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Cognitive prostheses for goal achievement

Falk Lieder®™, Owen X. Chen?, Paul M. Krueger® and Thomas L. Griffiths®*

Procrastination takes a considerable toll on people's lives, the economy and society at large. Procrastination is often a conse-
quence of people's propensity to prioritize theirimmediate experiences over the long-term consequences of their actions. This
suggests that aligning immediate rewards with long-term values could be a promising way to help people make more future-
minded decisions and overcome procrastination. Here we develop an approach to decision support that leverages artificial
intelligence and game elements to restructure challenging sequential decision problems in such a way that it becomes easier
for people to take the right course of action. A series of four increasingly realistic experiments suggests that this approach can
enable people to make better decisions faster, procrastinate less, complete their work on time and waste less time on unimport-
ant tasks. These findings suggest that our method is a promising step towards developing cognitive prostheses that help people

achieve their goals.

hile artificial intelligence (AI) is progressing steadily and

the computing power of our electronic devices contin-

ues to grow, the computing power of the human brain
does not. Our bounded cognitive resources continue to constrain
our decision-making and often lead to simple heuristics. Previous
research has shown that these heuristics can fail miserably in certain
scenarios'~ but perform very well in the environments they have
evolved for*™*. These two observations suggest that in the future the
human mind could be augmented with cognitive prostheses that use
AT to automatically restructure situations in which people’s heuris-
tics perform poorly into situations in which those heuristics per-
form very well.

In line with this vision, previous work has found that human
judgement and decision-making can be improved by restructur-
ing how information is presented to people’ ", and parallel work in
operations research and computer science has developed decision-
support systems'*"” that use planning algorithms to solve complex,
sequential decision problems for people'®*’. These approaches have
rarely been combined to help people overcome motivational obsta-
cles and achieve their personal long-term goals.

One class of decision problems in which people systematically
underperform involves choices whose proximal rewards are mis-
aligned with their long-term value (for example, persevering with
a frustrating challenge versus getting drunk and watching TV).
In situations like these, people’s heuristics tend to reach short-
sighted decisions*-** that can manifest in procrastination* and
impulsivity”. This apparently myopic nature of human decision-
making suggests that decision environments can be repaired by
aligning each action’s immediate reward with the value of its long-
term consequences.

While it is generally difficult to change how people experience
the actions necessary to achieve their goals (for example, dieting,
debugging or filing taxes) relative to actions that do not (such as
eating chocolate or watching TV), it is possible to incentivize those
actions with game elements such as points, levels and badges. This
approach is known as gamification®. Previous research has found
that gamification can have positive effects on motivation, engage-
ment, behaviour and learning outcomes”. Yet determining which
actions should be incentivized and by how much is still an art rather

than a science, and misspecified incentives can have devastating
consequences™?.

Here, we leverage ideas from AI to develop a mathematical
framework to help people make more future-minded decisions. The
basic idea is to align each action’s immediate reward with its long-
term value. The resulting system can be interpreted as a cognitive
prosthesis that uses Al to solve people’s complex sequential deci-
sion problems and uses gamification to restructure them in such a
way that people can easily identify the course of action that is best
for them in the long run. This approach offloads the computational
challenges of long-term planning into the reward structure of the
environment, and the underlying theory ensures that the added
game elements will never incentivize counterproductive behaviour.
We evaluate our approach in a series of four increasingly naturalistic
experiments starting with controlled proof-of-concept experiments
and culminating in longitudinal studies with a naturalistic to-do list
app. We find that our optimal gamification method can mitigate the
adverse effects of cognitive biases and is more effective at helping
people get started on important tasks and waste less time on unim-
portant tasks than simpler approaches to incentivizing productivity.

An optimal gamification method for decision support
A sequential decision problem can be modelled as a Markov deci-
sion process (MDP)

M= (S, A,T,y,r,P) (1)

where S is the set of states, A is the set of actions and T(s, a, s’) is the
probability that the agent will transition from state s to state s if it
takes action a. The discount factor y can be interpreted as the prob-
ability that the decision maker can continue to act and gather more
rewards when they arrive in state s'. Setting y to a value less than 1
thereby captures the possibility that the episode described by the
MDP can end early so that future rewards might become unavail-
able; for instance, y < 1 could be used to model the probability that
one cannot reap all of the long-term rewards of getting promoted
because the company might go bankrupt. The reward generated
by this transition is (s, a, s’), and P, is the probability distribution
of the initial state S, (ref. **). A policy #: S+ A specifies which
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action to take in each of the states. The expected sum of discounted
rewards that a policy 7 will generate in the MDP M starting from a
state s is known as its value

3 7' (Sp (S, 10

t=0

Vi(s)=E . )

A rational decision maker should follow the optimal policy 7y,
which maximizes the expected sum of discounted rewards; that is,

[e]

Z r'r (Spm(S), Sevr)

t=0

* —_—
my=arg max &

. (3)

People’s limited cognitive resources make it impractical for them to
always plan out the optimal policy’. And even when people know
which action would be best in the long term, they do not always
exert enough self-control to override their more short-sighted
impulses and habits*. The value function of the optimal policy sat-
isfies the Bellman equation

VI\);I(St)=maXuE[r (st,a, St+1) +7V1C[(St+1)]- (4)
We can therefore rewrite the optimal policy as
my(s) =arg max B [r(s,,a, S, 1) + 7V 3(Sei )] (5)

which reveals that it is myopic with respect to the sum of the imme-
diate reward and the discounted value of the next state. Here, we
leverage the MDP framework to model game elements such as
points and badges as pseudo-rewards f(s, a, s) that are added to the
reward function 7(s, a, s’) of a decision environment M to create a
modified environment M'= (S, A, T,y,r’,B,) with a more benign
reward function r'(s, a, s") =1(s, a, s') + (s, a, s’) that aligns immedi-
ate reward with long-term value.

Designing an incentive system that aligns each action’s immedi-
ate reward with its long-term value is non-trivial, and misspecified
incentives can divert people even farther away from the optimal
policy. From the perspective of our formal MDP framework, the
problem with misspecified incentives is that they change the opti-
mal policy zy; of the original decision problem M into a different
policy ;. that is optimal for the gamified environment M’ but not
for the original environment M. To avoid this problem, we have to
ensure that each optimal policy of M” is also an optimal policy of M.

Research on machine learning has identified which conditions
pseudo-rewards must satisfy to achieve this: according to the shap-
ing theorem™ adding pseudo-rewards retains the optimal policies
of any original MDP if, and only if, the pseudo-reward function fis
potential-based; that is, if there exists a potential function ®:S+ R
such that

f(s,a,5") =y ®(s")—D(s) (6)

for all values of s, a and s'.

If gamification is to help people achieve their goals, then the
pseudo-rewards added in the form of points or badges must not divert
people from the best course of action but must make its path easier
to follow. Gamification would otherwise lead people astray instead of
guiding them to their goals. Hence, the practical significance of the
shaping theorem is that it gives the architects of incentive structures a
method to rule out incentivizing counterproductive behaviours:

1. Model the decision environment as an MDP.
Define a potential function @ that specifies the value of each
state of the MDP.

3. Assign points according to equation (6).
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This method could thus be used to avoid some of the dark sides
of gamification®”.

While the shaping theorem constrains pseudo-rewards to be
potential-based, there are infinitely many potential functions one
could choose. Given that people’s cognitive limitations prevent
them from fully incorporating distant rewards*>”, the modified
reward structure (s, a, s") should be such that the best action yields
the highest immediate reward, that is:

my(s) =arg max,r'(s,a,s’). (7)
Here, we show that this can be achieved with our method by setting
@ to the optimal value function V;; of M:
@*(s) = V3i(s) =max, VJ(s). (8)
First, note that the resulting pseudo-rewards are
flsa,s)=yVi(s)=Vi(s) ©)
which leads to the modified reward function

r'(s,a,s)=r(s,a,8") +yV3i(s)=V5(s) (10)
Hence, if the agent always maximized its immediate reward without
regard for future rewards, then its policy would be

7(s) = arg maqu[r(s, a,5") +yV (s =V 3(s)]

(11)
= arg max E[r(s,a,s") +yVy(s)].

According to equation (5), this is z;; for the original decision envi-
ronment M. Thus, people would act optimally even if they were com-
pletely myopic; this property by itself could be achieved by heuristic
incentive structures that always put the largest reward on the best
action. However, when this is done heuristically, there is a risk that
decision makers could find ways to game the system by collecting the
incentives in ways that undermine their intended purpose—*. For
instance, a heuristic incentive system (for example, pay proportional
to the number of hours worked) that rewards a worker for complet-
ing certain tasks (such as reviewing paperwork) could create perverse
incentives for them to create unnecessary work for themselves and
others (for example, by inventing further bureaucracy to justify their
job) even when the incentive system does not reward that directly. By
contrast, the optimal incentive structures designed with our method
cannot be gamed and are therefore unlikely to mislead decision mak-
ers. This safety guarantee is unique to incentive structures that obey
the shaping theorem™, and our optimal gamification method applies
this theorem to support human decision-making. This suggests that
potential-based pseudo-rewards derived from V' should allow even
the most myopic agent that considers only the immediate reward to
perform optimally. In this sense, the pseudo-rewards defined in equa-
tion (9) can be considered optimal. Optimal pseudo-rewards have
also been found to facilitate reinforcement learning in machines* and
people” (E Lieder et al., manuscript in preparation).

Computing the optimal pseudo-rewards requires perfect knowl-
edge of the decision environment and the decision maker’s prefer-
ences. This information may be unavailable in practice. Yet even
when V5 cannot be computed, it is often possible to approximate it.
If 50, the approximate value function V,, can be used to approximate
the optimal pseudo-rewards (equation (9)) by

f(s,a,8") =yVy(s")=Viy(s). (12)
For example, one can estimate the value of s from its approximate
distance to a goal™.
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Here we develop and evaluate an approach that leverages Al to
help people make better decisions. The basic idea is to automati-
cally restructure decision environments in such a way that people’s
Pavlovian impulses to collect immediate rewards and avoid imme-
diate losses lead to optimal decisions. To achieve this, our method
leverages Al to compute optimal pseudo-rewards and delivers them
through game elements. On the basis of previous simulations®,
we predict that adding approximate pseudo-rewards (equation
(12)) improves people’s decisions and that adding optimal pseudo-
rewards is even more beneficial. We test these predictions in three
behavioural experiments.

Results

Reward shaping is more effective than heuristic incentive struc-
tures at improving people’s choices. As a proof of concept, we
demonstrate that our mathematical framework for decision sup-
port makes it possible to automatically compute optimal incentive
structures for a difficult sequential decision problem. In this prob-
lem, people often overlook the optimal course of action because
they fail to plan beyond intermediate steps that incur a large loss”.
Experiment 1 showed that the optimal incentives computed by our
method allowed people to overcome this bias and perform better
than when the incentives were designed heuristically or when no
additional incentives were provided.

The sequential decision problem used in this study was the flight
planning problem shown in Fig. 1a; it is based on the task that Huys
et al.” used to demonstrate that people often fail to find optimal plans
when this requires looking beyond short-term losses. To help people
make better decisions in this task, the incentives computed with our
method or heuristic approaches were added directly onto the rewards
shown on the arrows in Fig. 1a. In the control condition, people were
shown the true transition and reward structure of this task, and their
incentives were identical to the task’s reward function r(s, a, s") (see
Fig. 2a). By contrast, in the experimental conditions, the incentives
shown to the participants (r'(s, a, s")) differed from the task’s true
reward function by the pseudo-rewards f{(s, a, s') (i.e., r'(s, a, s") =71(s,
a, s')+f(s, a, s")). We evaluated three kinds of pseudo-rewards: opti-
mal pseudo-rewards (see equation (9) and Fig. 2b), potential-based
pseudo-rewards based on an approximate value function (equa-
tion (12) and Fig. 2¢) and a heuristic incentive system (see Fig. 2d).
The approximate value function and the heuristic incentive system
both rewarded moving towards the most profitable location (that is,
Smithsville in Fig. 2a), but the former satisfied the shaping theorem
(equation (6)) whereas the latter violated it. Regardless of the incen-
tives shown to the participants, we measured their performance
according to the reward function r(s, 4, s") of the original task.

A Kruskal-Wallis analysis of variance (ANOVA) revealed that
the type of pseudo-rewards added to the reward function signifi-
cantly affected people’s performance in the original task (Kruskal’s
H(3)=40.35, P<0.001, #*=0.218, 95% confidence intervals:
[-27.92, -10.42], [-28.75, -9.58], [~14.58, 0.83], [-2.08, 16.25]
points per trial for the conditions without pseudo-rewards, with
non-potential-based, with approximate pseudo-rewards and with
optimal pseudo-rewards, respectively; see Fig. 1b). To elucidate this
effect further, we performed a series of two-sided Mann-Whitney
U tests. As expected, the unaided participants in the control condi-
tion performed very poorly, attaining a median loss of 18.75 points
per trial (95% confidence interval: [-28.75, -9.58]). Aiding partici-
pants with optimal pseudo-rewards led to significantly better per-
formance, enabling them to achieve a median gain of 45.00 points
per trial (95% confidence interval: [-2.08, +16.25], standardized
U-score: Z=4.76, P<0.001, effect size r=0.48, 95% confidence
interval on the difference between the medians: [+15.00, +36.25]).
Potential-based pseudo-rewards derived from an approximate value
function also improved people’s performance (Z=2.86, P=0.004,
r=-0.30, 95% confidence interval of the resulting increase in the
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median performance: [+3.12, +23.75]) but not as much as optimal
pseudo-rewards (Z=2.68, P=0.007, r=0.29, 95% confidence inter-
val of the difference between the median performance with opti-
mal and approximate pseudo-rewards: [1.67, 22.08]). By contrast,
the non-potential-based pseudo-rewards failed to improve people’s
performance (Z=0.72, P=0.469, r=0.07, 95% confidence interval:
[-10.42, 12.50]). Optimal pseudo-rewards also accelerated the deci-
sion process (Supplementary Results and Supplementary Fig. 15),
supporting the conclusion that optimal pseudo-rewards simplify
decision problems. Inspecting the four groups’ choice frequencies
revealed that the optimal pseudo-rewards significantly changed the
choice frequencies in each of the six states and successfully nudged
participants to follow the optimal cycle: Smithsville — Jonesville
— Williamsville — Bakersville - Smithsville (see Supplementary
Results and Supplementary Fig. 16).

These results indicate that our mathematical framework makes
it possible to automatically compute optimal incentives that can be
more effective than manually designed incentive structures. To the
extent that game elements such as points act as rewards, these find-
ings suggest that optimal gamification should be safer and more
effective than the prevailing heuristic gamification methods. We
test this prediction in the following experiments.

Optimal pseudo-rewards can be effectively conveyed by game
elements. Having found that optimal pseudo-rewards can sub-
stantially improve people’s performance, we asked how they should
be presented in practice. In Experiment 1, pseudo-rewards were
embedded directly into the reward structure of the decision envi-
ronment. In the real world, this kind of intervention could be imple-
mented by changing tax rates or corporate compensation schemes,
for instance. Most of the time such radical changes are beyond the
scope of what a choice architect can do, but adding game elements,
such as points and badges, is cheap and comparatively easy. Game
elements could be used to convey the optimal pseudo-rewards com-
puted with our computational method; here we refer to this idea as
‘optimal gamification’. This could be done in many different ways,
some of which might be more effective than others. As a first step
towards designing optimal gamification apps for decision support
in the real world, Experiment 2 evaluated candidate solutions in a
more controlled online experiment. We augmented the task from
Experiment 1 with game mechanics that conveyed optimal pseudo-
rewards through stars and badges (see Fig. 3a and Supplementary
Methods). In the first experimental condition, the number of stars
awarded for each action was equal to its optimal pseudo-reward
(see Fig. 4c). Thus, the player could, in principle, identify the
optimal course of action by adding rewards and pseudo-rewards.
Because this process can be tedious and prone to errors, the second
experimental condition used an alternative presentation format in
which stars represented the sum of pseudo-rewards and immediate
rewards (integrated pseudo-rewards) so that people would no lon-
ger have to perform mental arithmetic to use the pseudo-rewards
optimally (see Fig. 4d). We compared people’s performance in these
conditions with their performance in a control condition with-
out pseudo-rewards (see Fig. 4a) and a condition where optimal
pseudo-rewards were added directly to the pay-offs (embedded
pseudo-rewards; see Fig. 4b).

A Kruskal-Wallis ANOVA revealed that whether and how
pseudo-rewards were presented had a significant effect on people’s
performance in the task (H(3)=29.08, P<0.001, #*=0.092, 95%
confidence intervals on median performance: [-1.3, +0.4] without
pseudo-rewards, [-0.1, +0.9] for embedded pseudo-rewards, [-1.5,
+0.0] for separately presented pseudo-rewards and [-0.2, +0.8]
for the integrated presentation format). To evaluate the relative
effectiveness of these presentation formats, we performed a series
of two-sided Mann-Whitney U tests. The results of this experi-
ment replicated the finding that when optimal pseudo-rewards
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Fig. 1| Experiment 1. a, Task in Experiment 1: screenshot of the control
condition without pseudo-rewards. Participants can move the airplane
along the arrows from one airport (e.g., Williamsville) to the next. The
number on the arrow indicates the loss or profit of each flight. b, Box

plots of performance by condition. The red line indicates the median.

The blue lines are quartiles. The red crosses denote outliers, and the

black whiskers extend to the most extreme data points not considered
outliers. The number of stars indicates the significance level according to
two-sided Mann-Whitney U tests: *P<0.05; **P<0.07; ***P < 0.007; NS,
not significant). As shown in this figure, optimal pseudo-rewards led to
significantly higher performance than no pseudo-rewards (50 participants,
Z=4.76,P<0.001, effect size r=0.48, 95% confidence interval on the
difference between the medians: [+15.00, +36.25] points/trial), non-
potential-based pseudo-rewards (Z=5.34, P<0.001, r=0.545, 95%
confidence interval: [+15.42, +37.92]) or approximate pseudo-rewards
(Z=2.68,P=0.007,r=0.29, 95% confidence interval: [1.67, 22.081]).
Furthermore, approximate pseudo-rewards led to significantly higher
performance than no pseudo-rewards (Z=2.86, P=0.004, r=-0.30,
95% confidence interval: [+3.12, +23.75]) or non-potential-based pseudo-
rewards (Z=3.61, P<0.001, r=0.383, 95% confidence interval: [+4.17,
+24.38]). Non-potential-based pseudo-rewards had no beneficial effect
compared to no pseudo-rewards (Z=0.72, P=0.469, r=0.07, 95%
confidence interval: [-10.42, 12.501]). These findings are based on data from
186 participants of which 50 received no pseudo-rewards, 47 received
optimal pseudo-rewards, 49 received non-potential-based pseudo-rewards
and 40 received approximate pseudo-rewards.

are embedded in the task’s reward structure, participants achieve
a significantly higher median score than participants who receive
no pseudo-rewards (Z=4.53, P<0.001, #*=0.357, 95% confidence
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interval on the difference between the medians: [+0.48, +1.73]).
Furthermore, the results suggest that optimal pseudo-rewards can
be effectively conveyed by game elements such as stars and badges.
Integrated pseudo-rewards presented in the form of stars signifi-
cantly increased people’s performance from —US$0.73 per trial to
+US$0.17 per trial (Z=3.69, P<0.001, r=0.298, 95% confidence
interval: [+0.42, +1.65]), which was not significantly lower than
the performance of the group presented embedded pseudo-rewards
(US$0.42 per trial, Z=0.52, P=0.610, r=—0.04, 95% confidence
interval: [-0.69, 40.50]). Presenting pseudo-rewards in this inte-
grated format was critical to their effectiveness, since presenting
them separately failed to significantly increase people’s perfor-
mance (median performance: —US$0.5 per trial; Z=0.22, P=0.83,
r=0.017, 95% confidence interval: [-0.90, +0.88]). Inspecting par-
ticipants’ choice frequencies revealed that the three presentation
formats had significantly different effects on people’s decisions (see
Supplementary Results and Supplementary Fig. 18). In summary,
incentivizing good decisions with game elements can be as effective
as redesigning the decision environment, and this approach is most
effective when the game elements make it very easy for people to
identify the best course of action.

Optimal gamification helps people overcome procrastina-
tion. Given that optimal gamification enabled the participants of
Experiment 2 to act more far-sightedly, we hypothesized that this
approach might be able to alleviate the myopic biases that give rise to
procrastination in everyday life. To test this hypothesis, we designed
a more naturalistic experiment in which participants used the to-do
list app shown in Fig. 5. In Experiment 3, each participant’s to-do
list comprised five daunting writing assignments. Participants were
free to complete as few or as many of those assignments as they
wanted and could earn a US$20 bonus by completing all assign-
ments by a distant deadline. The critical experimental manipula-
tion was whether and how the to-do list items were incentivized
with game elements. The experiment comprised a control condition
where participants were presented with a regular to-do list without
game elements and three conditions where participants could earn
points and badges for completing the items on their to-do list (see
Fig. 5). In one of these conditions, each task was assigned the same
number of points; this was considered a second control condition.
In the other two conditions, the number of points assigned to each
task was computed by optimal gamification (see Fig. 5). The opti-
mal point values displayed next to each to-do item conveyed how
much closer completing that task would bring the participant to
earning the US$20 bonus. Consequently, more difficult tasks would
earn the participant more points than shorter and simpler ones. In
one of these conditions, the incentives for completing each assign-
ment were conveyed as points (see Fig. 5), and a participant’s total
number of points determined their level in the game. In the other
condition, the optimal pseudo-rewards were displayed as virtual
dollars.

To evaluate the effect of presentation format on the probability
that participants would complete all the writing assignments on
time, we conducted a series of y* tests. As shown in Fig. 6, opti-
mal pseudo-rewards significantly increased the completion rate
from 56.1% in the control conditions to 85.2% in the experimental
conditions with optimal pseudo-rewards (y*(1)=11.20, P<0.001,
goodness of fit w=2.863, 95% confidence intervals: [41.0%, 75.9%]
versus [82.2%, 99.7%]). This benefit cannot be explained by the
mere presence of incentives or game elements because adding con-
stant point values failed to increase the completion rate (53.6% with
constant points versus 58.6% without points, y*(1)=0.15, P=0.701,
w=0.384, 95% confidence intervals: [35.6%, 71.5%] versus [41.0%,
75.9%]). Framing optimal pseudo-rewards in terms of money led to
a completion rate of 92.3% while presenting them as points led to
a completion rate of 78.6%, but this difference was not statistically
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Fig. 2 | Conditions of Experiment 1. a, No pseudo-rewards. b, Optimal pseudo-rewards. ¢, Approximate pseudo-rewards. d, Non-potential-based

pseudo-rewards.

significant (y*(1)=2.01, P=0.156, w=1.42, 95% confidence inter-
vals: [82.2%, 99.7%] versus [63.5%, 92.4%]). Along with the increase
in the completion rate, the average number of completed assign-
ments increased from 2.93 out of 5 without optimal gamification
to 4.30 out of 5 with optimal gamification according to a two-sided
Mann-Whitney U test (Z=3.38, P=0.001, r=0.321, 95% confi-
dence intervals on the means: [2.30, 3.54] without optimal gami-
fication versus [3.81, 4.72] with optimal gamification), and the
average total number of words written by each participant signifi-
cantly increased from 458.4+59.0 without optimal gamification
to 765.46 +71.45 with optimal gamification according to a Mann-
Whitney U test (Z=3.37, P=0.001, r=0.320, 95% confidence
intervals on the means: [345.6, 576.1] without optimal gamification
versus [634.2, 911.2] with optimal gamification). Further analy-
ses reported in the Supplementary Information suggested that the
primary benefit of optimal gamification was to increase the prob-
ability that a participant would complete the first task from 59.65%
to 87.04% (Kruskal-Wallis ANOVA, »*(1)=11.01, P<0.001,
7*=0.09, 95% confidence intervals: [48.8%, 73.7%] versus [80.5%,
96.4%]), because regardless of gamification 95.1% of all participants
who completed the first task went on to complete all of the tasks
(Kruskal-Wallis ANOVA: »*(1)=0.69, P=0.408, #*>=0.006, 95%
confidence intervals: [82.2%, 98.9%] without gamification versus
[90.2%, 99.9%] with gamification), and their motivation and behav-
iour seemed to be unaffected.

Optimal gamification helps people prioritize. While Experiment
3 showed that optimal gamification is more effective than assign-
ing the same number of points to every item on one’s to-do list,
there might be other simple heuristics that are just as effective as
our computationally intense optimal gamification method. One
intuitive heuristic is that long and difficult tasks should be assigned
more points than tasks that are short and easy. On the surface, this
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is exactly what optimal gamification did in Experiment 3. However,
optimal gamification also takes into account the value of the goals
that each task contributes to and how much it contributes to that
value. Experiment 4 shows that this makes optimal gamification
more effective than a simple heuristic that incentivizes each task
only according its length (i.e., the number of points for completing
task A is $20 times the length of task A divided by the total length
of all tasks combined). Participants were given a to-do list of ten
tasks. Five of those tasks belonged to a valuable project (Project 1)
whose completion would earn the participant a US$20 bonus. The
other five tasks were equally difficult but belonged to an unworth-
while project (Project 2) whose completion would earn the partici-
pant only US$1. Participants were free to complete either one of the
projects, both or neither.

According to a y* test of independence, gamification signifi-
cantly reduced the proportion of participants who wasted their
time by working on the unworthwhile second project(y*(2) =10.85,
P=0.004,w=0.726, 95% confidence intervals: [19.1%, 46.5%]
without gamification, [27.5%, 56.4%] with heuristic gamification
and [3.0%, 20.2%] with optimal gamification). Consistent with
our prediction, we found that the proportion of participants who
worked on Project 2 was lowest in the optimal gamification condi-
tion (11.1%), highest in the condition with heuristic gamification
(41.9%) and intermediate in the control condition (32.6%). Mann-
Whitney U tests confirmed our hypothesis that participants who
are supported by optimal gamification perform fewer wasteful tasks
of Project 2 (avg. 0.38) than participants supported by heuristic
gamification (avg. 1.47; Z=3.22, P=0.001, r=—0.343, 95% confi-
dence intervals on the means: [0.88, 2.09] with heuristic gamifica-
tion versus [0.04, 0.80] with optimal gamification) and participants
in the control condition (avg. 1.00, Z=2.38, P=0.017, r=—0.254,
95% confidence intervals: [0.51, 1.56] without gamification versus
[0.04, 0.80] with optimal gamification). Likewise, the proportion
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Fig. 3 | Experiment 2. a, Screenshot from the pilot game with separately
presented pseudo-rewards. b, Box plots of performance in Experiment

2 by condition. When game elements conveyed the optimal pseudo-
rewards in the integrated format, participants performed significantly
better than when they were presented no pseudo-rewards (Z=3.69,
P<0.001, #2=0.298, 95% confidence interval: [+0.48, +1.73] points/
trial) or when the optimal pseudo-rewards were presented separately
(Z=3.21, P=0.001, r=0.258, 95% confidence interval: [+0.17, +1.831),
and not significantly better or worse than when optimal pseudo-rewards
were embedded directly into the environment's reward structure (Z=0.52,
P=0.610, r=-0.04, 95% confidence interval: [-0.69, +0.501). By contrast,
separately presented pseudo-rewards did not significantly improve people's
performance compared to the control condition (Z=0.22, P=0.829,
r=0.017, 95% confidence interval: [-0.90, +0.88]) and led to significantly
lower performance than embedded pseudo-rewards (Z=-3.63, P<0.001,
r=-0.285, 95% confidence interval: [-1.96, +0.25]). As in Experiment

1, embedding optimal pseudo-rewards into the task's reward structure
significantly improved participants’ performance relative to the control
condition (Z=4.53, P<0.001, 2= 0.357, 95% confidence interval: [+0.48,
+1.731). All statistical comparisons reported in this figure are two-sided
Mann-Whitney U tests. These findings are based on data from 316
participants (about 80 in each condition).

of participants who completed the unworthwhile project was high-
est in the condition with heuristic gamification (20.9%), lowest
in the optimal gamification condition (10.0%) and intermediate
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in the control condition (14.0%), although these differences were
not statistically significant according to a y* test of independence
(y*(2)=3.78, P=0.151, w=1.943, 95% confidence intervals: [4.6%,
24.3%] without gamification, [9.6%, 33.1%)] with heuristic gamifi-
cation and [0.8%, 13.9%] with optimal gamification). These find-
ings suggest that optimal gamification can not only help people get
started on important tasks, as shown in Experiment 3, but can also
help them avoid wasting time on unimportant ones.

Consistent with the findings in Experiment 3, an increasing trend
in the completion rate of Project 1 from the control condition (34.9%)
to the optimal gamification condition (42.2%) via the heuristic gamifi-
cation condition (37.2%) pointed in the predicted direction, but these
differences were not statistically significant according to a Kruskal-
Wallis ANOVA (¥*(2)=0.53, P=.769, w=0.726, 95% confidence
intervals: [21.2%, 49.0%] without gamification, [23.2%, 51.5%] with
heuristic gamification and [28.2%, 56.5%] with optimal gamification);
we think this is primarily because the addition of five more writing
assignments drastically reduced the overall completion rate in all con-
ditions, thereby reducing the statistical power of our experimental
design. See the Supplementary Results for more detail on how optimal
gamification affected people’s engagement with Project 1.

According to a one-way ANOVA, gamification also had a sig-
nificant effect on participants’ self-reported motivation to complete
the tasks (F(2, 46)=3.35, P=0.044, n*=0.127, 95% confidence
intervals: [3.94, 5.22] without gamification, [4.83, 5.69] with heu-
ristic gamification and [5.91, 6.51] with optimal gamification) with
motivation higher in the optimal gamification condition than in the
control condition (#(29)=2.58, P=0.015, d=0.951 according to
two-sided t-test) and potentially higher than in the heuristic gami-
fication condition (¢#(35)=1.82, P=0.077, d=0.598).

Contrary to the concern that people might experience gamifica-
tion as a manipulative intrusion on their freedom of choice, a series
of one-way ANOVAs revealed that gamification had no effect on the
level of autonomy (F(2, 46)=1.57, P=0.219, #*=0.127, 95% confi-
dence intervals: [4.74, 5.65] without gamification, [4.56, 5.38] with
heuristic gamification and [5.53, 6.36] with optimal gamification)
or perceived intrusion (F(2, 46)=0.27, P=0.761, 1*=0.012, 95%
confidence intervals: [1.55, 2.37] without gamification, [1.15, 1.85]
with heuristic gamification and [1.19, 2.10] with optimal gamifica-
tion) that our participants experienced. To the contrary, in our sam-
ple participants supported by optimal gamification gave the highest
median rating of autonomy (6.2 versus 5.1 in the control condition
and 4.9 in the heuristic condition) and the lowest median rating of
perceived intrusion (0.50 versus 1.75 in the control condition and
1.50 in the heuristic gamification condition).

Discussion

The results of Experiments 1-4 suggest that optimal gamification
can help people make better decisions and act more far-sightedly
(Experiments 1 and 2), get started on daunting tasks (Experiment
3) and waste less time on unimportant tasks (Experiment 4). These
findings jointly show that aligning each action’s immediate reward
with its long-term value succeeds in improving people’s choices
when heuristic gamification methods fail. We found that optimal
gamification is more effective than uniformly incentivizing progress
towards a goal (Experiment 1), assigning the same number of points
to each behaviour the designer wants to encourage (Experiment 3)
or making the number of points proportional to how long a task
takes (Experiment 4). Our optimal gamification method achieves
this alignment between immediate reward and long-term value by
leveraging Al to solve sequential decision problems that are chal-
lenging for people and translating the solutions into incentives that
align each action’s immediate reward with its long-term value. The
resulting incentive structures are implemented using game elements
such as points and levels that motivate people to do what is best
for them in the long run. While each of the heuristics we evaluated
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optimal gamification against may work in some cases, our results
suggest that optimal gamification is more reliable across a wider
range of potential applications.

More generally, our results illustrate that Al can be used to auto-
matically restructure decision problems in such a way that people’s
heuristics work well. This approach is in line with an extensive lit-
erature on bounded rationality that emphasizes that decision qual-
ity depends on the fit between people’s heuristics and the structure
of their environment**. While optimal gamification accommo-
dates the myopic nature of many heuristics, Al can also be lever-
aged to adapt the way in which decision problems are presented
to other characteristics of heuristic decision-making. For instance,
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one could accommodate people’s tendency to select the first option
they find good enough® by leveraging Al to sort the alternatives
in descending order of their predicted value to the decision maker.
This approach could be combined with optimal gamification to help
people choose the option that is best in the long term even when
there are too many alternatives to be considered and many of them
are decent. Furthermore, an intelligent personal assistant could try
to ensure that the default decision is always an action with high
expected utility rather than the status quo'.

There are already many decision support systems that solve
MDPs to compute optimal decisions and advise people to exe-
cute them'*’. However, research in psychology suggests that this

NATURE HUMAN BEHAVIOUR | VOL 3 | OCTOBER 2019 | 1096-1106 | www.nature.com/nathumbehav


http://www.nature.com/nathumbehav

NATURE HUMAN BEHAVIOUR

ARTICLES

i .
NS
100 T
1
80 - T
_ T I
E |
e 60 (
o
c J J
K]
ke
Qo L
g 40
o
(&)
20 -
0
No points Constant Pseudo-rewards Pseudo-rewards
points as points as US$

Fig. 6 | Proportions of participants in Experiment 3 who completed all
assignments by the deadline. Error bars show +1s.e.m. The completion
rate was significantly higher when participants were incentivized by
optimal gamification than when all tasks were incentivized equally or no
points were provided (y?(1) =11.20, P< 0.001,w=13.35, 95% confidence
intervals: [67.6%, 91.5%] without optimal gamification, [75.7%, 93.9%]
with optimal gamification). The difference between the conditions with
no points and those with constant point values was not statistically
significant (4?(1)=0.15, P=0.701, w=0.384, 95% confidence intervals:
[35.6%, 71.5%] versus [41.0%, 75.9%]). The difference between framing
optimal pseudo-rewards in terms of points and framing them in terms of
money was not statistically significant (4?(1)=2.01, P=0.156, w=1.42,
95% confidence intervals: [82.2%, 99.7%] versus [63.5%, 92.4%]). All
statistical tests reported in this figure are y? tests. These results are based
on 111 participants (about 28 per condition).

approach to decision support would probably undermine people’s
intrinsic motivation because it runs counter to the fundamental
human need for self-determination and autonomy*. Optimal gami-
fication, by contrast, gives people complete freedom over what to do
and can be applied to help people motivate themselves to take action
towards their own goals. Using game elements to boost motivation
is not a new idea, but optimal gamification is based on a rigorous
mathematical theory for determining which actions should be
incentivized and by how much. This theory guarantees that optimal
gamification will never incentivize counterproductive behaviour®.
Here we have shown that it can be leveraged to avoid the perils of
less principled approaches to motivating people with incentives and
game elements®*.

The results of Experiment 3 suggest that optimal gamification
might be able to help people align their actions (for example, whether
or not to work on a writing assignment) with their long-term goal
(for example, to earn a US$20 bonus). The primary problem that
optimal gamification solved in this setting was to help people over-
come the motivational barriers of immediate effort that would be
rewarded much later. This suggests that optimal gamification might
be useful for helping people overcome the myopic biases affecting
their motivation®, avoid self-control failure and support the pursuit
of long-term goals. While Experiment 3 presented pseudo-rewards
numerically, future work will investigate whether optimal gamifica-
tion can also be effectively implemented using other presentation
formats that are more commonly used in practice.

Beyond motivational issues, many decision problems that arise
in the pursuit of long-term goals are simply too large and too com-
plex for people to solve them optimally. Our approach could be used
to overcome such challenges by augmenting people’s bounded cog-
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nitive resources with the power of computing and leveraging plan-
ning algorithms developed in AI* to build the solution of complex
decision problems into the reward structure of the environment.
Future work will investigate these hypotheses and explore optimal
gamification as an interface between artificial and human intelli-
gence. By integrating the power of computing with psychological
insight into human motivation and decision-making, this line of
research could lead to cognitive prostheses that might substantially
enhance human productivity and self-mastery. Our approach illus-
trates how advances in Al can be leveraged to help people make bet-
ter decisions. In this way, the continuing progress in Al could enable
a parallel growth in human effectiveness. Given that people learn to
adapt their planning horizon to the structure of the environment*,
optimal gamification could have adverse effects on how people
make decisions in the absence of game elements. A preliminary
follow-up experiment reported in the Supplementary Information
suggests that this might not be the case when the environment
remains the same, but transfer effects from a gamified environment
to decision-making in other environments remain to be investi-
gated. Furthermore, we agree with earlier studies™** that nudges
and decision-support systems should be complemented by improv-
ing people’s decision-making competencies, and ongoing work sug-
gests that Al and optimal gamification can be combined in a more
sophisticated way to teach people better decision-making strategies
(Lieder, Callaway, Das, Jain, Gul, Krueger, & Griffiths, manuscript
in preparation)®.

Methods

The experiments reported in this Article were approved by the Committee for
the Protection of Human Subjects of the University of California, Berkeley under
protocol number 2016-02-8359 (To-Do-List Gamification), and Experiment 4
was also approved by the Independent Ethics Council of the medical faculty of
the University of Tiibingen as IEC Project Number 668/2018BO2 (To-Do-List
Gamification).

Experiment 1. On the basis of our experience with similar online experiments, we
recruited 200 adult participants on Amazon Mechanical Turk to obtain a sample
size of about 60 participants per condition. No statistical methods were used to
predetermine sample sizes, but our sample sizes are larger than those reported

in previous publications**. Participants received US$0.50 and a performance-
dependent bonus of up to US$2 for playing 24 rounds of the flight planning game
shown in Fig. 2. In this game, the player receives points for routing an airplane
along profitable routes between six cities. In each round, the initial location of

the airplane is chosen at random. Participants then choose which of two possible
destinations to fly to, receive the profit or loss of that flight, and choose the next
flight until the round ends. After each flight there was a 1 in 6 chance that the
round would end. Participants were instructed to score as highly as possible,

and their financial bonus was proportional to the rank of their score among all
participants in their condition. This game is based on the planning task that Huys
et al.” used to demonstrate how cognitive limitations shape human planning and
induce cognitive biases. We modelled our version of this task as an infinite horizon
MDP with a discount factor of y=1-1/6 that models the probability that the
current round will end after each move (see Supplementary Methods). This MDP
model of the task is defined such that maximizing the expected sum of discounted
rewards over an infinite horizon was equivalent to maximizing the expected sum of
points the player earns until the game ends.

Participants were randomly assigned to one of four conditions (see Fig. 2 and
Supplementary Table 1). In the control condition, there were no pseudo-rewards
(Fig. 2a), and finding the optimal path required planning four steps ahead. In
the three experimental conditions, the reward structure was modified by adding
pseudo-rewards that summed to zero. In the first experimental condition, the
pseudo-rewards were derived from the optimal value function according to the
shaping theorem (see equation (9); Fig. 2b). In this condition, looking only one step
ahead was sufficient to find the optimal path. This makes it possible for people to
make optimal decisions by simply following the Pavlovian impulses that draw them
towards immediate gains and push them away from immediate losses without having
to engage in any planning or self-control. The second experimental condition used
potential-based pseudo-rewards based on an approximate value function (equation
(12)). This approximate value function (equation (3) in the Supplementary Methods)
was designed by identifying the most profitable location (that is, Smithsville in Fig.
2a) as a goal and then scoring each location by its distance to that goal. The resulting
pseudo-rewards were positive for actions that brought the airplane closer to the goal
and negative for actions that moved it away from the goal. The resulting pseudo-
rewards simplified planning but not as much as the optimal pseudo-rewards. Finding
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the optimal path required planning two or three steps ahead, and the immediate
losses were smaller. In the third experimental condition (Fig. 2d), the pseudo-rewards
were also designed to encourage participants to move towards the most profitable
location. The heuristic pseudo-reward was +50 for each transition that reduced

the distance to the most valuable state (Smithsville). But unlike the approximate
potential-based pseudo-rewards, they imposed no penalty for moving away from the
goal. The resulting pseudo-rewards violated the shaping theorem and were slightly
too high relative to the true rewards. As a consequence, they incentivized taking a
bad short cut to Smithsville (Jonesville — Clarksville — Smithsville) and rendered

the optimal path (Jonesville » Williamsville — Bakersville — Smithsville) suboptimal
in the gamified environment. This made it impossible for participants to recognize
the best path as optimal even with extensive learning or perfect long-term planning.
To ensure that all conditions were comparable in terms of the total reward, the
pseudo-rewards of each condition were shifted such that their sum was zero. Since
the experimental manipulation only affected the flights’ pay-offs, participants were
unaware of the pseudo-rewards in Experiment 1.

Inclusion criteria. The average completion time of the experiment was 13.6 min,
and the median response time was 1.3 s per choice. The median of our participants’
relative scores (that is, (R — 7,;,) (e — 'min) Where R is the sum total of the player’s
points) was 79%. We excluded 3 participants who invested less than one-third of
the median response time of their condition and 11 participants who scored lower
than 95% of all participants in their condition (5.5%), leading to a total exclusion
rate of 7% (14/200). Of the 186 participants included in the analysis, 50 were in the
condition without pseudo-rewards, 47 were in the condition with optimal pseudo-
rewards, 40 were in the condition with approximate pseudo-rewards and 49 were
in the condition with non-potential-based pseudo-rewards.

This exact experiment was run only once, but its main finding was replicated
in Experiment 2. Data collection and analysis were not performed blind to the
conditions of the experiments.

Experiment 2. Since we expected the effect of varying the format in which
optimal pseudo-rewards were presented to be smaller than the effect of presenting
optimal pseudo-rewards at all, we recruited 100 participants per condition (that
is, 400 participants in total) on Amazon Mechanical Turk. No statistical methods
were used to predetermine sample sizes, but our sample sizes are larger than
those reported in previous publications*>*. We paid our participants US$2.50 for
about 20-25min of work plus a performance-dependent bonus of up to US$2.
The average value of the bonus was US$1. The median completion time of the
experiment was 21.2 min.

The task was equivalent to the one used in Experiment 1 except that all
rewards were scaled down by a factor of 10 to keep the arithmetic operations
required to solve the task simple. Participants were randomly assigned to one of
four conditions. In the control condition, no pseudo-rewards were presented (Fig.
4a). Three experimental conditions presented the optimal pseudo-rewards in
three different formats. In the first experimental condition, the pseudo-rewards
were embedded into the decision environment by adding them directly onto the
flights’ profits and losses (Fig. 4b). In the second experimental condition, the
pseudo-rewards were presented separately from the monetary rewards in the
form of stars (Fig. 4c). In the third experimental condition, the number of stars
communicated the sum of the shifted optimal pseudo-reward and the immediate
reward (Fig. 4d). In the conditions with stars, participants were informed that the
stars were designed to help the pilots make better, less short-sighted decisions.
The instructions explained the meaning of the stars. In the second experimental
condition, participants were told that the difference in the number of stars awarded
for flying to destination A versus B predicted the difference in the amount of
money that could be earned from there onward in the long run. In addition, these
participants were given the tip that the flight with the highest sum of stars plus
dollars was most profitable in the long run. In the third experimental condition,
participants were told that the difference between the number of stars awarded for
flying to destination A versus B predicted the difference in how much profit they
were going to make in the long run if they chose destination A over destination
B. Participants in this condition were given the tip that they could earn the most
by always flying the route with the larger number of stars. In all conditions, each
flight’s pay-off and number of stars were rounded to one decimal digit. Stars
had no monetary value, but they determined the player’s level in the game (see
Supplementary Methods). Screenshots of the instructions for the experimental
conditions are shown in the Supplementary Methods.

The optimal pseudo-rewards presented in the three experimental conditions
were computed according to equation (9) and then shifted by a constant such that,
on average across all states, the sum of the immediate reward and pseudo-reward
for the optimal action was equal to the expected discounted long-run reward of
the optimal strategy averaged across all possible starting states. This is appealing
because it makes the pseudo-rewards assigned to each action predict how much
money players will earn in the long run if they choose that action and then
continue optimally.

Attention checks and inclusion criteria. To start the experiment, participants had
to pass a quiz comprising three questions on how their financial bonus would be
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determined and three questions testing their understanding of the mechanics of
the task. If participants got one or more questions wrong, they were asked to reread
the instructions and retake the quiz until they answered all questions correctly.

Out of the 400 participants, 65 had participated in previous flight planning
experiments and were therefore excluded from this study. Out of the 335 remaining
participants, we excluded participants whose median response time was less than
one-third of the median response time across all included participants. In addition,
we excluded the 5% of participants with the lowest scores of each group. These two
criteria led to the exclusion of 19 of the 335 included participants (5.7%), leaving
us wi