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While artificial intelligence (AI) is progressing steadily and 
the computing power of our electronic devices contin-
ues to grow, the computing power of the human brain 

does not. Our bounded cognitive resources continue to constrain 
our decision-making and often lead to simple heuristics. Previous 
research has shown that these heuristics can fail miserably in certain 
scenarios1–3 but perform very well in the environments they have 
evolved for4–8. These two observations suggest that in the future the 
human mind could be augmented with cognitive prostheses that use 
AI to automatically restructure situations in which people’s heuris-
tics perform poorly into situations in which those heuristics per-
form very well.

In line with this vision, previous work has found that human 
judgement and decision-making can be improved by restructur-
ing how information is presented to people9–13, and parallel work in 
operations research and computer science has developed decision-
support systems14,15 that use planning algorithms to solve complex, 
sequential decision problems for people16–20. These approaches have 
rarely been combined to help people overcome motivational obsta-
cles and achieve their personal long-term goals.

One class of decision problems in which people systematically 
underperform involves choices whose proximal rewards are mis-
aligned with their long-term value (for example, persevering with 
a frustrating challenge versus getting drunk and watching TV). 
In  situations like these, people’s heuristics tend to reach short-
sighted decisions21–23 that can manifest in procrastination24 and 
impulsivity25. This apparently myopic nature of human decision-
making suggests that decision environments can be repaired by 
aligning each action’s immediate reward with the value of its long-
term consequences.

While it is generally difficult to change how people experience 
the actions necessary to achieve their goals (for example, dieting, 
debugging or filing taxes) relative to actions that do not (such as 
eating chocolate or watching TV), it is possible to incentivize those 
actions with game elements such as points, levels and badges. This 
approach is known as gamification26. Previous research has found 
that gamification can have positive effects on motivation, engage-
ment, behaviour and learning outcomes27. Yet determining which 
actions should be incentivized and by how much is still an art rather 

than a science, and misspecified incentives can have devastating 
consequences28,29.

Here, we leverage ideas from AI to develop a mathematical 
framework to help people make more future-minded decisions. The 
basic idea is to align each action’s immediate reward with its long-
term value. The resulting system can be interpreted as a cognitive 
prosthesis that uses AI to solve people’s complex sequential deci-
sion problems and uses gamification to restructure them in such a 
way that people can easily identify the course of action that is best 
for them in the long run. This approach offloads the computational 
challenges of long-term planning into the reward structure of the 
environment, and the underlying theory ensures that the added 
game elements will never incentivize counterproductive behaviour. 
We evaluate our approach in a series of four increasingly naturalistic 
experiments starting with controlled proof-of-concept experiments 
and culminating in longitudinal studies with a naturalistic to-do list 
app. We find that our optimal gamification method can mitigate the 
adverse effects of cognitive biases and is more effective at helping 
people get started on important tasks and waste less time on unim-
portant tasks than simpler approaches to incentivizing productivity.

An optimal gamification method for decision support
A sequential decision problem can be modelled as a Markov deci-
sion process (MDP)

S A γ=M T r P( , , , , , ) (1)0

where S is the set of states, A is the set of actions and T(s, a, s′) is the 
probability that the agent will transition from state s to state s′ if it 
takes action a. The discount factor γ can be interpreted as the prob-
ability that the decision maker can continue to act and gather more 
rewards when they arrive in state s′. Setting γ to a value less than 1 
thereby captures the possibility that the episode described by the 
MDP can end early so that future rewards might become unavail-
able; for instance, γ < 1 could be used to model the probability that 
one cannot reap all of the long-term rewards of getting promoted 
because the company might go bankrupt. The reward generated 
by this transition is r(s, a, s′), and P0 is the probability distribution 
of the initial state S0 (ref. 30). A policy S Aπ ↦:  specifies which 
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action to take in each of the states. The expected sum of discounted 
rewards that a policy π will generate in the MDP M starting from a 
state s is known as its value
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A rational decision maker should follow the optimal policy π⋆
M, 

which maximizes the expected sum of discounted rewards; that is,
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People’s limited cognitive resources make it impractical for them to 
always plan out the optimal policy31. And even when people know 
which action would be best in the long term, they do not always 
exert enough self-control to override their more short-sighted 
impulses and habits32. The value function of the optimal policy sat-
isfies the Bellman equation

E γ= + .⋆
+

⋆
+V s r s a S V S( ) max [ ( , , ) ( )] (4)M t a t t M t1 1

We can therefore rewrite the optimal policy as

Eπ γ= +⋆
+

⋆
+s r s a S V S( ) arg max [ ( , , ) ( )] (5)M a t t M t1 1

which reveals that it is myopic with respect to the sum of the imme-
diate reward and the discounted value of the next state. Here, we 
leverage the MDP framework to model game elements such as 
points and badges as pseudo-rewards f(s, a, s′) that are added to the 
reward function r(s, a, s′) of a decision environment M to create a 
modified environment S A γ=′ ′M T r P( , , , , , )0  with a more benign 
reward function r′(s, a, s′) = r(s, a, s′) + f(s, a, s′) that aligns immedi-
ate reward with long-term value.

Designing an incentive system that aligns each action’s immedi-
ate reward with its long-term value is non-trivial, and misspecified 
incentives can divert people even farther away from the optimal 
policy. From the perspective of our formal MDP framework, the 
problem with misspecified incentives is that they change the opti-
mal policy π⋆

M of the original decision problem M into a different 
policy π ⋆

′M  that is optimal for the gamified environment M′ but not 
for the original environment M. To avoid this problem, we have to 
ensure that each optimal policy of M′ is also an optimal policy of M.

Research on machine learning has identified which conditions 
pseudo-rewards must satisfy to achieve this: according to the shap-
ing theorem33 adding pseudo-rewards retains the optimal policies 
of any original MDP if, and only if, the pseudo-reward function f is 
potential-based; that is, if there exists a potential function SΦ ↦ R:  
such that

γ= Φ −Φ′ ′f s a s s s( , , ) ( ) ( ) (6)

for all values of s, a and s′.
If gamification is to help people achieve their goals, then the 

pseudo-rewards added in the form of points or badges must not divert 
people from the best course of action but must make its path easier 
to follow. Gamification would otherwise lead people astray instead of 
guiding them to their goals. Hence, the practical significance of the 
shaping theorem is that it gives the architects of incentive structures a 
method to rule out incentivizing counterproductive behaviours:

 1. Model the decision environment as an MDP.
 2. Define a potential function Φ that specifies the value of each 

state of the MDP.
 3. Assign points according to equation (6).

This method could thus be used to avoid some of the dark sides 
of gamification28,29.

While the shaping theorem constrains pseudo-rewards to be 
potential-based, there are infinitely many potential functions one 
could choose. Given that people’s cognitive limitations prevent 
them from fully incorporating distant rewards22,23, the modified 
reward structure r′(s, a, s′) should be such that the best action yields 
the highest immediate reward, that is:

π = .′ ′⋆ s r s a s( ) arg max ( , , ) (7)M a

Here, we show that this can be achieved with our method by setting 

Φ to the optimal value function ⋆VM of M:

Φ = = .π
π⋆ ⋆s V s V s( ) ( ) max ( ) (8)M M

First, note that the resulting pseudo-rewards are

γ= −′ ′⋆ ⋆f s a s V s V s( , , ) ( ) ( ) (9)M M

which leads to the modified reward function

γ= + −′ ′ ′ ′⋆ ⋆r s a s r s a s V s V s( , , ) ( , , ) ( ) ( ) (10)M M

Hence, if the agent always maximized its immediate reward without 
regard for future rewards, then its policy would be

E
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According to equation (5), this is π⋆
M for the original decision envi-

ronment M. Thus, people would act optimally even if they were com-
pletely myopic; this property by itself could be achieved by heuristic 
incentive structures that always put the largest reward on the best 
action. However, when this is done heuristically, there is a risk that 
decision makers could find ways to game the system by collecting the 
incentives in ways that undermine their intended purpose34–36. For 
instance, a heuristic incentive system (for example, pay proportional 
to the number of hours worked) that rewards a worker for complet-
ing certain tasks (such as reviewing paperwork) could create perverse 
incentives for them to create unnecessary work for themselves and 
others (for example, by inventing further bureaucracy to justify their 
job) even when the incentive system does not reward that directly. By 
contrast, the optimal incentive structures designed with our method 
cannot be gamed and are therefore unlikely to mislead decision mak-
ers. This safety guarantee is unique to incentive structures that obey 
the shaping theorem33, and our optimal gamification method applies 
this theorem to support human decision-making. This suggests that 
potential-based pseudo-rewards derived from ⋆VM should allow even 
the most myopic agent that considers only the immediate reward to 
perform optimally. In this sense, the pseudo-rewards defined in equa-
tion (9) can be considered optimal. Optimal pseudo-rewards have 
also been found to facilitate reinforcement learning in machines33 and 
people37 (F. Lieder et al., manuscript in preparation).

Computing the optimal pseudo-rewards requires perfect knowl-
edge of the decision environment and the decision maker’s prefer-
ences. This information may be unavailable in practice. Yet even 
when ⋆VM cannot be computed, it is often possible to approximate it. 
If so, the approximate value function V̂M can be used to approximate 
the optimal pseudo-rewards (equation (9)) by

γ̂ = ̂ − ̂ .′ ′f s a s V s V s( , , ) ( ) ( ) (12)M M

For example, one can estimate the value of s from its approximate 
distance to a goal33.
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Here we develop and evaluate an approach that leverages AI to 
help people make better decisions. The basic idea is to automati-
cally restructure decision environments in such a way that people’s 
Pavlovian impulses to collect immediate rewards and avoid imme-
diate losses lead to optimal decisions. To achieve this, our method 
leverages AI to compute optimal pseudo-rewards and delivers them 
through game elements. On the basis of previous simulations33, 
we predict that adding approximate pseudo-rewards (equation 
(12)) improves people’s decisions and that adding optimal pseudo-
rewards is even more beneficial. We test these predictions in three 
behavioural experiments.

results
Reward shaping is more effective than heuristic incentive struc-
tures at improving people’s choices. As a proof of concept, we 
demonstrate that our mathematical framework for decision sup-
port makes it possible to automatically compute optimal incentive 
structures for a difficult sequential decision problem. In this prob-
lem, people often overlook the optimal course of action because 
they fail to plan beyond intermediate steps that incur a large loss23. 
Experiment 1 showed that the optimal incentives computed by our 
method allowed people to overcome this bias and perform better 
than when the incentives were designed heuristically or when no 
additional incentives were provided.

The sequential decision problem used in this study was the flight 
planning problem shown in Fig. 1a; it is based on the task that Huys 
et al.23 used to demonstrate that people often fail to find optimal plans 
when this requires looking beyond short-term losses. To help people 
make better decisions in this task, the incentives computed with our 
method or heuristic approaches were added directly onto the rewards 
shown on the arrows in Fig. 1a. In the control condition, people were 
shown the true transition and reward structure of this task, and their 
incentives were identical to the task’s reward function r(s, a, s′) (see 
Fig. 2a). By contrast, in the experimental conditions, the incentives 
shown to the participants (r′(s, a, s′)) differed from the task’s true 
reward function by the pseudo-rewards f(s, a, s′) (i.e., r′(s, a, s′) = r(s, 
a, s′) + f(s, a, s′)). We evaluated three kinds of pseudo-rewards: opti-
mal pseudo-rewards (see equation (9) and Fig. 2b), potential-based 
pseudo-rewards based on an approximate value function (equa-
tion (12) and Fig. 2c) and a heuristic incentive system (see Fig. 2d). 
The approximate value function and the heuristic incentive system 
both rewarded moving towards the most profitable location (that is, 
Smithsville in Fig. 2a), but the former satisfied the shaping theorem 
(equation (6)) whereas the latter violated it. Regardless of the incen-
tives shown to the participants, we measured their performance 
according to the reward function r(s, a, s′) of the original task.

A Kruskal–Wallis analysis of variance (ANOVA) revealed that 
the type of pseudo-rewards added to the reward function signifi-
cantly affected people’s performance in the original task (Kruskal’s 
H(3) = 40.35, P < 0.001, η2 = 0.218, 95% confidence intervals: 
[–27.92, –10.42], [–28.75, –9.58], [–14.58, 0.83], [–2.08, 16.25] 
points per trial for the conditions without pseudo-rewards, with 
non-potential-based, with approximate pseudo-rewards and with 
optimal pseudo-rewards, respectively; see Fig. 1b). To elucidate this 
effect further, we performed a series of two-sided Mann–Whitney 
U tests. As expected, the unaided participants in the control condi-
tion performed very poorly, attaining a median loss of 18.75 points 
per trial (95% confidence interval: [–28.75, –9.58]). Aiding partici-
pants with optimal pseudo-rewards led to significantly better per-
formance, enabling them to achieve a median gain of +5.00 points 
per trial (95% confidence interval: [–2.08, +16.25], standardized 
U-score: Z = 4.76, P < 0.001, effect size r = 0.48, 95% confidence 
interval on the difference between the medians: [+15.00, +36.25]). 
Potential-based pseudo-rewards derived from an approximate value 
function also improved people’s performance (Z = 2.86, P = 0.004, 
r = −0.30, 95% confidence interval of the resulting increase in the 

median performance: [+3.12, +23.75]) but not as much as optimal 
pseudo-rewards (Z = 2.68, P = 0.007, r = 0.29, 95% confidence inter-
val of the difference between the median performance with opti-
mal and approximate pseudo-rewards: [1.67, 22.08]). By contrast, 
the non-potential-based pseudo-rewards failed to improve people’s 
performance (Z = 0.72, P = 0.469, r = 0.07, 95% confidence interval: 
[–10.42, 12.50]). Optimal pseudo-rewards also accelerated the deci-
sion process (Supplementary Results and Supplementary Fig. 15), 
supporting the conclusion that optimal pseudo-rewards simplify 
decision problems. Inspecting the four groups’ choice frequencies 
revealed that the optimal pseudo-rewards significantly changed the 
choice frequencies in each of the six states and successfully nudged 
participants to follow the optimal cycle: Smithsville → Jonesville 
→ Williamsville → Bakersville → Smithsville (see Supplementary 
Results and Supplementary Fig. 16).

These results indicate that our mathematical framework makes 
it possible to automatically compute optimal incentives that can be 
more effective than manually designed incentive structures. To the 
extent that game elements such as points act as rewards, these find-
ings suggest that optimal gamification should be safer and more 
effective than the prevailing heuristic gamification methods. We 
test this prediction in the following experiments.

Optimal pseudo-rewards can be effectively conveyed by game 
elements. Having found that optimal pseudo-rewards can sub-
stantially improve people’s performance, we asked how they should 
be presented in practice. In Experiment 1, pseudo-rewards were 
embedded directly into the reward structure of the decision envi-
ronment. In the real world, this kind of intervention could be imple-
mented by changing tax rates or corporate compensation schemes, 
for instance. Most of the time such radical changes are beyond the 
scope of what a choice architect can do, but adding game elements, 
such as points and badges, is cheap and comparatively easy. Game 
elements could be used to convey the optimal pseudo-rewards com-
puted with our computational method; here we refer to this idea as 
‘optimal gamification’. This could be done in many different ways, 
some of which might be more effective than others. As a first step 
towards designing optimal gamification apps for decision support 
in the real world, Experiment 2 evaluated candidate solutions in a 
more controlled online experiment. We augmented the task from 
Experiment 1 with game mechanics that conveyed optimal pseudo-
rewards through stars and badges (see Fig. 3a and Supplementary 
Methods). In the first experimental condition, the number of stars 
awarded for each action was equal to its optimal pseudo-reward 
(see Fig. 4c). Thus, the player could, in principle, identify the 
optimal course of action by adding rewards and pseudo-rewards. 
Because this process can be tedious and prone to errors, the second 
experimental condition used an alternative presentation format in 
which stars represented the sum of pseudo-rewards and immediate 
rewards (integrated pseudo-rewards) so that people would no lon-
ger have to perform mental arithmetic to use the pseudo-rewards 
optimally (see Fig. 4d). We compared people’s performance in these 
conditions with their performance in a control condition with-
out pseudo-rewards (see Fig. 4a) and a condition where optimal 
pseudo-rewards were added directly to the pay-offs (embedded 
pseudo-rewards; see Fig. 4b).

A Kruskal–Wallis ANOVA revealed that whether and how 
pseudo-rewards were presented had a significant effect on people’s 
performance in the task (H(3) = 29.08, P < 0.001, η2 = 0.092, 95% 
confidence intervals on median performance: [–1.3, +0.4] without 
pseudo-rewards, [–0.1, +0.9] for embedded pseudo-rewards, [–1.5, 
+0.0] for separately presented pseudo-rewards and [–0.2, +0.8] 
for the integrated presentation format). To evaluate the relative 
effectiveness of these presentation formats, we performed a series 
of two-sided Mann–Whitney U tests. The results of this experi-
ment replicated the finding that when optimal pseudo-rewards 
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are embedded in the task’s reward structure, participants achieve 
a significantly higher median score than participants who receive 
no pseudo-rewards (Z = 4.53, P < 0.001, η2 = 0.357, 95% confidence 

interval on the difference between the medians: [+0.48, +1.73]). 
Furthermore, the results suggest that optimal pseudo-rewards can 
be effectively conveyed by game elements such as stars and badges. 
Integrated pseudo-rewards presented in the form of stars signifi-
cantly increased people’s performance from −US$0.73 per trial to 
+US$0.17 per trial (Z = 3.69, P < 0.001, r = 0.298, 95% confidence 
interval: [+0.42, +1.65]), which was not significantly lower than 
the performance of the group presented embedded pseudo-rewards 
(US$0.42 per trial, Z = 0.52, P = 0.610, r = −0.04, 95% confidence 
interval: [–0.69, +0.50]). Presenting pseudo-rewards in this inte-
grated format was critical to their effectiveness, since presenting 
them separately failed to significantly increase people’s perfor-
mance (median performance: −US$0.5 per trial; Z = 0.22, P = 0.83, 
r = 0.017, 95% confidence interval: [–0.90, +0.88]). Inspecting par-
ticipants’ choice frequencies revealed that the three presentation 
formats had significantly different effects on people’s decisions (see 
Supplementary Results and Supplementary Fig. 18). In summary, 
incentivizing good decisions with game elements can be as effective 
as redesigning the decision environment, and this approach is most 
effective when the game elements make it very easy for people to 
identify the best course of action.

Optimal gamification helps people overcome procrastina-
tion. Given that optimal gamification enabled the participants of 
Experiment 2 to act more far-sightedly, we hypothesized that this 
approach might be able to alleviate the myopic biases that give rise to 
procrastination in everyday life. To test this hypothesis, we designed 
a more naturalistic experiment in which participants used the to-do 
list app shown in Fig. 5. In Experiment 3, each participant’s to-do 
list comprised five daunting writing assignments. Participants were 
free to complete as few or as many of those assignments as they 
wanted and could earn a US$20 bonus by completing all assign-
ments by a distant deadline. The critical experimental manipula-
tion was whether and how the to-do list items were incentivized 
with game elements. The experiment comprised a control condition 
where participants were presented with a regular to-do list without 
game elements and three conditions where participants could earn 
points and badges for completing the items on their to-do list (see 
Fig. 5). In one of these conditions, each task was assigned the same 
number of points; this was considered a second control condition. 
In the other two conditions, the number of points assigned to each 
task was computed by optimal gamification (see Fig. 5). The opti-
mal point values displayed next to each to-do item conveyed how 
much closer completing that task would bring the participant to 
earning the US$20 bonus. Consequently, more difficult tasks would 
earn the participant more points than shorter and simpler ones. In 
one of these conditions, the incentives for completing each assign-
ment were conveyed as points (see Fig. 5), and a participant’s total 
number of points determined their level in the game. In the other 
condition, the optimal pseudo-rewards were displayed as virtual 
dollars.

To evaluate the effect of presentation format on the probability 
that participants would complete all the writing assignments on 
time, we conducted a series of χ2 tests. As shown in Fig. 6, opti-
mal pseudo-rewards significantly increased the completion rate 
from 56.1% in the control conditions to 85.2% in the experimental 
conditions with optimal pseudo-rewards (χ2(1) = 11.20, P < 0.001, 
goodness of fit w = 2.863, 95% confidence intervals: [41.0%, 75.9%] 
versus [82.2%, 99.7%]). This benefit cannot be explained by the 
mere presence of incentives or game elements because adding con-
stant point values failed to increase the completion rate (53.6% with 
constant points versus 58.6% without points, χ2(1) = 0.15, P = 0.701, 
w = 0.384, 95% confidence intervals: [35.6%, 71.5%] versus [41.0%, 
75.9%]). Framing optimal pseudo-rewards in terms of money led to 
a completion rate of 92.3% while presenting them as points led to 
a completion rate of 78.6%, but this difference was not statistically  

Trial 3/24
Location: Jonesville

Jonesville Smithsville

Bakersville

Clarksville

–3
0

–70

–70

–30

–3
0

–70

+30

+30

–30

–30

+30

+140

Flight 9 20 points

Willliamsville

Brownsville

Willliamsville: –30 Clarksville: –70

40

20

0

–20

–40

–60

–80

P
oi

nt
s 

pe
r 

tr
ia

l

Non
-p

ot
en

tia
l-b

as
ed

Non
e

App
ro

xim
at

e

Opt
im

al

***

***

**

**
NS

a

b

Fig. 1 | experiment 1. a, Task in Experiment 1: screenshot of the control 
condition without pseudo-rewards. Participants can move the airplane 
along the arrows from one airport (e.g., Williamsville) to the next. The 
number on the arrow indicates the loss or profit of each flight. b, Box 
plots of performance by condition. The red line indicates the median. 
The blue lines are quartiles. The red crosses denote outliers, and the 
black whiskers extend to the most extreme data points not considered 
outliers. The number of stars indicates the significance level according to 
two-sided Mann–Whitney U tests: *P < 0.05; **P < 0.01; ***P < 0.001; NS, 
not significant). As shown in this figure, optimal pseudo-rewards led to 
significantly higher performance than no pseudo-rewards (50 participants, 
Z = 4.76, P < 0.001, effect size r = 0.48, 95% confidence interval on the 
difference between the medians: [+15.00, +36.25] points/trial), non-
potential-based pseudo-rewards (Z = 5.34, P < 0.001, r = 0.545, 95% 
confidence interval: [+15.42, +37.92]) or approximate pseudo-rewards 
(Z = 2.68, P = 0.007, r = 0.29, 95% confidence interval: [1.67, 22.08]). 
Furthermore, approximate pseudo-rewards led to significantly higher 
performance than no pseudo-rewards (Z = 2.86, P = 0.004, r = −0.30, 
95% confidence interval: [+3.12, +23.75]) or non-potential-based pseudo-
rewards (Z = 3.61, P < 0.001, r = 0.383, 95% confidence interval: [+4.17, 
+24.38]). Non-potential-based pseudo-rewards had no beneficial effect 
compared to no pseudo-rewards (Z = 0.72, P = 0.469, r = 0.07, 95% 
confidence interval: [–10.42, 12.50]). These findings are based on data from 
186 participants of which 50 received no pseudo-rewards, 47 received 
optimal pseudo-rewards, 49 received non-potential-based pseudo-rewards 
and 40 received approximate pseudo-rewards.
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significant (χ2(1) = 2.01, P = 0.156, w = 1.42, 95% confidence inter-
vals: [82.2%, 99.7%] versus [63.5%, 92.4%]). Along with the increase 
in the completion rate, the average number of completed assign-
ments increased from 2.93 out of 5 without optimal gamification 
to 4.30 out of 5 with optimal gamification according to a two-sided 
Mann–Whitney U test (Z = 3.38, P = 0.001, r = 0.321, 95% confi-
dence intervals on the means: [2.30, 3.54] without optimal gami-
fication versus [3.81, 4.72] with optimal gamification), and the 
average total number of words written by each participant signifi-
cantly increased from 458.4 ± 59.0 without optimal gamification 
to 765.46 ± 71.45 with optimal gamification according to a Mann–
Whitney U test (Z = 3.37, P = 0.001, r = 0.320, 95% confidence 
intervals on the means: [345.6, 576.1] without optimal gamification 
versus [634.2, 911.2] with optimal gamification). Further analy-
ses reported in the Supplementary Information suggested that the 
primary benefit of optimal gamification was to increase the prob-
ability that a participant would complete the first task from 59.65% 
to 87.04% (Kruskal–Wallis ANOVA, χ2(1) = 11.01, P < 0.001, 
η2 = 0.09, 95% confidence intervals: [48.8%, 73.7%] versus [80.5%, 
96.4%]), because regardless of gamification 95.1% of all participants 
who completed the first task went on to complete all of the tasks 
(Kruskal–Wallis ANOVA: χ2(1) = 0.69, P = 0.408, η2 = 0.006, 95% 
confidence intervals: [82.2%, 98.9%] without gamification versus 
[90.2%, 99.9%] with gamification), and their motivation and behav-
iour seemed to be unaffected.

Optimal gamification helps people prioritize. While Experiment 
3 showed that optimal gamification is more effective than assign-
ing the same number of points to every item on one’s to-do list, 
there might be other simple heuristics that are just as effective as 
our computationally intense optimal gamification method. One 
intuitive heuristic is that long and difficult tasks should be assigned 
more points than tasks that are short and easy. On the surface, this 

is exactly what optimal gamification did in Experiment 3. However, 
optimal gamification also takes into account the value of the goals 
that each task contributes to and how much it contributes to that 
value. Experiment 4 shows that this makes optimal gamification 
more effective than a simple heuristic that incentivizes each task 
only according its length (i.e., the number of points for completing 
task A is $20 times the length of task A divided by the total length 
of all tasks combined). Participants were given a to-do list of ten 
tasks. Five of those tasks belonged to a valuable project (Project 1) 
whose completion would earn the participant a US$20 bonus. The 
other five tasks were equally difficult but belonged to an unworth-
while project (Project 2) whose completion would earn the partici-
pant only US$1. Participants were free to complete either one of the 
projects, both or neither.

According to a χ2 test of independence, gamification signifi-
cantly reduced the proportion of participants who wasted their 
time by working on the unworthwhile second project(χ2(2) = 10.85, 
P = 0.004,w = 0.726, 95% confidence intervals: [19.1%, 46.5%] 
without gamification, [27.5%, 56.4%] with heuristic gamification 
and [3.0%, 20.2%] with optimal gamification). Consistent with 
our prediction, we found that the proportion of participants who 
worked on Project 2 was lowest in the optimal gamification condi-
tion (11.1%), highest in the condition with heuristic gamification 
(41.9%) and intermediate in the control condition (32.6%). Mann–
Whitney U tests confirmed our hypothesis that participants who 
are supported by optimal gamification perform fewer wasteful tasks 
of Project 2 (avg. 0.38) than participants supported by heuristic 
gamification (avg. 1.47; Z = 3.22, P = 0.001, r = −0.343, 95% confi-
dence intervals on the means: [0.88, 2.09] with heuristic gamifica-
tion versus [0.04, 0.80] with optimal gamification) and participants 
in the control condition (avg. 1.00, Z = 2.38, P = 0.017, r = −0.254, 
95% confidence intervals: [0.51, 1.56] without gamification versus 
[0.04, 0.80] with optimal gamification). Likewise, the proportion 
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of participants who completed the unworthwhile project was high-
est in the condition with heuristic gamification (20.9%), lowest 
in the optimal gamification condition (10.0%) and intermediate 

in the control condition (14.0%), although these differences were 
not statistically significant according to a χ2 test of independence 
(χ2(2) = 3.78, P = 0.151, w = 1.943, 95% confidence intervals: [4.6%, 
24.3%] without gamification, [9.6%, 33.1%] with heuristic gamifi-
cation and [0.8%, 13.9%] with optimal gamification). These find-
ings suggest that optimal gamification can not only help people get 
started on important tasks, as shown in Experiment 3, but can also 
help them avoid wasting time on unimportant ones.

Consistent with the findings in Experiment 3, an increasing trend 
in the completion rate of Project 1 from the control condition (34.9%) 
to the optimal gamification condition (42.2%) via the heuristic gamifi-
cation condition (37.2%) pointed in the predicted direction, but these 
differences were not statistically significant according to a Kruskal–
Wallis ANOVA (χ2(2) = 0.53, P = .769, w = 0.726, 95% confidence 
intervals: [21.2%, 49.0%] without gamification, [23.2%, 51.5%] with 
heuristic gamification and [28.2%, 56.5%] with optimal gamification); 
we think this is primarily because the addition of five more writing 
assignments drastically reduced the overall completion rate in all con-
ditions, thereby reducing the statistical power of our experimental 
design. See the Supplementary Results for more detail on how optimal 
gamification affected people’s engagement with Project 1.

According to a one-way ANOVA, gamification also had a sig-
nificant effect on participants’ self-reported motivation to complete 
the tasks (F(2, 46) = 3.35, P = 0.044, η2 = 0.127, 95% confidence 
intervals: [3.94, 5.22] without gamification, [4.83, 5.69] with heu-
ristic gamification and [5.91, 6.51] with optimal gamification) with 
motivation higher in the optimal gamification condition than in the 
control condition (t(29) = 2.58, P = 0.015, d = 0.951 according to 
two-sided t-test) and potentially higher than in the heuristic gami-
fication condition (t(35) = 1.82, P = 0.077, d = 0.598).

Contrary to the concern that people might experience gamifica-
tion as a manipulative intrusion on their freedom of choice, a series 
of one-way ANOVAs revealed that gamification had no effect on the 
level of autonomy (F(2, 46) = 1.57, P = 0.219, η2 = 0.127, 95% confi-
dence intervals: [4.74, 5.65] without gamification, [4.56, 5.38] with 
heuristic gamification and [5.53, 6.36] with optimal gamification) 
or perceived intrusion (F(2, 46) = 0.27, P = 0.761, η2 = 0.012, 95% 
confidence intervals: [1.55, 2.37] without gamification, [1.15, 1.85] 
with heuristic gamification and [1.19, 2.10] with optimal gamifica-
tion) that our participants experienced. To the contrary, in our sam-
ple participants supported by optimal gamification gave the highest 
median rating of autonomy (6.2 versus 5.1 in the control condition 
and 4.9 in the heuristic condition) and the lowest median rating of 
perceived intrusion (0.50 versus 1.75 in the control condition and 
1.50 in the heuristic gamification condition).

Discussion
The results of Experiments 1–4 suggest that optimal gamification 
can help people make better decisions and act more far-sightedly 
(Experiments 1 and 2), get started on daunting tasks (Experiment 
3) and waste less time on unimportant tasks (Experiment 4). These 
findings jointly show that aligning each action’s immediate reward 
with its long-term value succeeds in improving people’s choices 
when heuristic gamification methods fail. We found that optimal 
gamification is more effective than uniformly incentivizing progress 
towards a goal (Experiment 1), assigning the same number of points 
to each behaviour the designer wants to encourage (Experiment 3) 
or making the number of points proportional to how long a task 
takes (Experiment 4). Our optimal gamification method achieves 
this alignment between immediate reward and long-term value by 
leveraging AI to solve sequential decision problems that are chal-
lenging for people and translating the solutions into incentives that 
align each action’s immediate reward with its long-term value. The 
resulting incentive structures are implemented using game elements 
such as points and levels that motivate people to do what is best 
for them in the long run. While each of the heuristics we evaluated 
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Fig. 3 | experiment 2. a, Screenshot from the pilot game with separately 
presented pseudo-rewards. b, Box plots of performance in Experiment 
2 by condition. When game elements conveyed the optimal pseudo-
rewards in the integrated format, participants performed significantly 
better than when they were presented no pseudo-rewards (Z = 3.69, 
P < 0.001, η2 = 0.298, 95% confidence interval: [+0.48, +1.73] points/
trial) or when the optimal pseudo-rewards were presented separately 
(Z = 3.21, P = 0.001, r = 0.258, 95% confidence interval: [+0.17, +1.83]), 
and not significantly better or worse than when optimal pseudo-rewards 
were embedded directly into the environment’s reward structure (Z = 0.52, 
P = 0.610, r = −0.04, 95% confidence interval: [–0.69, +0.50]). By contrast, 
separately presented pseudo-rewards did not significantly improve people’s 
performance compared to the control condition (Z = 0.22, P = 0.829, 
r = 0.017, 95% confidence interval: [–0.90, +0.88]) and led to significantly 
lower performance than embedded pseudo-rewards (Z = −3.63, P < 0.001, 
r = −0.285, 95% confidence interval: [–1.96, +0.25]). As in Experiment 
1, embedding optimal pseudo-rewards into the task’s reward structure 
significantly improved participants’ performance relative to the control 
condition (Z = 4.53, P < 0.001, η2 = 0.357, 95% confidence interval: [+0.48, 
+1.73]). All statistical comparisons reported in this figure are two-sided 
Mann–Whitney U tests. These findings are based on data from 316 
participants (about 80 in each condition).
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optimal gamification against may work in some cases, our results 
suggest that optimal gamification is more reliable across a wider 
range of potential applications.

More generally, our results illustrate that AI can be used to auto-
matically restructure decision problems in such a way that people’s 
heuristics work well. This approach is in line with an extensive lit-
erature on bounded rationality that emphasizes that decision qual-
ity depends on the fit between people’s heuristics and the structure 
of their environment4–8,38. While optimal gamification accommo-
dates the myopic nature of many heuristics, AI can also be lever-
aged to adapt the way in which decision problems are presented 
to other characteristics of heuristic decision-making. For instance, 

one could accommodate people’s tendency to select the first option 
they find good enough38 by leveraging AI to sort the alternatives 
in descending order of their predicted value to the decision maker. 
This approach could be combined with optimal gamification to help 
people choose the option that is best in the long term even when 
there are too many alternatives to be considered and many of them 
are decent. Furthermore, an intelligent personal assistant could try 
to ensure that the default decision is always an action with high 
expected utility rather than the status quo12.

There are already many decision support systems that solve 
MDPs to compute optimal decisions and advise people to exe-
cute them16–20. However, research in psychology suggests that this 
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approach to decision support would probably undermine people’s 
intrinsic motivation because it runs counter to the fundamental 
human need for self-determination and autonomy39. Optimal gami-
fication, by contrast, gives people complete freedom over what to do 
and can be applied to help people motivate themselves to take action 
towards their own goals. Using game elements to boost motivation 
is not a new idea, but optimal gamification is based on a rigorous 
mathematical theory for determining which actions should be 
incentivized and by how much. This theory guarantees that optimal 
gamification will never incentivize counterproductive behaviour33. 
Here we have shown that it can be leveraged to avoid the perils of 
less principled approaches to motivating people with incentives and 
game elements28,29.

The results of Experiment 3 suggest that optimal gamification 
might be able to help people align their actions (for example, whether 
or not to work on a writing assignment) with their long-term goal 
(for example, to earn a US$20 bonus). The primary problem that 
optimal gamification solved in this setting was to help people over-
come the motivational barriers of immediate effort that would be 
rewarded much later. This suggests that optimal gamification might 
be useful for helping people overcome the myopic biases affecting 
their motivation40, avoid self-control failure and support the pursuit 
of long-term goals. While Experiment 3 presented pseudo-rewards 
numerically, future work will investigate whether optimal gamifica-
tion can also be effectively implemented using other presentation 
formats that are more commonly used in practice.

Beyond motivational issues, many decision problems that arise 
in the pursuit of long-term goals are simply too large and too com-
plex for people to solve them optimally. Our approach could be used 
to overcome such challenges by augmenting people’s bounded cog-

nitive resources with the power of computing and leveraging plan-
ning algorithms developed in AI41 to build the solution of complex 
decision problems into the reward structure of the environment. 
Future work will investigate these hypotheses and explore optimal 
gamification as an interface between artificial and human intelli-
gence. By integrating the power of computing with psychological 
insight into human motivation and decision-making, this line of 
research could lead to cognitive prostheses that might substantially 
enhance human productivity and self-mastery. Our approach illus-
trates how advances in AI can be leveraged to help people make bet-
ter decisions. In this way, the continuing progress in AI could enable 
a parallel growth in human effectiveness. Given that people learn to 
adapt their planning horizon to the structure of the environment42, 
optimal gamification could have adverse effects on how people 
make decisions in the absence of game elements. A preliminary 
follow-up experiment reported in the Supplementary Information 
suggests that this might not be the case when the environment 
remains the same, but transfer effects from a gamified environment 
to decision-making in other environments remain to be investi-
gated. Furthermore, we agree with earlier studies43,44 that nudges 
and decision-support systems should be complemented by improv-
ing people’s decision-making competencies, and ongoing work sug-
gests that AI and optimal gamification can be combined in a more 
sophisticated way to teach people better decision-making strategies 
(Lieder, Callaway, Das, Jain, Gul, Krueger, & Griffiths, manuscript 
in preparation)37.

Methods
The experiments reported in this Article were approved by the Committee for 
the Protection of Human Subjects of the University of California, Berkeley under 
protocol number 2016-02-8359 (To-Do-List Gamification), and Experiment 4 
was also approved by the Independent Ethics Council of the medical faculty of 
the University of Tübingen as IEC Project Number 668/2018BO2 (To-Do-List 
Gamification).

Experiment 1. On the basis of our experience with similar online experiments, we 
recruited 200 adult participants on Amazon Mechanical Turk to obtain a sample 
size of about 60 participants per condition. No statistical methods were used to 
predetermine sample sizes, but our sample sizes are larger than those reported 
in previous publications23,45. Participants received US$0.50 and a performance-
dependent bonus of up to US$2 for playing 24 rounds of the flight planning game 
shown in Fig. 2. In this game, the player receives points for routing an airplane 
along profitable routes between six cities. In each round, the initial location of 
the airplane is chosen at random. Participants then choose which of two possible 
destinations to fly to, receive the profit or loss of that flight, and choose the next 
flight until the round ends. After each flight there was a 1 in 6 chance that the 
round would end. Participants were instructed to score as highly as possible, 
and their financial bonus was proportional to the rank of their score among all 
participants in their condition. This game is based on the planning task that Huys 
et al.23 used to demonstrate how cognitive limitations shape human planning and 
induce cognitive biases. We modelled our version of this task as an infinite horizon 
MDP with a discount factor of γ = 1–1/6 that models the probability that the 
current round will end after each move (see Supplementary Methods). This MDP 
model of the task is defined such that maximizing the expected sum of discounted 
rewards over an infinite horizon was equivalent to maximizing the expected sum of 
points the player earns until the game ends.

Participants were randomly assigned to one of four conditions (see Fig. 2 and 
Supplementary Table 1). In the control condition, there were no pseudo-rewards 
(Fig. 2a), and finding the optimal path required planning four steps ahead. In 
the three experimental conditions, the reward structure was modified by adding 
pseudo-rewards that summed to zero. In the first experimental condition, the 
pseudo-rewards were derived from the optimal value function according to the 
shaping theorem (see equation (9); Fig. 2b). In this condition, looking only one step 
ahead was sufficient to find the optimal path. This makes it possible for people to 
make optimal decisions by simply following the Pavlovian impulses that draw them 
towards immediate gains and push them away from immediate losses without having 
to engage in any planning or self-control. The second experimental condition used 
potential-based pseudo-rewards based on an approximate value function (equation 
(12)). This approximate value function (equation (3) in the Supplementary Methods) 
was designed by identifying the most profitable location (that is, Smithsville in Fig. 
2a) as a goal and then scoring each location by its distance to that goal. The resulting 
pseudo-rewards were positive for actions that brought the airplane closer to the goal 
and negative for actions that moved it away from the goal. The resulting pseudo-
rewards simplified planning but not as much as the optimal pseudo-rewards. Finding 
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Fig. 6 | Proportions of participants in experiment 3 who completed all 
assignments by the deadline. Error bars show ±1 s.e.m. The completion 
rate was significantly higher when participants were incentivized by 
optimal gamification than when all tasks were incentivized equally or no 
points were provided (χ2(1) = 11.20, P < 0.001,w = 3.35, 95% confidence 
intervals: [67.6%, 91.5%] without optimal gamification, [75.7%, 93.9%] 
with optimal gamification). The difference between the conditions with 
no points and those with constant point values was not statistically 
significant (χ2(1) = 0.15, P = 0.701, w = 0.384, 95% confidence intervals: 
[35.6%, 71.5%] versus [41.0%, 75.9%]). The difference between framing 
optimal pseudo-rewards in terms of points and framing them in terms of 
money was not statistically significant (χ2(1) = 2.01, P = 0.156, w = 1.42, 
95% confidence intervals: [82.2%, 99.7%] versus [63.5%, 92.4%]). All 
statistical tests reported in this figure are χ2 tests. These results are based 
on 111 participants (about 28 per condition).
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the optimal path required planning two or three steps ahead, and the immediate 
losses were smaller. In the third experimental condition (Fig. 2d), the pseudo-rewards 
were also designed to encourage participants to move towards the most profitable 
location. The heuristic pseudo-reward was +50 for each transition that reduced 
the distance to the most valuable state (Smithsville). But unlike the approximate 
potential-based pseudo-rewards, they imposed no penalty for moving away from the 
goal. The resulting pseudo-rewards violated the shaping theorem and were slightly 
too high relative to the true rewards. As a consequence, they incentivized taking a 
bad short cut to Smithsville (Jonesville → Clarksville → Smithsville) and rendered 
the optimal path (Jonesville → Williamsville → Bakersville → Smithsville) suboptimal 
in the gamified environment. This made it impossible for participants to recognize 
the best path as optimal even with extensive learning or perfect long-term planning. 
To ensure that all conditions were comparable in terms of the total reward, the 
pseudo-rewards of each condition were shifted such that their sum was zero. Since 
the experimental manipulation only affected the flights’ pay-offs, participants were 
unaware of the pseudo-rewards in Experiment 1.

Inclusion criteria. The average completion time of the experiment was 13.6 min, 
and the median response time was 1.3 s per choice. The median of our participants’ 
relative scores (that is, (R − rmin)(rmax − rmin) where R is the sum total of the player’s 
points) was 79%. We excluded 3 participants who invested less than one-third of 
the median response time of their condition and 11 participants who scored lower 
than 95% of all participants in their condition (5.5%), leading to a total exclusion 
rate of 7% (14/200). Of the 186 participants included in the analysis, 50 were in the 
condition without pseudo-rewards, 47 were in the condition with optimal pseudo-
rewards, 40 were in the condition with approximate pseudo-rewards and 49 were 
in the condition with non-potential-based pseudo-rewards.

This exact experiment was run only once, but its main finding was replicated 
in Experiment 2. Data collection and analysis were not performed blind to the 
conditions of the experiments.

Experiment 2. Since we expected the effect of varying the format in which 
optimal pseudo-rewards were presented to be smaller than the effect of presenting 
optimal pseudo-rewards at all, we recruited 100 participants per condition (that 
is, 400 participants in total) on Amazon Mechanical Turk. No statistical methods 
were used to predetermine sample sizes, but our sample sizes are larger than 
those reported in previous publications23,45. We paid our participants US$2.50 for 
about 20–25 min of work plus a performance-dependent bonus of up to US$2. 
The average value of the bonus was US$1. The median completion time of the 
experiment was 21.2 min.

The task was equivalent to the one used in Experiment 1 except that all 
rewards were scaled down by a factor of 10 to keep the arithmetic operations 
required to solve the task simple. Participants were randomly assigned to one of 
four conditions. In the control condition, no pseudo-rewards were presented (Fig. 
4a). Three experimental conditions presented the optimal pseudo-rewards in 
three different formats. In the first experimental condition, the pseudo-rewards 
were embedded into the decision environment by adding them directly onto the 
flights’ profits and losses (Fig. 4b). In the second experimental condition, the 
pseudo-rewards were presented separately from the monetary rewards in the 
form of stars (Fig. 4c). In the third experimental condition, the number of stars 
communicated the sum of the shifted optimal pseudo-reward and the immediate 
reward (Fig. 4d). In the conditions with stars, participants were informed that the 
stars were designed to help the pilots make better, less short-sighted decisions. 
The instructions explained the meaning of the stars. In the second experimental 
condition, participants were told that the difference in the number of stars awarded 
for flying to destination A versus B predicted the difference in the amount of 
money that could be earned from there onward in the long run. In addition, these 
participants were given the tip that the flight with the highest sum of stars plus 
dollars was most profitable in the long run. In the third experimental condition, 
participants were told that the difference between the number of stars awarded for 
flying to destination A versus B predicted the difference in how much profit they 
were going to make in the long run if they chose destination A over destination 
B. Participants in this condition were given the tip that they could earn the most 
by always flying the route with the larger number of stars. In all conditions, each 
flight’s pay-off and number of stars were rounded to one decimal digit. Stars 
had no monetary value, but they determined the player’s level in the game (see 
Supplementary Methods). Screenshots of the instructions for the experimental 
conditions are shown in the Supplementary Methods.

The optimal pseudo-rewards presented in the three experimental conditions 
were computed according to equation (9) and then shifted by a constant such that, 
on average across all states, the sum of the immediate reward and pseudo-reward 
for the optimal action was equal to the expected discounted long-run reward of 
the optimal strategy averaged across all possible starting states. This is appealing 
because it makes the pseudo-rewards assigned to each action predict how much 
money players will earn in the long run if they choose that action and then 
continue optimally.

Attention checks and inclusion criteria. To start the experiment, participants had 
to pass a quiz comprising three questions on how their financial bonus would be 

determined and three questions testing their understanding of the mechanics of 
the task. If participants got one or more questions wrong, they were asked to reread 
the instructions and retake the quiz until they answered all questions correctly.

Out of the 400 participants, 65 had participated in previous flight planning 
experiments and were therefore excluded from this study. Out of the 335 remaining 
participants, we excluded participants whose median response time was less than 
one-third of the median response time across all included participants. In addition, 
we excluded the 5% of participants with the lowest scores of each group. These two 
criteria led to the exclusion of 19 of the 335 included participants (5.7%), leaving 
us with 316 included participants: 80 in the control condition, 81 in the condition 
with embedded pseudo-rewards, 81 in the condition with separate pseudo-rewards 
and 74 in the condition with integrated pseudo-rewards.

This experiment was run only once, but its main finding was replicated in the 
follow-up study to Experiment 2 presented in the Supplementary Information. 
Data collection and analysis were not performed blind to the conditions of the 
experiments.

Experiment 3. We recruited 120 participants by posting a sign-up form on Amazon 
Mechanical Turk. We aimed for a sample size of 30 participants per condition so 
that a χ2 test would be able to detect an increase from an expected completion rate 
of about 60% in the control condition to about 90% in the condition with monetary 
pseudo-rewards at α = 0.05 with a power of 0.85. According to the exit survey 
(see below), the ages of our participants ranged from 20 to 68 yr (average: 36.7 yr, 
standard deviation: 10.6 yr), and our sample was roughly gender balanced (54% of 
our participants were women and 46% were men).

The sign-up form told potential participants that the study would comprise the 
five writing assignments shown in Supplementary Table 2. Potential participants 
were informed that they would earn a US$20 bonus if, and only if, they completed 
all five assignments by a deadline 10 d later. They were told that participants 
who failed to complete all assignments by the deadline would receive only 
US$3 for each hour’s worth of completed tasks. The sign-up form let potential 
participants choose either to sign up for the experiment and receive an immediate 
compensation of US$0.05 or to receive US$0.15 and forego the opportunity to 
participate in the study. People who chose to participate were directed to create an 
account on the to-do list website where the study would be conducted.

The study website presented participants with a to-do list comprising five 
writing assignments (see Fig. 5; Supplementary Methods). Participants typed each 
essay into a text box below the corresponding assignment. When a participant 
submitted an assignment, its length would be checked against the required number 
of words. If the essay was long enough, the corresponding task was crossed off 
from the person’s to-do list. Participants could freely choose whether and when to 
start their first assignment, how to spread out their assignments over the 10 day 
study period and in which order to complete their assignments. They were also free 
to quit the study at any time, and the website allowed them to log out and log back 
in at their convenience.

The experiment comprised four conditions that differed in whether and how 
the tasks on the participant’s to-do list were incentivized. On creating their account 
on the study website, the nth participant was assigned to condition n modulo 4. 
In the two experimental conditions, the tasks were incentivized by applying the 
optimal gamification method described above to an MDP model of the sequential 
decision problem entailed by the to-do list (see below). In the first experimental 
condition, the resulting optimal pseudo-rewards for completing each assignment 
were conveyed as points (see Fig. 5), and the participant’s total number of points 
determined their level in the game. In the second experimental condition, the 
optimal pseudo-rewards were displayed as dollars rather than points. The first 
control group was shown a plain to-do list without any incentives or game 
elements, and in the second control condition, the number of points was constant 
across all tasks. The incentives were displayed next to each entry of the participant’s 
to-do list, and the level and current number of points were displayed above the 
current task (see Fig. 5).

Of the 111 people who created an account on the to-do list website, 28 were 
assigned to the control condition with constant points, 29 were assigned to the 
control condition without points, 26 were assigned to the condition where pseudo-
rewards were framed as dollars and 28 were assigned to the condition were pseudo-
rewards were framed as points.

To compute optimal pseudo-rewards, we modelled the sequential decision 
problem entailed by the to-do list as a finite horizon MDP whose state encodes 
which tasks have already been completed. This model includes one action for 
each task and an additional action for taking a break. The essence of this model 
is that completing a task incurs an immediate cost because it requires time and 
effort but transports the worker into a state that is closer to the desired final 
state in which they can claim the US$20 bonus for having completed all of their 
assignments on time. The subjective costs of completing the assignments were 
measured in the prestudy described in the Supplementary Information. The 
resulting optimal pseudo-rewards conveyed how much completing each task 
would contribute towards achieving the goal to earn the US$20 bonus. Because 
of this principle, tasks that workers perceived to be harder were incentivized with 
a larger number of points. A detailed description of this model is included in the 
Supplementary Methods.
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When participants completed all tasks, they were shown a bonus code. After 
the deadline, we posted a reimbursement Human Intelligence Task on Amazon 
Mechanical Turk that included an exit survey. The exit survey asked participants to 
rate their motivation to complete the tasks and how rewarding it felt to complete 
the second task on nine-point Likert scales. This experiment was run only once 
because it was relatively expensive and time-consuming. No participant’s data was 
excluded from the analysis. Data collection and analysis were not performed blind 
to the conditions of the experiments.

Experiment 4. We recruited 200 participants on Amazon Mechanical Turk 
following the procedure of Experiment 3. The sample size was selected to achieve 
a statistical power of at least 0.8 in a two-tailed Mann–Whitney U test on the 
number of tasks completed in Project 2 with α = 0.05 and an anticipated effect size 
of about 0.5 (as observed in a pilot experiment), while accounting for the fact that 
not all participants would opt into the second part of the experiment. According 
to the exit survey (see below), the ages of our participants ranged from 24 to 77 yr 
(average: 38.3 yr, s.d.: 11.6 yr), and about 61% of our participants were women.

Experiment 4 was similar to Experiment 3, but the to-do list now comprised 
ten daunting writing assignments rather than just five (see Supplementary Table 
4). The ten assignments were grouped into two unequal projects. Completing 
Project 1 was worth US$20, whereas completing Project 2 was worth only US$1. 
Project 1 comprised five of the ten writing assignments, and Project 2 comprised 
the remaining five. Both projects were comparable in the total amount of work they 
required, according to the estimates Mechanical Turk workers gave in our prestudy 
(85 min for Project 1 and 88 min for Project 2; Supplementary Table 4) and their 
estimates of each task’s fair price (US$11.50 in total for all tasks of Project 1 and 
US$10.50 in total for all tasks of Project 2; Supplementary Table 4). This made 
Project 1 highly lucrative (US$20 pay for work worth only US$11.50) and Project 
2 highly unprofitable (only US$1 pay for work worth US$10.50). Participants were 
informed about the projects and the payments they would receive for completing 
them (see Supplementary Fig. 10a). But they were free to complete whichever tasks 
they wanted or none at all. The assignment of participants to the experiment’s three 
conditions followed the same counterbalancing procedure we used in Experiment 3;  
that is, the nth participant was assigned to condition n modulo 3.

When we applied our optimal gamification method to the to-do list of 
Experiment 4, it automatically assigned positive points to the tasks of Project 1 and 
negative points to the tasks of Project 2 (see Supplementary Fig. 10d) based on the 
value of each project, the amount of time required to complete each task and the 
average wage our participants could earn by working on another task on Amazon 
Mechanical Turk. The heuristic to incentivize each task according to its duration, 
by contrast, was insensitive to the projects’ values and incentivized the tasks of 
Project 2 just as much as the tasks of Project 1 (see Supplementary Fig. 10c).

Experiment 4 was conducted over a period of 7 d starting on Monday 4 
February 2019 and ending on Monday 11 February 2019. Participants could fill 
out the exit survey at any point before the deadline regardless of how many tasks 
or projects they had completed. The exit survey was available until the day after 
the deadline. On the following day, each participant was paid a bonus based on 
which project(s) they had completed plus an extra US$0.50. Participants who had 
completed some assignments of a project but not all of them received an extra 
US$0.50 for each such assignment. In addition to the questions asked at the end of 
Experiment 3, the exit survey of Experiment 4 included Likert scales for measuring 
participants’ motivation, how rewarding it felt to complete tasks, to what extent 
they felt they could choose their tasks freely (P. Michaelsen et al., manuscript in 
preparation)46, and to what extent they felt that the to-do list website manipulated 
them (P. Michaelsen et al., manuscript in preparation)46,47.

No participant’s data were excluded from the analysis. Data collection and 
analysis were not performed blind to the conditions of the experiments. We tested 
the normality assumptions and heteroscedasticity assumptions of all ANOVAs 
and t-tests using the Kolmogorov–Smirnov test and Bartlett’s test, respectively. We 
found no statistically significant violations of these assumptions for the data on 
people’s motivation (K1 = 0.12, P1 = 0.990, K2 = 0.15, P2 = 0.761, K3 = 0.17, P3 = 0.610 
and χ2(2) = 2.12, P = 0.347), perceived autonomy (Kolmogorov–Smirnov test, 
K1 = 0.13, P1 = 0.975, K2 = 0.10, P2 = 0.987, K3 = 0.14, P3 = 0.775 and χ2(2) = 0.24, 
P = 0.887 for Bartlett’s test) or perceived intrusion (K1 = 0.19, P1 = 0.731, K2 = 0.20, 
P2 = 0.432, K3 = 0.25, P3 = 0.143 and χ2(2) = 2.12, P = 0.347).

More details on Experiment 4 are included in the Supplementary Methods.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at https://osf.io/
h7vqy/.

Code availability
The code used to conduct Experiment 1, Experiment 2 and its follow-up 
experiments is available at https://osf.io/h7vqy/. The code used to conduct 
Experiment 3 and Experiment 4 is available on GitHub at https://github.com/

BrowenChen/Cognitive-Tools-for-Self-Mastery. The code used to analyse the data 
is available at https://osf.io/h7vqy/ and in the Supplementary Software file.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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Study description Experiments 1 and 2 and their follow-up experiments were quantitative online experiments that measured people's decisions and 
reaction times in a sequential decision-making task. Experiments 3 and 4 were naturalistic online experiments that measured people's 
decision about which task to work on.

Research sample Adults working on Amazon Mechanical Turk who are located in the USA who have a HIT approval rate of at least 95%.

Sampling strategy We posted HITs on Amazon Mechanical Turk and let any member of our sample participate in the posted experiment until we had 
reached the intended number of participants. 
 
The sample size was chosen to achieve about 60 participants per condition. No statistical methods were used to predetermine sample 
sizes but our sample sizes are larger than those reported in previous publications (Huys, et al., 2012; Keramati, et al., 2016}. Having 60 
participants per condition would achieve a power of about 0.8 for a two-sided, two-sample t-test with alpha=0.05 assuming an effect size 
of 0.50 (exact power: 0.78). 
 
For Experiment 2 we increased the sample size to about 100 participants per condition, because the expected some of the effect sizes to 
be lower than in Experiment 1..No statistical methods were used to predetermine sample sizes but our sample sizes are larger than those 
reported in previous publications (Huys, et al., 2012; Keramati, et al., 2016}. The selected sample size achieved a power of about 0.70 for 
a two-sided, two-sample t-test assuming an effect size of 0.35. 
 
For Experiment 3, we aimed for a sample size of 30 participants per condition so that a chi^2 test would be able to detect an increase 
from an expected completion rate of about 60% in the control condition to about 90% in the condition with monetary pseudo-rewards at 
an alpha-level of 0.05 with a power of 0.85. 
 
For Experiment 4, we aimed for a sample size of 42 participants per condition to achieve a power of at least 0.8 in a two-sided Mann-
Whitney U-tests on the number of tasks completed in Project 2 with alpha=.05 and an anticipated effect size of about 0.5 (as observed in 
a pilot experiment). Taking into account the proportion of participants who chose not to participate in Part 2 in our pilot experiment, we 
increased the sample size per condition to 50.

Data collection Data collection was performed via websites that people were directed to via Amazon Mechanical Turk. All data was collected via 
keyboard and/or mouse input from the participants.

Timing Experiment 1: January 8 2016 
Experiment 2: March 17 2016; Follow-Up Experiment 1: April 6 2016; Follow-Up Experiment 2: December 22 2016 
Experiment 3: April 24 2017 -- May 4 2017 
Experiment 4: February 4 2019 -- February 12 2019 

Data exclusions The exclusion criteria of each experiment are described in the Supplementary Information. 
In Experiment 1, We excluded 3 participants who invested less than one third of the median 
response time of their condition and 11 participants who scored lower than 95% of all 
participants in their condition (5.5%), leading to a total exclusion rate of 7%. 
 
 
To start Experiment 2, the experiment participants had to pass a quiz comprising three 
questions on how their financial bonus would be determined and three questions testing 
their understanding of the mechanics of the task. Out of the 400 participants, 335 had not 
participated in any of our previous flight planning experiments and were included for in this 
study. Out of those 335 participants, we excluded subjects whose median response time was 
less than one third of the median response time across all included subjects. In addition, we 
excluded the 5% of participants with the lowest scores of each group. This led to the 
exclusion of 19 out of the 335 included participants (5.7%). 
 
No participants were excluded from Experiment 3. 
No participants were excluded from Experiment 4.

Non-participation In Experiments 1 and 2 data was only recorded to our data base when a participant finished the experiment. We therefore cannot tell 
how many people started the experiment but dropped out before finishing it; however these experiments were very short. 
 
In Experiment 3, nine out of 120 participants opted not to participate in the second part of the experiment and to receive $0.10 instead. 
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In Experiment 4, 45 out of 200 participants opted not to participate in the second part of the experiment and to receive $0.10 instead.

Randomization The assignments of participants to groups was performed at random. In Experiments 1 and 2 
this was was implemented by drawing a random number from a uniform distribution over the 
conditions independently for each participant. In Experiment 3 the first participant who 
registered was assigned to condition 1, the second participant was assigned to condition 2, 
the third participant was assigned to condition 3, the fourth participant was assigned to 
condition 4, the fifth participant was assigned to condition 1, and so on. Experiment 4 used a 
counterbalancing procedure that was equivalent to the one used in Experiment 3.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Participants were adults located in the United States of America who work on Amazon Mechanical Turk.

Recruitment All participants were recruited online by posting HITs to Amazon Mechanical Turk. Anyone who was located in the USA and had 
an acceptance rate of at least 95% on Amazon Mechanical Turk was allowed to participate.

Ethics oversight The experiments reported in this article were approved by the Committee for the Protection of Human Subjects of the University 
of California, Berkeley under protocol number 2016-02-8359 (``To-Do-List Gamification'') and Experiment 4 was additionally 
approved by the Independent Ethics Council of the medical faculty of the University of Tübingen as IEC Project Number 
668/2018BO2 (``To-Do-List Gamification'').

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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