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Abstract

How people reach consensus in social networks with locally
distributed interactions is relevant to understanding collective
group decision-making and problem-solving. However, while
the importance of theory of mind in consensus problems has
been hypothesized, little work has been done to test it system-
atically. We present both computational modeling and behav-
ioral experiments designed to test the impact of theory of mind
on individual choices within such consensus networks. We test
2,108 computational models informed by theoretical work on
a graph-coloring consensus task to compare models using the-
ory of mind to other behavioral parameters. We then use be-
havioral responses from 107 participants in a similar task to
evaluate support for theory of mind in consensus formation.
We find that the computational model that best accounts for
prior behavioral data uses theory of mind, and our behavioral
results likewise support use of theory of mind over other po-
tential decision-making models.

Keywords: Psychology; Decision Making, Group Behavior;
Theory of Mind; Computational Modeling

Introduction

How people reach consensus is relevant to understanding
collective decision-making, problem-solving, and memory
(Kearns, 2012; Kearns & Tan, 2008; Kearns, Judd, Tan, &
Wortman, 2009; Bullo, 2020; Balietti, Getoor, Goldstein, &
Watts, 2021; Centola & Baronchelli, 2015; Coman, Momen-
nejad, Drach, & Geana, 2016). Consensus problems involve
individuals making choices based on local interactions with
only a subset of other individuals within a social network,
until global agreement on a decision is reached. Despite the
limitation of local interactions, groups are still remarkably
good at reaching consensus without global interactions.

Theoretical work has suggested many potential factors that
influence performance in consensus tasks, including network
structure (Enemark, McCubbins, Paturi, & Weller, 2011;
Jackson, 2005), memory (Duong, Wellman, Singh, & Kearns,
2012), heterogeneous behaviors (Judd, Kearns, & Vorobey-
chik, 2010), and theory of mind (Kearns & Tan, 2008; Kearns,
2012). However, empirical studies have typically been lim-
ited to modeling success rates with relatively simple heuris-
tics (e.g., myopically choosing the option that minimizes con-
flict; Judd et al., 2010), rather than designing experiments to
test behavioral factors individually.

In this paper, we use both computational modeling and
behavioral experiments to explore the factors that influence
reaching consensus in social networks with locally distributed
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Figure 1: Example graph-coloring consensus social networks
for (a) computational modeling experiments with different
rewiring probabilities, g, and (b) human behavioral experi-
ments with either Connected or Not Connected neighbors.

interactions. We test 2,108 computational models informed
by theoretical work on a graph-coloring consensus task that
emulate various decision strategies, including the use of the-
ory of mind. We then use a novel behavioral experiment to
evaluate support for theory of mind in consensus formation.

We find that the computational model that best accounts
for prior behavioral data uses theory of mind, and that other
tested factors, including memory, decision noise, stubborn-
ness, and sub-optimal decisions, were unable to reach similar
performance alone. Our behavioral results likewise support
use of theory of mind over other potential decision-making
models, particularly a majority model that considers one’s
own observations but not the observations of others.!

Background
Consensus Problems

Prior empirical work on consensus problems encompasses
many settings including graph coloring (Judd et al., 2010;
Kearns, Suri, & Montfort, 2006), biased voting (Kearns et
al., 2009; Kearns & Tan, 2008), trade (Judd & Kearns,
2008), and network formation (Kearns, Judd, & Vorobey-
chik, 2012). Studies suggest that people perform well col-
lectively (Kearns, 2012) and that their performance is shaped
by social network connectivity (Enemark et al., 2011; Jack-
son, 2005), individual differences in decision-making strate-

!Code and data are available upon request.
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gies, personalities, and particularly “stubbornness” (Judd et
al., 2010), bargaining (Chakraborty, Judd, Kearns, & Tan,
2010; Chakraborty, Kearns, & Khanna, 2009), conflict and
fairness (Judd, Kearns, & Vorobeychik, 2011), and theory of
mind (Kearns & Tan, 2008; Kearns, 2012).

Theory of Mind

Theory of mind refers to humans’ ability to form meaning-
ful inferences about the unobserved mental states of oth-
ers (Gopnik & Meltzoff, 1997; Jara-Ettinger, 2019). This ca-
pacity plays a key role in a variety of cognitive skills such as
decision-making (Lucas et al., 2014) and planning (Ho, Saxe,
& Cushman, 2022). As such, empirical research into the-
ory of mind has been the center of considerable work in the
cognitive sciences (Fawcett & Markson, 2010; Lucas et al.,
2014; Jara-Ettinger, Gweon, Schulz, & Tenenbaum, 2016)
and machine learning (Rabinowitz et al., 2018) communities.
Computational models of theory of mind have used frame-
works such as inverse decision theory (Lucas et al., 2014;
Jara-Ettinger et al., 2016) and inverse reinforcement learn-
ing (Jara-Ettinger, 2019; Ng, Russell, et al., 2000), which are
based on Bayesian inference. In these models, Bayes’ rule
is used to update a probability distribution over the mental
states of others given information about their behavior.

Computational Models for Consensus

We focus on modeling the graph-coloring consensus task, a
common consensus problem. In this task, a network of agents
attempt to reach consensus by all agents selecting a single
color while only observing the colors previously selected by
their neighbors. This task is known to be computationally
tractable and has high human success rates, but understanding
the factors influencing human decisions in the task has been
limited to evaluating a myopic heuristic model that selects the
color with the least conflict from its local neighbors (Judd et
al., 2010; Kearns, 2012). While models incorporating sig-
naling and preference inference components have been sug-
gested (Kearns, 2012), a systematic evaluation of candidate
models that incorporate theory of mind has not yet been con-
ducted. Understanding a computationally simple task such as
the graph-coloring consensus task could help us understand
consensus decision-making more broadly.

Testing the impact of theory of mind on consensus requires
using models that go beyond simple myopic heuristics, which
do not precisely capture human behavior. To do this, we de-
velop models that factor in the anticipated decisions of others,
incorporating Bayesian inference and evaluating their predic-
tions against human behavior, along with other baseline mod-
els that capture different decision-making strategies.

Computational Modeling Methods

We created a simulation framework to mimic previous behav-
ioral experiments on the graph-coloring consensus problem
(Judd et al., 2010; Kearns, 2012). In this task, a social net-
work of agents attempt to reach consensus by all selecting the

same color from a set of valid colors. However, the social net-
work is limited to local interactions such that each agent can
only observe the selected colors of its neighbors, which limits
information on the global state of the network. Color selec-
tion iterates until consensus is reached or the task is timed
out. Using this framework, we ran 531,480 trials to test 2,108
model settings with different behavioral parameters, analyz-
ing their objective performance and their correlation with data
from previous behavioral experiments.

Simulation Framework

The simulation framework is written in Python using
networkx (Hagberg, Swart, & S Chult, 2008). The frame-
work runs a trial of the graph-coloring consensus task by tak-
ing model behavioral parameters (see Model Design and Im-
plementation) and trial setup parameters as inputs. The trial
setup parameters specify the number of cliques in a network,
the number of nodes within each clique, the rewiring prob-
ability, the set of colors to choose from, and the maximum
number of iterations before the experiment ends (Figure 1a).

Specifically, a social network graph is created with
cliques number of cliques, each with nodes_per_clique
number of nodes. Each node represents a single agent, an in-
stantiation of a model representing a person in the network.
Each clique is connected to two other cliques, each by a sin-
gle edge, in a chain of cliques—except for the two end cliques,
which are each connected to only one other clique. Each edge
in the graph is rewired with rewiring probability g, such that
one of its nodes is changed to a random node that would cre-
ate a new edge not currently in the graph. The process is
repeated until a connected graph is created (Figure 1a).

All agents in the graph are initialized to a random color
from a set of colors number of valid colors for the trial. The
trial begins and continues to iterate until consensus is suc-
cessfully reached or max_iterations number of iterations
are complete. During each iteration, in an arbitrary but static
order, every agent conducts a color selection process, deter-
mined by the individual agent and its model. At the end of
each iteration, a Bayesian update occurs for all agents.

Model Design and Implementation

At the end of each iteration of a trial, each agent conducts a
Bayesian update based on the observed colors of their neigh-
bors by integrating past observations within a given memory
horizon, possibly subject to decision noise. Intuitively, the
model estimates the probabilities of choosing each color by
each neighbor, and then integrating those probabilities to de-
cide which color is most likely to achieve consensus.
Formally, the model uses the observed colors of each
neighbor within the last memory iterations to calculate the
probability that each of their neighbors will choose a given
color by counting the number of times that color was chosen
per neighbor. To avoid zero probabilities, we implement one
pseudo-observation count for every color. The model then
creates its own color selection distribution of what it believes
is most likely to reach consensus based on the distribution

3266



update type, which is either the sum or product of each
of its neighbors’ probabilities for selecting a given color.
The model then conducts its color selection based on the
decision-making type, which is either deterministic,
selecting the largest sum or product value from the colors, or
probability matching, probabilistically selecting a color
from a normalized version of the distribution. Overall, these
parameters correspond to 724 base model settings.”

We designed an additional set of 724 ‘theory-of-mind’
models based on the base models. The set is identical to
the base models, except that these models have the theory
of mindedness parameter, which mimics considering the
decision-making process of one’s neighbors. If the theory
of mindedness parameter is present, instead of actually us-
ing its own calculated color distribution as described above,
a model is given access to its neighbors’ decision distribu-
tions which it then uses to select the color that is most likely
to reach consensus. In this way, each agent is selecting its
color based on the perceived decision-making calculations of
its neighbors and not only its own decision-making calcula-
tions from observations.

Finally, as another baseline that incorporates individ-
ual variations in agents’ behavior, we included (based on
pilot simulations to eliminate poorly performing models)
a set of 660 ‘heterogeneous’ models with memory pa-
rameters ranging from O to 10, a distribution update
type of product, either decision-making type, and
one of the following heterogeneous parameters: decision
noise, stubbornness, and sub-optimal decisions for
collaboration. The decision noise parameter is the
probability that an agent will select a random valid color
from a uniform distribution during any given iteration, ig-
noring all observations and memory. The stubbornness pa-
rameter is the probability that an agent will select the same
color that it selected most recently during any given iteration,
ignoring any observations and memory. The sub-optimal
decisions for collaboration parameter is the probabil-
ity that the agent will ignore the colors with the highest value
in their own color distribution; deterministic agents select
a color with the second highest probability for being selected
by all neighbors, and probability matching agents ran-
domly draw a color from the distribution of remaining nor-
malized probabilities. The heterogenous parameters varied
from 0.1 to 1.0 in increments of 0.1. When an agent is instan-
tiated from a heterogeneous model, a value is drawn from a
uniform distribution between 0.0 and the selected heteroge-
neous parameter value, such that each agent in a trial have
different individual values of those parameters.

Trial Design and Implementation

We ran 531,480 graph-coloring consensus trials using our
three sets of computational models. We placed each of our
2,108 models in trial setups identical to the prior behavioral

2The base model with no memory and which uses the product
and deterministic parameters is functionally equivalent to the
prior work heuristic model (Judd et al., 2010; Kearns, 2012).

experiments: cliques = nodes_per_clique =6, g = {0.0,
0.1, 0.2, 0.4, 0.6, 1.0}, and colors = 9. Likewise, we set
max_iterations to 180, similar to the behavioral experiment
max time to consensus of 180 seconds. We used identical
models and uniform initial prior color distributions for every
agent in our trials, with the heterogeneous models adding dif-
fering individual behaviors between agents in the same trial.
We ran 100 trials per each of the six g values for each of our
base models with the distribution update type of sum,
and 30 trials per each of the six g values for all other models.

Evaluating the Models

For each model with its set of behavioral parameters, we cal-
culate the success rate and the average time to consensus in
iterations for each value of q. (An unsuccessful trial’s time to
consensus is considered to be max_iterations.) As a com-
parison, we estimated the average time to consensus in sec-
onds over g for the prior behavioral experiments of the graph-
coloring consensus tasks and its heuristic model based on re-
sults presented in Judd et al. (2010). We compare success
rates and average time to consensus across g for our models
to analyze how the different parameters affect model perfor-
mance, both in terms of objective performance (i.e., the high-
est success rates and lowest average time to consensus) and
correlation with the results of Judd et al. (2010) (i.e., the cor-
relation between a model’s average time to consensus to the
reported human average time to consensus). We also evalu-
ated the heuristic model based on results presented in Judd et
al. (2010), finding a correlation of 0.65 with the human data.

Computational Modeling Results

Figure 2 compares the average time to consensus for humans
reported in Judd et al. (2010) with our best performing mod-
els, as measured by their Pearson correlation (r) with the hu-
man data. The models that are shown were best performers
in each of the following categories: the two best performing
theory of mind models with either decision-making type
across distribution update type and memory, the two
best performing base models with either decision-making

Success Rate over g

Model r 00 01 02 04 06 1.0

1 096 0.03 0.77 1.00 1.00 1.00 1.00
0.70 0.00 0.00 0.03 0.77 0.90 0.87
0.78 0.00 0.07 0.62 0.99 0.93 0.83
0.70 0.00 0.00 0.04 0.65 0.93 0.96
0.75 0.00 0.27 0.60 0.60 0.37 0.30
0.84 0.00 0.20 0.73 0.97 0.77 0.77
0.81 0.00 0.00 0.03 0.20 0.50 0.30

NN W

Table 1: Correlations (r) and success rates for best perform-
ing models, as labeled in the legend of Figure 2. We see that
our best performing model, 1, has the highest success rate
across all values of g, especially over g lower values. This
correlates with the behavioral data from Judd et al. (2010).
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Average Time to Consensus over g for Best Performing Models
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Figure 2: Comparisons of the average time to consensus over
q for the prior behavioral data from Judd et al. (2010) and the
best performing models in several categories. Our best per-
forming model is a theory of mind model with the product,
probability matching, and memory= 0 parameters, which
has a correlation of 0.96 with the behavioral data.

type across distribution update type and memory, and
the three best performing heterogeneous models with either
decision-making type across memory and their heteroge-
neous parameters. The correlations between the prior behav-
ioral experimental results and the seven models and the model
success rates over q are provided in Table 1.

In general, models performed better in networks with
higher g values, which indicates higher connectedness. By
analyzing the simulations, we observed that the primary ob-
stacle to success in the task was subgroups of agents agreeing
on a single color but being unable to reach consensus with
other subgroups in the network, such as the examples shown
in Figure la for g values of 0.0, 0.1, and 0.2. This explains
why networks that are more interconnected can reach consen-
sus quicker and with a higher success rate, with and without
theory of mind, because it is less likely for color subgroups
to form without global consensus, which is a common failure
case for majority models. Conversely, in networks that are
less interconnected, color subgroups are more prone to get-
ting stuck as they receive less information about other parts
of the network. Nonetheless, the behavioral data (Figure 2)
indicates that people had consistently high success rates at
this task across different q values, suggesting that they used
some strategy to overcome this state.

As for the heterogeneous models (i.e., those deploying
the decision noise, stubbornness, and sub-optimal
decisions for collaboration parameters), we found

that those helped avoid deterministically remaining in color
subgroups for some lower g values (i.e., 0.1, 0.2, 0.4),
but often resulted in longer average time to consensus in
higher g values. The best performing model was a theory-
of-mind model with the product, probability matching,
and memory = O parameters. It had success rates of [0.03,
0.77, 1.00, 1.00, 1.00, 1.00] over g, and a correlation of
0.96 with the behavioral data. We found that it outperformed
the other models most at g values of 0.1 and 0.2, where the
second-best success rates were only 0.27 and 0.73, respec-
tively. Moreover, unlike the other behavioral parameters that
performed well at lower g values, the best model maintained
high success rates and low average time to consensus through
the higher g values too. As shown in Figure 2, this gener-
ally aligns with the human data in Judd et al. (2010), which
similarly exhibits a substantial drop in average time to con-
sensus from g of 0 to 0.1. However, even the best model
still had a very low success rate (0.03) at g = 0, potentially
due to the theory of mindedness behavior not being weighted
heavily enough for the limited amount of interconnectedness,
so that individuals generally still decided on the same color
as their own subgroup; different subgroups still generally se-
lected their own previous colors and did not select the same
color as all other subgroups within the iteration limit, sug-
gesting that there is still room for improvement with this be-
havioral parameter. Nonetheless, by demonstrating that our
best performing model is substantially aligned with the be-
havioral data, our results support the idea that people use the-
ory of mind in consensus problems, allowing them to over-
come conflicts that challenge many heuristic models.

Behavioral Experiment Methods
Behavioral Paradigm

The results of our comprehensive testing of the different mod-
els suggest that incorporating theory of mind is essential for
capturing human behavior on consensus tasks. To further
test this idea, we conducted a behavioral experiment on the
impact of theory of mind for individual choices within the
graph-coloring consensus problem. To do this, we tested the
color selection responses of 107 participants to 52 graph-
coloring consensus scenarios, using one-shot decision stim-
uli that display a set of observations for one’s own node and
neighbors’ nodes (Figure 1b). In each trial, the participant is
associated with a central node that is connected to five neigh-
boring nodes, and each node can be either red or blue. The
goal of the participant is to choose the color for the hypothet-
ical next iteration so as to achieve consensus. We considered
two network structures: a Connected structure, meaning that
each of the participant’s neighbors is connected to two other
neighbors, and a Not Connected structure, meaning that the
participant is the only node each of its neighbors can observe
(Figure 1b).

We ran simulated theory of mind and majority decision-
making models against all 2 x 2° combinations of red and
blue nodes for the two network structures to determine what
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perfectly rational versions of those models would respond to
each stimulus. The simulated majority model selects a color
that aligns with the majority of its observations, i.e., its pre-
vious color selection and those of its neighbors. The simu-
lated theory of mind model considers the computations of its
neighbors and approximates their next decisions based on the
majority model, and then chooses the color that aligns with
the majority of those expected decisions.

From all potential stimuli, we selected the 20 Connected
and 32 Not Connected networks where following a rational
majority model and a rational theory of mind model would
result in deterministically different responses. Note that we
allow for potential redundancy in stimuli due to rotational and
color symmetry to test if these differences result in substantial
variations in results.

Analysis

Based on the simulated rational majority and theory of mind
models, we assign a theory of mindedness value for each par-
ticipant response to each stimulus, such that the value is 1
if the response aligns with the simulated rational theory of
mind model and O if not (i.e., the response aligns with the
simulated majority model). We calculate mean participant-
level theory of mindedness values by averaging the individ-
ual values for each participant across all of their responses to
stimuli. Likewise, we calculate mean stimulus-level theory
of mindedness values by averaging the individual values for
each stimulus across all of the 107 participants. Finally, we
performed a bootstrapping analysis with 100 iterations over
the participant and stimuli theory of mindedness values, and
used these in our analysis.

Participants

We recruited N = 107 online participants through Amazon
Mechanical Turk (AMT). To ensure data quality, participants
were required to reside in the United States and to have suc-
cessfully completed at least 5,000 AMT tasks. Moreover,
participants were required to pass an Ishihara color blind-
ness test (Clark, 1924). All participants provided informed
consent prior to participation in accordance with an approved
Princeton University Institutional Review Board (IRB) proto-
col (#10859), and they provided up to 30 judgments each to
randomly-selected one-shot decision scenarios (out of the 52
stimuli). Participants additionally had the option of describ-
ing their strategies in free-text form at the end of the study.

Behavioral Experiment Results

Our data yielded a participant-level mean theory of minded-
ness value of 0.66, with a 95% confidence interval of [0.60,
0.72]. Figure 3 shows the distribution of those values. No-
tably, 29/107 participants had a mean participant theory of
mindedness value > 0.95, and 55/107 participants had a value
> 0.70, while only 18/107 participants had a value < 0.30.
The observed individual-level variation was also reflected
in the reported participant strategies. In particular, we

Numbzir of Participants across Mean Participant Theory of Mindedness Value

Number of Participants

04
00 01 02 03 04 05 06 07 08 09 10
Mean Participant Theory of Mindedness Value

Figure 3: Distribution of the mean participant theory of mind-
edness values across participants. The overall bootstrapped
mean theory of mindedness value across all participants is
0.66, supporting the use of a theory of mind model over a
majority model across participants.

found descriptions that aligned with both a majority decision-
making model which corresponds to lower mean theory of
mindedness values (e.g., “I tried to go with the color that al-
ready had the majority, most of the time.”, “I just went with
the color that has more [representation].”) and descriptions in-
dicating some form of theory of mind that aligned with higher
mean theory of mindedness values (e.g., “I looked at each
node and figured out what they saw and then figured the prob-
ability each would choose.”, “In general, I looked at what the
other nodes were connected to and guessed on whether they
would change their colors based on what they saw.”, “I tried
to think that everyone [cooperated and picked] what they saw
more of.”). Finally, we also observed one participant strategy
that explicitly described a stubborn decision-making strategy:
“I always chose the color of me.” All reported strategies ap-
peared to align with one of these three models.

In addition to differences across participants, we also found
variation in the mean stimulus theory of mindedness value.
Figure 4 shows the distribution of stimuli and their mean
stimulus theory of mindedness values. Notably, overall 45/52
stimuli have values > 0.50, with a large majority having val-
ues between 0.60 and 0.80.

Discussion

Our work provides clear support for the role of theory of
mind for reaching consensus in social networks with locally
distributed interactions. Through computational modeling,
we find that across an exhaustive search of 2,108 model set-
tings informed by prior theoretical work, our best perform-
ing model deployed theory of mind and improved over prior
heuristic models. Moreover, this model outperformed an ar-
ray of additional baselines that incorporated features such as
different probability updates, memory, and agent heterogene-
ity, as these were unable to achieve similarly high success
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Figure 4: Distribution of the mean stimulus theory of mind-
edness values across stimuli. 45/52 stimuli have values over
0.50, indicating the use of a theory of mind model over a ma-
jority model across different stimuli.

rates and low average time to consensus for lower values of
the rewiring parameter g while maintaining performance at
higher values. While these features may still affect consen-
sus in social networks with locally distributed interactions,
our results highlight the importance of considering theory of
mind in explaining how humans reach consensus.

Through our behavioral experiments, we further found sup-
port for a theory of mind model over a majority model by
carefully selecting one-shot decision scenarios that lead to di-
verging predictions for each of these models. We also found
individual differences in the participants’ deployed strategies
which were also reflected in the text descriptions provided by
those participants.

Limitations and Future Work

While we tested a large set of computational models informed
by theoretical work, there is still room for testing more com-
plex models, in particular ones that can cope with highly clus-
tered networks like the g = O case, or even adaptive models
that depend on the topology of the network. Additionally,
our models were primarily analyzed in comparison to prior
behavioral data, which had a limited sample size of three tri-
als per g value, and against our own behavioral experiments
which were limited to instantaneous decision-making prob-
lems, rather than tracking an entire graph-coloring consensus
problem. Our one-shot two-color study also does not differ-
entiate well between a potential stubbornness model and a
rational theory of mind model (though the reported verbal
strategies of participants suggest that the former was not a
prevalent strategy as it was only mentioned by one partici-
pant). Future work could address these limitations in tandem,
focusing on gathering more behavioral data in varied struc-
tures for the graph-coloring consensus task, computationally
searching for sets of models that align with this behavioral
data, and iterating between these two steps until converging

on a more complete explanation of the role of theory of mind
in decision-making within social networks with locally dis-
tributed interactions. This work can also be expanded to other
consensus problems outside of the graph-coloring family to
evaluate whether it generalizes.

Conclusion

In this work, we conducted both extensive computational
modeling and human behavioral experiments to test the im-
pact of theory of mind on individual choices within consensus
problems on social networks, using the graph-coloring con-
sensus problem as a case study. Our results underscore the
importance of theory of mind in distributed decision making
problems, highlighting that effective collective behavior re-
quires effective models of individuals, and we hope that our
work will inspire other researchers to explore the interaction
between individual and collective intelligence.
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