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Abstract

Human learning does not stop at solving a single problem. In-
stead, we seek new challenges, define new goals, and come
up with new ideas. What drives people to disrupt the existing
conceptual landscape and create new things? Here, we exam-
ine the decision to create new things under different levels of
potential returns. We formalize innovation as stochastically
recombining existing ideas, where successful and more com-
plex combinations generate higher returns. This formalization
allows us to cast innovation-seeking as a Markov decision pro-
cess, and derive optimal policies under different settings. Data
collected through an online behavioral experiment confirm our
prediction that people should invest more time and effort in
seeking innovations when they know the chances of success
are high and the potential new ideas would be rewarding. How-
ever, people also deviate from being optimal, both innovating
more and less than they should in different settings.
Keywords: discovery; innovation; Markov decision process;
decision making; crafting game

Introduction
The ability to create new ideas, concepts, and technologies is
a crowning achievement of human cognition. From making
tools to developing theories about the world, we constantly
enrich, expand, and even revolutionize our pool of available
options. Those changes in what options are available are fu-
eled by our ability to create new ones, i.e., innovation. De-
spite its importance, innovation poses a mysterious decision
problem: given that the currently available options are al-
ready carefully chosen by the rational agents and have good
returns, and attempting new options does not guarantee suc-
cesses, how do rational agents know when they should inno-
vate?

While there is a rich literature on the historical, philosoph-
ical, and empirical aspects of innovation (e.g. Basalla, 1988;
Kuhn, 1970; Muthukrishna & Henrich, 2016; Youn, Strum-
sky, Bettencourt, & Lobo, 2015), rational analyses of when
agents should consider creating new options have been much
rarer (Bramley, Zhao, Quillien, & Lucas, 2023). This is be-
cause rational models of cognition usually consider a given
set of options (e.g., Callaway et al., 2022), or how to search in
an open space of hypotheses (e.g., Piantadosi, Rule, & Tenen-
baum, 2024). These assumptions about a preset space of op-
tions are useful for studying certain scientific questions, but
nevertheless flatten the tension between the selection versus
generation of options, which is a core process underlying in-
novation.

We propose a formalization of innovation in this paper, ex-
plicitly allowing the agent to create new options by combin-
ing existing ones. We examine the rational solution to the
problem of deciding when to innovate, based on considera-
tions of the risk and reward of pursuing innovation in differ-
ent settings. With a finite number of opportunities to inno-
vate, this problem corresponds to an optimal stopping prob-
lem (T. S. Ferguson, 2006). We then report a behavioral
experiment where we manipulated the probability that new
combinations will succeed, and the rate at which rewards in-
crease for more complex ideas. Our results show evidence
that people are sensitive to the factors identified in our ra-
tional model, but also systematically under- and over-explore
in different settings. We conclude with a discussion of how
extensions of this formal framework could inform our under-
standing of how people create new options, and potentially
grow new knowledge, out of what has already been discov-
ered.

Background
We are interested in when rational agents should innovate—
i.e., create new options by recombining existing ones. This
implicitly assumes that ideas are compositional, and evokes
a decision-making problem that reflects the classic explore-
exploit trade-off. We summarize both ideas in this section,
and highlights how crafting games provide an ideal setup to
study innovation.

Innovation as recombination of existing ideas
Our tools and ideas are deeply compositional (Stigler, 1955).
Introducing a steam engine to spinning mules led to a
new generation of semi-automatic machines, and combining
knowledge of neurons and logic gave birth to the first artificial
neural networks (McCulloch & Pitts, 1943). Most research
studying how new ideas spread operationalizes ideas as sam-
ples from a continuous distribution, and generating new ideas
as drawing new samples (e.g. Mason, Jones, & Goldstone,
2008; Mesoudi, Chang, Murray, & Lu, 2015; Thompson &
Griffiths, 2019). However, this representation cannot capture
the compositional nature of innovation. In fact, analyses of
patent application data suggest that new technologies usually
come from combining existing technologies (Arts & Veugel-
ers, 2015; J.-P. Ferguson & Carnabuci, 2017; Youn et al.,
2015). Similarly, scientific breakthroughs are built on apply-



ing new methods to old questions (Kuhn, 1970). Recent work
has explored settings in which ideas are represented as items
and innovation is successful combination of existing items
(Derex & Boyd, 2016; Brändle, Stocks, Tenenbaum, Gersh-
man, & Schulz, 2023). This representation emphasizes the
compositional and cumulative aspects of innovation, while
being abstract enough to study the cognitive mechanisms and
computational principles driving innovation.

Innovation and exploration

In a compositional and potentially open-ended space of ideas,
rational agents are faced with the decision of when they
should innovate, as opposed to just sticking with what they al-
ready have. On the face of it, this problem echoes the classic
explore-exploit trade-off, usually studied using multi-armed
bandit tasks (Cohen, McClure, & Yu, 2007; Sutton & Barto,
2018). In these tasks, we imagine a slot machine equipped
with many arms and an agent who has to decide between ex-
ploiting arms with known rewards and exploring unknown
arms, with the goal of maximizing total rewards collected
from pulling the arms. Innovation in the compositional space
of ideas, however, has a substantially different structure: dis-
covering a new idea effectively increases the space of avail-
able options, and investing in developing a particular option
could change the potential reward associated with this option.
That is, the expected return of an option depends on the fu-
ture innovations it could bring, which in turn depends on the
agent’s decision of pursuing innovation for that line of devel-
opment. In short, studying when agents should innovate re-
quires a task that goes beyond multi-armed bandits (Brändle,
Binz, & Schulz, 2021).

Crafting games

The compositional and open-ended views of ideas are nicely
captured in crafting games, where people combine existing
objects to make new objects. For instance, binding a sharp
stone with a wooden handle may make a stone hatchet. Not
all combinations work out, however, which reflects the risk
and opportunity cost of pursuing innovation. Popular crafting
games, such as Minecraft and Little Alchemy, have inspired
research on autonomous exploration in people (Brändle et al.,
2023) and artificial agents (G. Wang et al., 2023). Craft-
ing games are also widely used for designing benchmarks
for human-like generalization and reasoning (Hafner, 2022;
J. X. Wang et al., 2021). Based on these crafting games, in
the next section we formally define a discovery game as part
of a framework for studying innovation. Like crafting games,
the discovery game sits on an open-ended space of compo-
sitions and recombinations. Instead of dealing with concrete
objects and providing knowledge bases of recipes as in many
crafting games (e.g., G. Wang et al., 2023), in the discovery
game an item represents an idea, innovations are both reward-
ing and risky, and the game tree may grow infinitely.

Figure 1: Visualization of the formal model. Blocks are game
items (ideas). Each line is a round of the game. Yellow
box marks cashing an existing item. The tree in red solid
lines shows successful combinations (innovations), and gray
dashed lines show failed combinations.

Formalizing innovation
We formalize ideas as items in a discovery game, and inno-
vation as a successful recombination of existing ideas. In the
discovery game, player can either benefit directly from an ex-
isting item (yellow box, Figure 1)—cashing in the item and
collecting a reward—or try to combine existing items to pro-
duce a more rewarding one. Attempting combinations brings
no immediate reward, but has some chance of producing a
new item (trees in Figure 1). Each newly-discovered item
will deliver greater reward, and the player can benefit from it
by cashing in this item in a later round. This process can be
open-ended. Given the chance of discovery, and how much
increase in returns a successful combination generates, we
can derive rational solutions for when an agent should inno-
vate.

Defining discovery games
A discovery game G is a tuple ⟨M,T ,A,R,R⟩, where M is
a set of items, T the game tree recording successful combi-
nations, A a set of actions, R the item reward function, and R
the action reward function. Players can attempt to combine an
item m ∈ M with another item n ∈ M, denoted as c(m,n). If
c(m,n)∈ T , this is a successful combination and will produce
a new item, say, c(m,n)⇒ o. If c(m,n) ̸∈ T , the combination
fails and no new item is discovered. The item reward func-
tion R : M →Z+ maps each item to a strictly positive numeric
value. We consider two actions A = {a1,a2}. Action a1 col-
lects the rewards from an existing item, a1(m) = R(m), and
action a2 combines two items of choice, a2(m,n) = c(m,n).
Finally, the action reward action R specifies the immedi-
ate reward of taking each action: R(a1(m)) = R(m), and
R(a2(m,n)) = 0.

There are many ways to parameterize the game tree T
and the item reward function R, and we elaborate on some
variations in the Discussion. To a first approximation, we



consider a potential parameter p, defined as the probability
of making a successful combination for a given item, i.e.,
P(c(m,n) ∈ Tm), where Tm is the sub game tree that only in-
volves item m. We consider the situation where the potential
parameter holds the same for all items. This forms a tran-
sition matrix P: for a state s with currently available items,
with probability p action a2 leads to a new state s′ with a
newly discovered item, and with probability 1− p action a2
leads to the same state; action a1 always leads to the same
state with probability 1.

To capture the intuition that more complex ideas are more
rewarding, we set up the item reward function R based on
levels of discovery. Items that cannot be produced by com-
bining other items are base items, m0. Combing two base
items produces a level-1 item m1. Climbing up the game
tree increases levels: for a combination c(mi,m j) = mk, k =
max(i, j)+1. Base items have some base reward, R(m0) = r;
the higher an item’s level is, the more rewarding the item,
R(mk) = ω ·R(mk−1), where the incentive parameter ω > 1.
Hence, even though the immediate reward for action a2 is
R(a2(m,n)) = 0, if the combination is successful, c(m,n) ∈
T , c(m,n)⇒ o, then later on the player may choose to bene-
fit from this discovery by collecting rewards from this newly
discovered item o, R(a1(o)) = R(o) = ω ·max(R(m),R(n))>
max(R(m),R(n)).

Optimal policy

Extending the discovery game with the transition matrix P
leads to MG = ⟨M,T ,R,A,R,P}, where a state s = (t,k)
records the current step t and the highest level k of exist-
ing items. Given a goal of maximizing total reward, this is
a Markov decision process (MDP), and we can compute the
optimal policy π∗ following the optimal state-value function:

q∗(s,a) = R(s,a)+ γ∑
s′

P(s,a,s′)max
a

q∗(s′,a). (1)

For a finite horizon of D steps in total, the optimal pol-
icy in this particular setting is an optimal stopping problem
(T. S. Ferguson, 2006): one should keep attempting innova-
tion (a2) until a switch point d, then focus on collecting the
highest possible existing rewards (a1). This is because it is
always better to explore for x steps and then exploit than it
is to alternate between exploring for x steps and spending the
rest exploiting. The expected return for switching at step d is

Eπ(d) = (n−d)

(
d

∑
i=0

(
d
i

)
(pω)i(1− p)d−i

)
r (2)

and the optimal switch point is d∗ = argmaxd Eπ(d). We can
use the fact that it is always more rewarding to explore until
the switch point d∗ to derive an analytical solution to Equa-
tion 2. Let d′ :=D−d∗+1, interpreted as the number of steps
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Figure 2: Expected returns for switching-once at different
steps. Optimal switch point is marked in big dots. a. In-
centive ω = {1.5,3}, potential p = 0.2, and base reward 1.
b. Potential p = {0.2,0.8}, incentive w = 3, and base reward
1. c. p = {0.2,0.8}×ω = {1.5,3} with scaled base rewards,
see the Material section for explanation.

left, and rd = R(m) for the most rewarding item m at step d∗:

(pωrd +(1− p)rd)(d′−1)≥ d′rd

pd′
ω− pω+d′− pd′−1+ p ≥ d′

p(d′−1)(ω−1)≥ 1

d′ ≥ 1
p(ω−1)

+1. (3)

Equation 3 implies that the optimal switch point is inde-
pendent from how many steps there are in total, but sensitive
to the potential p and incentive ω parameters. This memory-
less aspect of the model follows from the exponential growth
of the item reward function, and may vary if the reward func-
tion is set in different ways.

Here, a later switch point corresponds to more steps of
attempting new combinations. Hence, our model predicts
more exploration and greater rewards when incentives are in-
creased while holding potential fixed (Figure 2a) or when po-
tential is increased while holding incentives fixed (Figure 2b).
Below, we tested these predictions against human behavior in
an online experiment.

Testing the model predictions

We implemented the discovery game presented above in an
online experiment interface and tested the model predictions.



Figure 3: Experiment interface. a. Screenshot of a discovery game in the experiment. Arrows and bold text are for illustration
only and not shown to participants. b. A usage of the “Extract” button, leading to gaining 500 points in this demo. Note that
one step is consumed after clicking the button. c. A usage of the “Fuse” button that leads to nothing. d. Examples of successful
fusion discoveries in another machine.

Methods

Participants 210 participants were recruited through Pro-
lific Academic (97 females, Mage = 38 ± 12). The sample
size was determined by a power analysis aiming to to obtain
.95 power to detect a medium effect size of .25 at the standard
.05 alpha level. No participant was excluded from analysis.
To ensure data quality, all participants had to complete two
practice trials and pass a comprehension check before start-
ing the main task. Participants were paid both for their time
and a performance-based bonus. The task took 7± 2.5 min-
utes. The experiment was performed with approval by the
Research Integrity & Assurance Committee of Princeton Uni-
versity (ref. IRB 10859). Preregistration for the experiment is
available at https://osf.io/yph4f/. All participants gave
informed consent before undertaking the experiment.
Materials, procedure & design Participants played the
discovery game depicted in Figure 3a. In each round of the
game, participants were shown a new machine with an “Ex-
tract” button and a “Fuse” button, six base items below the
machine, and a counter indicating the number of actions left
within the round, shown as a line of bars on the top rim of the
machine. Clicking an item puts the item in the machine, and
the machine can hold up to two items at a time. Participants
were instructed that they could (1) collect points by putting a
single item in the machine and clicking the “Extract” button
(Figure 3b), or (2) make new items by putting two existing
items in the machine and clicking the “Fuse” button (Fig-
ure 3c-d). We made it clear to participants that fusions suc-
ceed (i.e. lead to a new item) x = 10× p out of 10 times, and
that newly-discovered items are worth ω times more points
than the most rewarding item used to make them. Extracting
points from an item or attempting a fusion each consume one
available action; repeating a past unsuccessful fusion attempt
does not consume an action. To make it easier for partic-
ipants to keep track of actions they had already attempted,
each item was labeled with the points that participants would

gain from extraction, and a history of failed fusion attempts
was displayed next to the machine. Participants’ goal was to
maximize the total number of points collected in each round.
Bonus was calculated based on the total points collected.

Participants were randomly assigned to four between-
subjects conditions that differed in the model-predicted op-
timal switch point. Within each of these conditions, we in-
dependently manipulated the probability that a fusion will
succeed—the potential parameter p—to be high (p = 0.8) or
low (p = 0.2). We also manipulated the rate at which rewards
increase for more complex objects ω to be high (ω= 3) or low
(ω = 1.5). Together, these led to a 2×2 between-subject de-
sign: high-p, high-ω (hh); high-p, low-ω (hl); low-p, high-ω
(lh); and low-p, low-ω (ll). To ensure that the total expected
rewards are matched across conditions, the reward that par-
ticipants receive for extracting base items was set to 1 point
for the ll condition, 150 points for the lh and hl conditions,
and 500 points for the hh (Figure 2c).

Participants completed seven independent rounds of the
discovery game, each marked using different color-coded ma-
chines; p and ω were held constant for all seven machines,
but permissible combinations—i.e., T —changed from round
to round. After the task, participants completed a debriefing
form where they provided demographic information, feed-
back, and self-reports of how they played the game.

Results
We analyzed the 7 rounds each participant played, totalling
210× 7 = 1470 rounds. A button click in the experiment is
a step in the model, extracting points corresponds to action
a1, and fusing corresponds to action a2. For the 10 actions
in each round, the proportion of fusion attempts corresponds
to how many steps of recombination the model predicts, as
specified by the optimal switch point. All data and analysis
are openly available at https://osf.io/8gwpv/.

Participants calibrated innovation-seeking to potential re-
turns. As predicted by Equation 3, overall people seek

https://osf.io/yph4f/
https://osf.io/8gwpv/
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Figure 4: Behavioral experiment results. a. Proportion of
fusion attempts per round in each condition. Yellow dots are
group means. b. Highest item level discovered per round in
each condition. Bars are group means.

more innovations when p is higher and ω is higher (Fig-
ure 4a). Both potential p and rate of increase ω indepen-
dently predicted the proportion of trials where participants at-
tempted to innovate (sparsity: F(1,1467) = 250.1, p < .001,
Cohen’s d = 0.92; incentive: F(1,1467) = 52.26, p < .001,
Cohen’s d = 0.44). We did not observe interaction effects,
F(1,1466)= 2.66, p= .1, in line with the prediction that both
factors independently encourage innovation seeking. Simi-
larly, as illustrated in Figure 4b, participants in higher p and
higher ω conditions overall discovered more advanced items
(higher levels). Both sparsity p and incentive ω predict the
highest item level that participants achieve within a round
of the game (sparsity: F(1,1467) = 1970, p < .001, Cohen’s
d = 4.15; incentive: F(1,1467) = 79.53, p < .001, Cohen’s
d = 0.5).

Participants weighted p and ω differently. The model
predicts that participants should attempt fusions at similar
rates in the low-p-high-ω and high-p-low-ω conditions, be-
cause both have the same optimal switch point. However,
participants attempted significantly more fusions in the high-
p-low-ω condition (t(652.93) =−5.4, p < .001,Cohen’s d =
0.44). Figure 5a illustrates how often participants attempted
to fuse over the course of a single round, and it shows that
participants in the low-p-high-ω condition consistently made
fewer proportion of fusion attempts in each corresponding
step of a round of the game. Together, these results sug-
gest that though participants’ fusion attempts are influenced
by both sparsity and returns, participants did not weigh these

Figure 5: Comparing the timing of participants’ switches to
model-predicted optimal switching points (stars). a. Aver-
age frequency of fusion attempts in each step over rounds per
condition. b. Histogram of switch points in each round that
exhibits a switch-once strategy

factors equally; lower success rates discouraged participants
from innovating, even in the face of high rates of return.

Most participants switch once from innovating to extract-
ing. The model predicts that there is an optimal point when
participants should switch from innovating and developing
new items to extracting points from the items available. Over-
all, participants indeed started off by attempting to innovate,
and then switched once from innovating to extracting points
from the items available: 73.5% of rounds in the high-p-high-
ω adopted this “switch-once” strategy (chance level 10/210 ≈
0.01, χ2(1,N = 336) = 17845, p < .001, with simulated p-
value based on 2000 replicates, same for below), along with
63.7% in high-p-low-ω (χ2(1,N = 336) = 13339, p < .001),
64.7% in low-p-high-ω (χ2(1,N = 329) = 13502, p < .001),
and 69.9% in low-p-low-ω (χ2(1,N = 469) = 22513, p <
.001), all significantly above adopting a switch-once strat-
egy be chance. The timing of this switch, however, did not
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always align with the model-predicted optimum. Figure 5b
shows the distribution of the switch steps in the rounds con-
taining a single switch point. In the high-p-high-ω condi-
tion, the most common switch point is the 9th step (32% of
all rounds), which corresponds to the model-predicted opti-
mum, and switch probabilities steadily increase from the 4th

to the 9th steps. In the remaining conditions, however, partic-
ipants adopted a mix of strategies. The most common switch
point in the low-p-low-ω condition is step zero (no fusion
at all; 18% of rounds), which aligns with the theoretical opti-
mum; however, the timing of participants’ switches was more
variable overall, and there was a strong competing choice of
switching at the 5th step (17.6%). In the other two condi-
tions, the most commonly-selected switch point did not align
with the model-predicted optimum (step seven), but was dis-
tributed rather evenly around the model-predicted optimum.
This indicates that noise or heuristics may interact with the ra-
tional decision-making process in these conditions. The sub-
stantial over-exploration in the low-p-low-ω condition and
wide-spread under-exploration in the other three conditions
are also reflected in the overall lower total scores than the
theoretical optimal (Figure 6).

Discussion
Human innovation is fundamentally compositional and open-
ended—each idea can give rise to new, increasingly complex
ideas (Stanley, 2019) This creates a challenge for human de-
cision making and planning: how much should we invest
in attempting new innovations, versus capitalizing on ideas
that are already available? Here, we formalized this deci-
sion in a discovery game inspired by crafting games, and ex-
amined rational solutions for when an agent should innovate.
We tested model predictions in a simplified, yet open-ended
crafting game. In line with our predictions, people make de-
cisions about whether to attempt innovations by considering
how likely it is that the attempt will work out, and how re-
warding the discovery would be.

Although people considered both the potential of success

and rate of increase in making innovation decisions, there are
clear patterns of deviation from the optimal level of innova-
tion predicted by the rational model. First, rather than con-
sidering both factors equally, participants were instead more
sensitive to the potential parameter p. One possible expla-
nation for this discrepancy is that participants may be risk
averse (Arrow, 1965; Pratt, 1978)—preferring to extract re-
wards from known options than to risk losing out on rewards
by attempting innovations that are unlikely to work out. Inter-
estingly, when both p and ω are low, the model predicts that
any innovation attempt is sub-optimal, and yet in a substan-
tial number of rounds we observed innovation attempts. This
could be accounted for by the novelty bias (Gershman & Niv,
2015; Krebs, Schott, Schütze, & Düzel, 2009; Stojić, Schulz,
P Analytis, & Speekenbrink, 2020). However, instead of be-
ing driven by uncertainty, in this setup people actually have
complete information, hence it remains to be seen whether
such over-exploration is caused by mis-interpretation of the
task, or some genuine bias about innovation seeking.

Moving forward, our simple parametrization of the task
can be extended to capture other important features of real-
world innovations. For example, not every new combination
of ideas has the same probability of success, and real-world
entrepreneurs and researchers often have to choose between
developing small and incremental improvements that are
likely to work and yield low rewards, or attempting big leaps
that connect previously disparate ideas, carrying higher risk
but also potentially bringing greater rewards (Fleming, 2001;
J.-P. Ferguson & Carnabuci, 2017). We can study how people
navigate this trade-off in a more controlled setting by intro-
ducing dependencies between the potential risk and returns,
rather than varying the two independently and holding them
fixed through the duration of the task. For example, future
work may examine how people calibrate their innovation-
seeking by estimating p from domain-specific knowledge,
rather than being told p explicitly.

While the current work focuses on individual decisions
about when to pursue innovations, innovation is anything
but a solitary activity; moving forward, our framework could
be extended to capture how innovation-seeking decisions are
made by teams or collections. In multiplayer games, teams
may buffer themselves from the risk of pursuing innovations
by dividing labor, while communication costs could impede
the speed and quality of discovery (Almaatouq, Alsobay, Yin,
& Watts, 2021; Ethiraj & Levinthal, 2004). Social network
structures that specify how information flows have a big im-
pact on how innovations spread (Mason et al., 2008; Derex
& Boyd, 2016), and our framework provides a rich space for
examining how individual cognitive mechanisms give rise to
group-level dynamics (Muthukrishna & Henrich, 2016).

In short, this work is a first step toward answering how peo-
ple renovate their current toolkit in a compositional space of
options. By combining ideas from different literature in novel
ways, we hope we have increased the rewards that might be
derived from further studies of innovation.
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Brändle, F., Stocks, L. J., Tenenbaum, J. B., Gershman, S. J.,
& Schulz, E. (2023). Empowerment contributes to explo-
ration behaviour in a creative video game. Nature Human
Behaviour, 7(9), 1481–1489.

Callaway, F., van Opheusden, B., Gul, S., Das, P., Krueger,
P. M., Griffiths, T. L., & Lieder, F. (2022). Rational use
of cognitive resources in human planning. Nature Human
Behaviour, 6(8), 1112–1125.

Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should
i stay or should i go? how the human brain manages the
trade-off between exploitation and exploration. Philosoph-
ical Transactions of the Royal Society B: Biological Sci-
ences, 362(1481), 933–942.

Derex, M., & Boyd, R. (2016). Partial connectivity increases
cultural accumulation within groups. Proceedings of the
National Academy of Sciences, 113(11), 2982–2987.

Ethiraj, S. K., & Levinthal, D. (2004). Modularity and in-
novation in complex systems. Management science, 50(2),
159–173.

Ferguson, J.-P., & Carnabuci, G. (2017). Risky recombina-
tions: Institutional gatekeeping in the innovation process.
Organization Science, 28(1), 133–151.

Ferguson, T. S. (2006). Optimal stopping and applica-
tions. https://www.math.ucla.edu/˜tom/Stopping/
Contents.html.

Fleming, L. (2001). Recombinant uncertainty in technologi-
cal search. Management science, 47(1), 117–132.

Gershman, S. J., & Niv, Y. (2015). Novelty and inductive
generalization in human reinforcement learning. Topics in
cognitive science, 7(3), 391–415.

Hafner, D. (2022). Benchmarking the spectrum of agent ca-
pabilities. In Proceedings of the tenth international confer-
ence on learning representations.

Krebs, R. M., Schott, B. H., Schütze, H., & Düzel, E. (2009).
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