly α6k(G) = 1/k for k = n1−ε.
In the NO case suppose that νc(G) 6 nδ, and consider an arbitrary matching M

of size s with s 6 k. If s < 2δk, then clearly M contains an induced matching of size
at least s/(2δk). Otherwise, contract all edges in M . Denote by H(M) the subgraph
induced by the s contracted vertices. Observe that a subset of vertices in H(M) forms
a clique if and only if their corresponding edges in G form a connected matching.
Otherwise, by the assumption that νc(G) 6 nδ we get that H(M) contains no clique
of size nδ. Hence, by Fact 5.3 we conclude that H(M) contains an independent set
of size at least log s

log(nδ/ log s)
> 1

2δ (assuming n is sufficiently large).
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Therefore, given a bipartite graph G with n vertices on each side, and k = n1−ε

it is NP-hard to distinguish between the YES case of α6k(G) 6 1/k and the NO case
of α6k(G) > 1/(2δk) = ρ/k. This concludes the proof.

We can achieve stronger hardness results under stronger assumptions than NP-
hardness. Recall that the exponential time hypothesis (ETH) postulates that no
algorithm of running time 2o(n) can decide whether an n-variable conjunctive normal
form formula has a satisfying assignment. Assuming ETH we have the following
hardness result.

Theorem 5.5. Assuming ETH there exists a k such that given H = (A,B,E)
with |A| = |B| = n there is no polynomial time algorithm that approximates α6k(H)
within a factor of n(1/ log logn)c , where c > 0 is a universal constant independent of n.

We will rely on the following simple lower bound on independent sets in graphs
of average degree davg due to Turan.

Lemma 5.6. Every n-vertex graph with average degree davg contains an indepen-
dent set of size at least n

davg+1 .

Proof of Theorem 5.5. It is known [18] that assuming ETH for k = n1−1/polyloglog(n)

there is no polynomial algorithm that distinguishes between the case where H contains
a bipartite clique with t vertices on each side (YES case) from the case where every

subgraph contained in H with k′ 6 k vertices satisfies |E(H)| 6
(
k′

2

)
/n(1/ log logn)c

(NO case). In the first case α6k(H) = 1/k. In the second case, given a matching
M with |M | = k and k′ 6 k we claim that M contains an induced matching of
size Ω(max((k′n−(1/ log logn)c , 1)). The claim is trivially true if k′ 6 n(1/ log logn)c ,
and hence assume k′ > n(1/ log logn)c . Let H(M) be the graph induced on M and
let H ′(M) be the graph obtained after all edges in M are contracted. Clearly the
average degree of H ′(M) is O(k′n−(1/ log logn)c) (see [2, Lemma 2.1]), and hence by
Lemma 5.6 it contains an independent set I ′ of size Ω(n(1/ log logn)c). It is easily
verified that this independent set corresponds to an induced matching contained in
M whose size is Ω(n(1/ log logn)c). Therefore every matching of size at most k′ 6
k contains an induced matching of size Ω(dk′n−(1/ log logn)c)e), which implies that
α6k(H) = Ω(n(1/ log logn)c/k). It follows that if we could approximate α6k(H) within
a factor better than Ω(n(1/ log logn)c)) in polynomial time, then we could distinguish
between the YES and NO cases described above. This concludes the proof.

6. Improved construction of multitaskers. In this section we prove the fol-
lowing theorem.

Theorem 6.1. Let d 6 n be positive integers such that n is sufficiently large,
and let ε ∈ (0, 1) be such that ε > 20 log d

logn . Then, there is a bipartite graph G with n

vertices on each side and average degree at least d/2, such that α6k(G) > 1/2− ε for
k = ( 1

101e5 )4/ε · n
d1+8/ε = n

d1+O(1/ε) .

For the proof of Theorem 6.1 we need the following lemma. We remark that a
similar result also appears in [2] (proof of Theorem 4.14 in the arXiv version).

Lemma 6.2. Let G = (A,B,E) be a balanced bipartite graph, and let g be the
girth of G. Let t ∈ N be such that for every subset of vertices T ⊆ A ∪ B satisfying
|T ∩ A| = |T ∩ B| 6 s 6 t it holds that |E(T )| 6 (2 + β/g)s edges for some β > 0.
Then α6t(G) > 1

2 −
1+β
g .
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Proof. Let G = (A,B,E) with |A| = |B| = n that satisfies the assumptions in
the lemma and let M be a matching in G of size s 6 t. We show that M contains an
induced matching M ′ of size at least ( 1

2 −
1+β
g )|M |.

Let F be the graph whose vertices correspond to the s edges of M , and two
vertices in F are connected if the corresponding edges are connected by an edge in
G. We show below that F contains an independent set on nearly half of its vertices.
By the assumptions of the claim, the girth of F is at least g/2, and any set of s of
its vertices spans at most (1 + β/g)s edges. Construct an independent set in F as
follows. As long as F contains a vertex of degree at most 1 add it to the independent
set and omit it and its unique neighbor from F . Suppose that this process stops with
h vertices. This implies that the independent set so far has at least (s−h)/2 vertices.
If h = 0, we are done, as the independent set has at least s/2 vertices. Otherwise,
in the induced subgraph of F on the remaining h vertices the minimum degree is
at least 2 and the average degree is at most 2 + 2β/g. Hence it contains at most
2βh/g vertices of degree at least 3. Omit these vertices. The remaining graph is a
union of paths and cycles, which may contain odd cycles, but all cycles in it are of
length at least g/2. Therefore this part contains an independent set of size at least
1
2 (1 − 2β/g) · (1 − 2/g)h, which together with the (s − h)/2 vertices obtained in the
initial process results in an independent set of size at least

s− h
2

+
1

2
(1− 2β/g) · (1− 2/g)h >

s− h
2

+
1

2
(1− 2β/g − 2/g)h

>
s

2
− 1 + β

g
h >

(
1

2
− 1 + β

g

)
s,

as required.

We can now prove Theorem 6.1.

Proof. We start with a random bipartite graph G′ with n vertices on each side,
in which each edge is included independently with probability p = d/n. The following
two claims prove the properties required in order to apply Lemma 6.2.

Claim 6.3. Let g be an even integer such that 2/ε 6 g 6 4/ε. Then, with prob-
ability 1 − 2

n0.3 > 0.99 the number of cycles of length at most g is upper bounded by√
n.

Proof. The expected number of cycles of length up to g is upper bounded by

g/2∑
s=2

(
n

s

)2

(s!)2p2s 6
g/2∑
s=2

(np)2s 6
2/ε∑
s=2

d2s 6 2d4/ε.

In particular, for ε > 20 log d
logn the expected number of cycles of length up to g is at

most 2d4/ε 6 2n1/5. The claim follows by Markov’s inequality.

Claim 6.4. With probability 0.99, every subgraph of G′ with at most ( 1
101e5 )4/ε ·

n/d1+8/ε vertices on each side has average degree at most (2 + ε/4).

Proof. Let s be an integer satisfying 1 6 s 6 ( 1
101e5 )4/ε · n/d1+8/ε. By the union

bound over all subsets of G′ with s vertices on each side, the probability that G′

contains a balanced subgraph with s vertices on each side and average degree at least
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(2 + ε/4) is(
n

s

)2(
s2

(2 + ε/4)s

)
p(2+ε/4)s 6

(ne
s

)2s

· (se)(2+ε/4)s ·
(
d

n

)(2+ε/4)s

6

(
e5d2+ε/4sε/4

nε/4

)s
6

(
1

101

)s
.

By taking the union bound over all values of s we get that the probability that G′

contains a dense induced subgraph is at most
∑∞
s=1

(
1

101

)s
= 0.01, as required.

By Chernoff bound with probability 0.99, G′ contains at least 0.9dn edges. There-
fore, with probability 0.97 the latter event occurs together with the events in the two
foregoing lemmas.

Let g ∈ [ 2
ε ,

4
ε ] be an even integer, as in Claim 6.3. We remove an edge from each

cycle of length at most g, thus removing at most
√
n edges, so that the average degree

remains at least d/2. The resulting graph G satisfies the conditions of Lemma 6.2
with g ∈ [ 2

ε ,
4
ε ] and t = ( 1

101e5 )4/ε · n/d1+8/ε, and hence αt(G) > 1/2− 2/g 6 1/2− ε,
as required. This concludes the proof of Theorem 6.1.

Remark 2. We note that if we consider α6n(G) instead of α6n/d1+O(1/ε)(G), then

for the construction in the proof of Theorem 6.1 it holds that α6n(G) = O( ln d
d +

O(1/
√
n)) with high probability. Indeed, it can be shown that prior to deletions G′

has a matching of size Ω(n) and no induced matching of size larger than O( ln d
d n)

with high probability. Therefore, since removing
√
n edges can increase the size of

any induced matching by at most
√
n, we get that the entire construction satisfies

α6n(G) = O( ln d
d + 1/

√
n).

6.1. Is αk(G) = 1/2 attainable? The foregoing positive result obtains α6k
(G) = 1/2− ε for k as large as Θ(n/d1+O(1/ε)), approaching the natural barrier 1/2.
One may wonder whether 1/2 can be attained exactly, and for which values of k. We
now show the following limitation.

Theorem 6.5. There is an absolute positive constant d0 such that for n > d > d0

and k > log n/ log d + O(1), every graph G with n vertices on each side and average
degree d has α6k(G) strictly smaller than 1/2. This is tight up to the leading constant
1 as there is a graph G′ with n vertices on each side and average degree d so that for
k′ = 0.4999 log n/ log d, α6k′(G) = 1/2.

Note that by Theorem 6.1, for a fixed constant d there are graphs G with n
vertices in each side and average degree d for which α6k(G) is arbitrarily close to
1/2 for k = Ω(n). The theorem above shows, however, that even for a logarithmic k,
exactly 1/2 is not attainable.

For the proof we need two results. The first is the following theorem of Verstraëte.

Theorem 6.6 (Verstraëte [26]). Let r > 2 be a natural number and let G be
a bipartite graph of average degree at least 4r and girth at least g. Then there exist
cycles of (g/2 − 1)r consecutive even lengths in G. Moreover, the shortest of these
cycles has length at most twice the radius of G.

The second is a special case of a result of Kostochka and Pyber [17]; see [26] for
its simple proof.

Lemma 6.7. Let G be a graph on n vertices with at least bn1+1/t edges, where
b > 1. Then G contains a subgraph of average degree at least b and radius at most t.
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We proceed with the proof of Theorem 6.5.

Proof. The tightness, proved in [2], is simply the known existence of a d-regular
bipartite graph G′ with n vertices on each side and girth at least log n/ log d. Indeed,
any set vertices which are the endpoints of at most k′ edges spans a forest in G′ and
any matching M in a forest contains an induced matching of size at least |M |/2.

To prove the main part of the theorem observe that one obstacle to obtaining
α6k(G) = 1/2 is the existence of a short cycle of length 2 modulo 4. Indeed, consider
a cycle of length ` = 2k, where k is an odd integer. It is straightforward to check
that picking every other edge of the cycle yields a matching M of size k, in which the
largest induced matching contained in M has size (k − 1)/2 = (1

2 −
1
2k )|M |. Hence,

a graph G containing such a cycle has α6k(G) strictly less than 1/2. It thus suffices
to show that every bipartite graph with n vertices on each side and average degree
d > 8 contains such a cycle for k = (1 + o(1)) log n/ log d+ 1.

Let G be such a graph. Let t satisfy 8n1+1/t = dn. Note that such t exists as long
as d > 8. By solving for t we get t = logn

log d−3 = (1 + o(1)) log n/ log d. By Lemma 6.7
with b = 8, G contains a subgraph with average degree at least 8 and radius at most
t. By Theorem 6.6 with r = 2 and g = 4, this subgraph contains cycles of two
consecutive even lengths, both of length at most 2t+ 2 = 2(1 + o(1)) log n/ log d+ 2.
One of two consecutive even lengths must equal 2 modulo 4. Thus, G contains a cycle
of length ` 6 2(1 + o(1)) log n/ log d+ 2 with ` ≡ 2 mod 4. As explained above, this
implies that for k = `/2, α6k(G) < 1/2, completing the proof.

7. Conclusion and future directions. We have studied the computational
complexity of computing αk(G), a parameter that arises in radio networks and models
of multitasking in cognitive neuroscience. We find it noteworthy that two independent
lines of research lead to similar models of interference hinting that ideas from radio
networks can be useful for theoretical neuroscience and vice versa. Furthermore, our
study reveals that algorithmic as well as combinatorial questions (such as the existence
of graphs with certain combinatorial properties) are relevant to connectionist models
of cognition. We hope that future work will reveal more connections between such
models, theoretical computer science, and combinatorics.

While we have shown that computing αk(G) is intractable, our results do not rule
out the existence of an efficient constant factor approximation algorithm for α6n(G),
which could potentially be used in computer simulations and in analyzing behavioral
and neuroscientific data. Whether such an algorithm exists is an interesting direction
for future study.

Our multitasking model (notably the induced matching condition) assumes that
performing several tasks in parallel can have detrimental effects, when the different
tasks interfere destructively with one another. This can arise if they draw on a
shared set of representations that must be put to competing uses at the same time.
For example, interference effects such as those in [11] arise when incongruent stimuli
must be processed, which demands different, competing responses. However, it is
important to recognize that performing tasks in parallel does not necessarily lead to
interference and can even have a positive effect. This is the case if the tasks share
representations that favor the same or compatible responses (that is, they benefit
by constructive interference). Such mutual positive interactions between interactive
parallel processes have been demonstrated in [25].

We conclude with several specific questions arising from this work.
• We believe that for d-regular graphs the upper bound α6n(G) 6 9/

√
d is not

tight. It is an open problem whether for all d-regular graphs it holds that
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α6n(G) 6 o(1/
√
d). In particular, it is consistent with our knowledge that

α6n(G) = O( log d
d ) holds for all d-regular graphs.

• It would be interesting to see if the n1−ε hardness of approximation result
for the size of a largest connected matching can be obtained assuming P 6=
NP (that is, under a deterministic reduction). In particular, it would be
interesting to find efficient and deterministic constructions of bipartite half-
covers with maximal connected matching upper bounded by no(1).

• For d-regular graphs it is proven in [2] that for k � n/d it holds that
α6k(G) = o(1). It is an open question whether the same holds for irreg-
ular graphs (with average degree d� log log n).

• Finally, in many situations we are interested in multitasking a “small” number
of tasks. This raises the question of computing (or approximating) αk in the
setting of fixed-parameter algorithms. That is, given an n-vertex graph G,
can we compute αk in time f(k) · poly(n), where poly(n) is independent of k
and f(k) is some function of k independent of n.

Appendix A. NP-hardness of computing the maximum connected
matching of a graph. In this section given a bipartite graph it is NP-hard to
compute νC(G) exactly under a deterministic polynomial time reduction. This is as
opposed to the randomized reduction given in Theorem 3.1. We remark that [22]
proved this result for the nonbipartite case. Our proof is an adaptation of their proof
for the bipartite case.

Theorem A.1. It is NP-hard to determine given a bipartite graph G = (A,B)
and a parameter k whether G contains a connected matching of size k.

Proof. We reduce the biclique to the problem of determining if νC(G) = k. Recall
that a biclique G′ = (C ′, D′) in a bipartite graph G is a subgraph G′ of G such
that every vertex in C ′ is connected to every vertex in D′. A biclique (C ′, D′) is
balanced if |C ′| = |D′| the biclique problem is the following: given a bipartite graph
G = (A,B) (we assume that |A| = |B|) and integer k, is there a biclique (A′, B′)
with A′ ⊆ A,B′ ⊆ B, and |A′| = |B′| = k? This problem is well known to be
NP-complete.

Given a bipartite graph G = (A,B) with |A| = |B| = n, form a new graph H as
follows. Initialize H1 = (A1, B1) to equal G and we call this the copy of G inside H1.
Then add a new set A′ of n vertices such that (A1, A

′) forms a biclique, and add a
new set B′ of n vertices such that (B1, B

′) forms a biclique. Initialize another graph
H2 = (A2, B2) to be a biclique with |A2| = |B2| = n (where A2, B2 are disjoint from
A1 ∪B1 ∪A′ ∪B′). Add an edge between every vertex of (A1 ∪B′) and every vertex
of B2, and add an edge between every vertex of (B1 ∪ A′) and every vertex of A2.
The resulting (bipartite) graph is H = (A1 ∪B′ ∪A2, B1 ∪A′ ∪B2).

Consider a connected matching M in H. Let MA ⊆ M be the set of all edges
in M contained in the biclique (A1, A

′) and let MB ⊆ M be the set all edges
in M contained in the biclique (B1, B

′), and let Mr = M − (MA ∪ MB). Then
|M | = |MA| + |MB | + |Mr|. Let XA ⊆ A1 denote the set of vertices in A1 being an
endpoint of an edge in MA, and let XB be analogously defined with respect to B1

and MB . Since M is a connected matching, (XA, XB) is a biclique. We also have
|Mr| 6 2n − max{|XA|, |XB |}, which implies |M | 6 2n + min{|XA|, |XB |}, where
we have used |XA| = |MA|, |XB | = |MB |. Thus, if G has a connected matching
of size 2n + k, then min{|XA|, |XB |} > k, which means that there is a biclique of
size k.

D
ow

nl
oa

de
d 

04
/0

7/
21

 to
 1

37
.1

19
.1

06
.1

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

902 ALON ET AL.

Conversely, if G contains a biclique (R,S) of size k, we can easily form a con-
nected matching M in H of size 2n + k. To construct M , we take k edges MA in
(A,A′) with XA = R, we take k edges MB in (B,B′) with XB = S, we take n − k
edges matching the n− k vertices of A1 −XA with n− k vertices B′2 ⊆ B2, we take
n− k edges matching the n− k vertices of B1−XB with n− k vertices A′2 ⊆ A2, and
we take k edges matching A2 −A′2 with B2 −B′2.

Thus, G contains a biclique of size k if and only if H contains a connected match-
ing of size 2n+ k. This completes the proof.
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B. Dey, and K. Özcimder, A graph-theoretic approach to multitasking, Adv. Neural Inf.
Process. Syst., 2017, pp. 2100–2109.

[3] P. Austrin, S. Khot, and M. Safra, Inapproximability of vertex cover and independent
set in bounded degree graphs, in Proceedings of the 24th Annual IEEE Conference on
Computational Complexity, 2009, IEEE, 2009, pp. 74–80.

[4] Y. Birk, N. Linial, and R. Meshulam, On the uniform-traffic capacity of single-hop inter-
connections employing shared directional multichannels, IEEE Trans. Inform. Theory, 39
(1993), pp. 186–191.
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[26] J. Verstraëte, On arithmetic progressions of cycle lengths in graphs, Combin. Probab. Com-
put., 9 (2000), pp. 369–373.

[27] D. Zuckerman, Linear degree extractors and the inapproximability of max clique and chromatic
number, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
ACM, 2006, pp. 681–690.

D
ow

nl
oa

de
d 

04
/0

7/
21

 to
 1

37
.1

19
.1

06
.1

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s


	Introduction
	Our results
	Our techniques

	Preliminaries
	Hardness results for maximum connected matchings
	Hardness of approximating the size of a maximum connectedmatching
	Proof of thm:connected-match-inapprox

	Hardness of finding a connected perfect matching

	Hardness results for computing k(G)
	Hardness results for computing k(G)
	Hardness results for computing n(G)
	Hardness results for computing k(G) for k < n

	Improved construction of multitaskers
	Is k(G)=1/2 attainable?

	Conclusion and future directions
	Appendix A. NP-hardness of computing the maximum connectedmatching of a graph
	References

