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Abstract

Generalization is a fundamental problem solved by every cognitive system in essentially every

domain. Although it is known that how people generalize varies in complex ways depending on

the context or domain, it is an open question how people learn the appropriate way to generalize

for a new context. To understand this capability, we cast the problem of learning how to general-

ize as a problem of learning the appropriate hypothesis space for generalization. We propose a

normative mathematical framework for learning how to generalize by learning inductive biases for

which properties are relevant for generalization in a domain from the statistical structure of fea-

tures and concepts observed in that domain. More formally, the framework predicts that an ideal

learner should learn to generalize by either taking the weighted average of the results of generaliz-

ing according to each hypothesis space, with weights given by how well each hypothesis space fits

the previously observed concepts, or by using the most likely hypothesis space. We compare the

predictions of this framework to human generalization behavior with three experiments in one per-

ceptual (rectangles) and two conceptual (animals and numbers) domains. Across all three studies

we find support for the framework’s predictions, including individual-level support for averaging

in the third study.
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1. Introduction

Almost every two objects, events, or situations that we encounter are unique. Despite

this fact, when people learn that one stimulus has a property, they reliably and systemati-

cally believe certain other stimuli have that property and others do not (Shepard, 1987).

For example, if you learn that a dark, large circle is a gnarble, how likely is a dark,

slightly smaller circle or a dark very small circle to be a gnarble? This is the problem of
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generalization, which is pervasive across psychology. It occurs in many forms throughout

psychology from inductive reasoning (Kemp & Tenenbaum, 2009) to concept learning

(Tenenbaum & Griffiths, 2001) to word learning (Xu & Tenenbaum, 2007). How do peo-

ple generalize a property from a group of stimuli observed to have the property to other

stimuli?

One of the most celebrated results of cognitive psychology provides a seemingly sim-

ple answer to this question: We generalize a property from one stimulus to another stimu-

lus when the two stimuli are close in an appropriate psychological space (Shepard, 1987).

Further, this is equivalent to performing Bayesian inference over a hypothesis space of

properties, where each hypothesis is a candidate set of stimuli that have the property

(Shepard, 1987; Tenenbaum & Griffiths, 2001). Defining more complex hypothesis spaces

has led to empirically successful extensions into more complex domains, such as dis-

crete-valued stimuli (Russell, 1986; Shepard, 1989) and stimuli with richer structure (e.g.,

integers; Tenenbaum & Griffiths, 2001), where there is no simple method for formulating

a psychological space.

However, the Bayesian generalization framework is only successful when the stimuli

are represented in an appropriate psychological space (Shepard, 1987) or equivalently,

using a psychologically valid hypothesis space (Austerweil & Griffiths, 2010) with appro-

priate sampling assumptions (Ransom, Hendrickson, Perfors, & Navarro, 2018). This

equivalence between psychological space and a space of hypothesized properties reflects

the fact that any set of stimuli relate to each other along a multitude of dimensions, and

generalization patterns will differ dramatically depending on which features are used to

represent these items (Austerweil & Griffiths, 2011, 2013). Typically, psychologists infer

the psychological spaces of participants by performing multidimensional scaling or hierar-

chical clustering on participants’ similarity judgments (Nosofsky, 1986; Shepard, 1980;

Shepard & Arabie, 1979; Xu & Tenenbaum, 2007). However, the brain cannot use these

methods to form its own representations of stimuli (what similarity judgments would it

use?). As shown in previous work (Shepard, 1987; Tenenbaum & Griffiths, 2001), the

Bayesian generalization framework provides a normative answer to the question of how

people should extend a property, given a pre-defined hypothesis space. However, it leaves

open the question of how people determine the appropriate hypothesis space for a domain

—a problem the brain must solve. Thus, we are left with a new question: Which hypothe-

sis space should and do people use to generalize properties over novel stimuli?

Previous empirical work has demonstrated that generalization patterns are highly sensi-

tive to context—people generalize a property depending on complex interactions between

how stimuli are categorized in the domain and the property type. People selectively

attend to dimensions diagnostic for categorization (Aha & Goldstone, 1992; Kruschke,

1992; Nosofsky, 1986). People also project properties from one category member to other

category members depending on the heterogeneity of members of the categories (Gelman,

1988; Gelman & Markman, 1986; Nisbett, Krantz, Jepson, & Kunda, 1983). Additionally,

how people generalize a property can depend intimately on the interaction between the

type of property and the domain (Heit & Rubinstein, 1994; Medin, Coley, Storms, &

Hayes, 2003; Nisbett et al., 1983; Shafto, Kemp, Bonawitz, Coley, & Tenenbaum, 2008).
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Previous computational work has shown that this domain-dependent generalization behav-

ior can be captured by performing Bayesian inference with a different hypothesis space

for each domain (Kemp & Tenenbaum, 2009; Shafto et al., 2008). When the domain and

its related hypothesis space are known a priori, the previous results might provide a suffi-

cient explanation of how people generalize properties in different domains. However, this

is an implausible assumption for many real-world instances of generalization. In many

contexts, people face unfamiliar stimuli possessing a multitude of features and are not

told which features and/or hypothesis spaces should be used to generalize. Nonetheless,

people are able to use the structure of stimuli in the current context to learn how to gen-
eralize.

The computational problem of learning how to generalize is equivalent to learning an

overhypothesis (Goodman, 1955) that determines which hypotheses are “lawlike” in a

domain or context. For example, consider finding a box filled with bags of marbles left in

your attic by the previous occupant of your home. You look in two bags. The first bag

contains all white marbles, while the second bag contains all black marbles. A hypothesis

for a bag would be the probability a marble is white or black (e.g., it might be the case

that 80% of the marbles are black and 20% are white in a bag). An overhypothesis would

be the expectation you infer about hypotheses. In this case, after observing the two bags,

you expect only two hypotheses: the hypothesis where all marbles are white and the

hypothesis where all marbles are black. This aids future generalization. For the first mar-

ble in the third bag, you would be indifferent between it being white or black (across

bags the probabilities are equal). However, once you learned the color of a single marble

in this new bag, you would expect all the marbles in the new bag to be that color (Kemp,

Perfors, & Tenenbaum, 2007).

Previous work has established the power of hierarchical Bayesian modeling as a possi-

ble explanation for how people could learn overhypotheses across a broad set of domains

ranging from the visual images for a novel object (Salakhutdinov, Tenenbaum, & Tor-

ralba, 2012), to the visual relations between parts of characters in a novel alphabet (Lake,

Salakhutdinov, & Tenenbaum, 2015), to other types of words and causal relationships

(Kemp, Perfors, & Tenenbaum, 2007; Mansinghka, Kemp, Tenenbaum, & Griffiths,

2006; Perfors, Tenenbaum, & Regier, 2011). However, previous models are formulated

for specific domains such as learning characters or words and have not been evaluated

empirically through multiple, behavioral experiments across different domains. It remains

an open question whether individuals use the same evidence and make the same infer-

ences as these models. Further, previous work has not explored the implications of hierar-

chical Bayesian modeling in the context of generalization, where the relevant inference

concerns the actual hypothesis space to adopt.

In this paper, we examine how people should and do learn to generalize in perceptual

and conceptual domains. First, we build on the Bayesian generalization framework to

show how an ideal learner should learn how to generalize. Our analysis indicates that the

same framework with different sets of hypothesized patterns can explain how complex

patterns of generalization can be learned. We test these predictions empirically in three

domains: learning the dimensions to generalize properties over perceptual stimuli
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(rectangles) and performing property induction over two types of conceptual stimuli (ani-

mals and numbers).

2. Learning to generalize

Our mathematical framework builds directly on the Bayesian generalization model

(Shepard, 1987), so we first summarize this approach. We then show how it produces dif-

ferent patterns of generalization behavior depending on its hypothesis space, and how to

extend it to learn an appropriate hypothesis space for generalization.

2.1. Bayesian generalization framework

After observing that stimuli x has some property,1 which other stimuli should have that

property? For example, if a dark, large circle is a gnarble, which other stimuli are likely

to be gnarbles? Shepard (1987) argued that this problem could be solved by assuming

stimuli are points in a psychological space and gnarbles occupy a region in that space.

More generally, we can imagine a set of hypotheses H about which objects are gnarbles
and use Bayesian inference to evaluate the plausibility of the hypotheses (as reflected in

the posterior probability of those hypotheses, PðhjxÞ; Tenenbaum & Griffiths, 2001).

Assuming that stimuli are generated uniformly and independently from the true hypothe-

sis (Pðxjh) ¼ hj j�1
, where hj j is the number of stimuli having the property according to

h) and some prior beliefs over hypotheses P hð Þ; the posterior probability that hypothesis

h is the property that n given stimuli share is given by Bayes’ rule.

P hjxð Þ ¼ P hð ÞQn
i¼1 P xijhð ÞP

h02H P h0ð ÞQn
i¼1 P xijh0ð Þ ð1Þ

This incorporates the prior plausibility of each hypothesis (P hð Þ) as well as the consis-

tency of each hypothesis with the stimuli observed to be gnarbles so far (PðxjhÞ). The
probability of generalizing from x to another stimulus y is the sum of the posterior proba-

bilities (Eq. 1) of all hypotheses under which the new stimulus would be a gnarble.

P yjxð Þ ¼
X
h:y2h

PðhjxÞ ð2Þ

which constitutes a form of hypothesis averaging (Robert, 2007).

The predictions of the Bayesian generalization framework depend intimately on the

nature of the hypotheses under consideration, with different hypothesis spaces leading to

different generalization patterns. For example, Fig. 1(a and b) show that when generaliz-

ing over a two-dimensional space, a hypothesis space containing intervals that vary over

one consequential dimension result in standard one-dimensional generalization gradients
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over that consequential dimension. As Fig. 1(b) shows, the consequential dimension and

the “experimenter-defined” axes of the stimulus space are not necessarily aligned, which

can result in a very different pattern of generalization behavior. Fig. 1(c–d) show that

when generalizing what animals are likely to share a novel protein found in grizzly bears,

which hypothesis space you use affects how likely different animals are to share the pro-

tein with grizzly bears. When a hypothesis space containing predator–prey pairs as

hypotheses is used, salmon are likely to share the novel protein with grizzly bears

(Fig. 1c). When a taxonomic hypothesis space is used, panda bears are likely to share the

novel protein with grizzly bears (Fig. 1d).

The hypothesis space used in Bayesian generalization models is typically fixed and

specified a priori. Thus, generalization behavior for a particular stimulus and property is

also fixed and specified a priori. However, as noted above, human generalization behavior

is strongly influenced by context. Under the standard Bayesian generalization framework,

such sensitivity falls out of the scope of normative predictions. However, we argue that

certain contextual information, such as the structure of previously learned concepts in a

domain, provides higher-level data that may be incorporated into future inferences to

facilitate faster generalization, thus permitting transfer to new concepts. We now turn to

the question of how an ideal learner should solve this problem of learning how to gener-

alize in a domain based on previously learned concepts.

2.2. Learning a hypothesis space

We can extend the Bayesian generalization framework to learn what hypotheses are

“lawlike” (in the sense of Goodman, 1955) by learning concepts in a domain, where a

concept is a set of stimuli sharing a property. Given a set of possible hypothesis spaces,

we formulate a hierarchical Bayesian model, where the appropriate hypothesis space for

generalization is itself a higher-level random variable.2 This higher-level variable is an

“overhypothesis,” representing our belief that each hypothesis space is appropriate for

generalizing. The posterior probability of each hypothesis space given the observed con-

cepts encodes how well the hypothesis space explains the concepts. To generalize, a

Bayesian agent would take the weighted average over the generalization predictions

resulting from using each hypothesis space, with weights corresponding to posterior prob-

abilities. One can interpret this procedure as several Bayesian generalization models run-

ning in parallel that are then averaged together (where each generalization is weighted to

the extent that its hypothesis space explained previously learned concepts in the domain).

Learning an overhypothesis by this process results in learning how to generalize.

Formally, given a set of M possible hypothesis spaces M ¼ H1; . . .;HMf g, we define

a hierarchical Bayesian model where the appropriate hypothesis space for generalization

is itself a higher-level random variable. There are two ways that the model could general-

ize to a new stimulus y given an observed set of concepts C ¼ x1; . . .; xnf g and a set of

stimuli (with the current property of interest) xnþ1 with probability.
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P yjC; xnþ1ð Þ ¼
XM
m¼1

P yjxnþ1;Hmð ÞP HmjC; xnþ1ð Þ; ð3Þ

where Pðyjxnþ1;HmÞ is the probability of generalizing from the currently observed stimuli

xnþ1 to y under hypothesis space Hm (as specified by Eq. 2) and P HmjC; xnþ1ð Þ the
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Fig. 1. Bayesian generalization. (a and b) Width-only and positive-diagonal-only hypothesis spaces and the

resulting generalization gradients for two-dimensional perceptual stimuli. The generalization gradients are dis-

played as contour plots, where generalization probabilities are equal on a contour and warm colors represent

greater probabilities. Each hypothesis is an interval in 2-D space, which is either aligned with the axes or

diagonals (and has arbitrary extent in the orthogonal dimension). (c and d) Predator–prey pairs and taxonomic

hypothesis spaces and their resulting generalization gradients for animal stimuli. Although the perceptual and

animal stimuli are different domains, generalizations are made using the same underlying Bayesian frame-

work, but with differing hypothesis spaces. It is important to note that the same mathematical procedure with

different hypothesis spaces results in different generalization behavior.
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second term of Eq. 3 is the posterior probability of hypothesis space Hm given the

previously learned concepts and the current stimuli. This approach is known as model
averaging, and it is the standard method used to predict new items using a hierarchical

Bayesian model. An alternative is model selection, which uses only the hypothesis space

with maximum posterior probability for generalization, denoted H�.

PðyjC; xnþ1Þ ¼ Pðyjxnþ1;H�Þ;where H�
m ¼ argmax

H2M
PðHjC; xnþ1Þ ð4Þ

Depending on the goal of the agent, both strategies can be viewed as normative and

are used in Bayesian statistics when the model for a domain is uncertain (Clyde et al.,

2007). This posterior probability can be computed by applying Bayes’ rule.

P HkjC; xnþ1ð Þ ¼ P C; xnþ1jHkð ÞPðHkÞPM
m¼1 P C; xnþ1jHmð ÞPðHmÞ

; ð5Þ

where P C; xnþ1jHkð Þ is the probability of observing a set of concepts C and the current

stimuli in the new concept xnþ1 under the hypothesis space Hk and P Hkð Þ is the prior

probability of hypothesis space Hk. The probability of the previously seen concepts and

the currently observed stimuli xnþ1 under hypothesis space Hk is.

P C; xnþ1jHkð Þ ¼
Ynþ1

i¼1

X
h2Hk

PðhjHkÞ
Y
x2xi

P xjhð Þ; ð6Þ

where PðhjHkÞ is the prior on h under hypothesis space Hk and PðxjhÞ is the likelihood

of stimulus x given h.
For example, consider the four hypothesis spaces for properties over a two-dimensional

perceptual domain in Fig. 2(a). In this example, each point in the space corresponds to a

rectangle and a concept is a group of rectangles that share a property. The rectangles in

each concept share either the same width or height, which is more likely under the

width-only and height-only hypothesis spaces (each concept fits in smaller intervals of

the width-only and height-only hypothesis spaces). After observing these concepts, the

model learns to generalize based on the width-only and height-only hypothesis spaces.

Fig. 2(b) illustrates how the model learns to generalize in the animal domain. After

observing two concepts (that jaguars and sloths share a novel protein and lions and ante-

lopes share a different novel protein), the posterior probability of the predator–prey pair
hypothesis space is the largest, though there is considerable probability for the geographic
hypothesis space. This results in both approaches generalizing a novel property from griz-

zly bears to both salmon and bald eagles. The model averaging approach also predicts

that the bald eagle is more likely to share the property with the grizzly bear than the

other two animals, because it averages in generalizing under the geographic hypothesis

space (grizzly bears and bald eagles both live in North America). This illustrates that
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model selection and model averaging can make different predictions for how people

should learn to generalize novel concepts.

2.3. Testing the predictions of the model

The hierarchical Bayesian approach to learning how to generalize that we have pre-

sented makes clear predictions about how people should differ in their pattern of general-

ization based on their experience in a domain. In addition to testing these basic

predictions, the experiments we present below examine the two strategies for learning to

generalize: model averaging and model selection. Prior work in categorization and induc-

tive inference has extensively explored a related problem over the last few decades: how

do people predict unknown properties of a novel object when the category membership

of that object is unknown?

Previous work has argued that a Bayesian agent should infer unknown properties of

the novel object by averaging over hypotheses, taking the weighted average of the proba-

bility of the properties given each possible category where the weights are determined by

how probable each category is given the observed properties of the known objects

(Anderson, 1991; Murphy & Ross, 1994). Most empirical work contradicts this predic-

tion: People tend to rate the likelihood that the novel object has the property according to

the relative frequency of that property in the most probable category for the object

(Hayes & Newell, 2009; Malt, Ross, & Murphy, 1995; Murphy & Ross, 1994). Based on

this related previous empirical work, we should expect people to learn to generalize in

our studies according to model selection. However, there are some cases where people do

take into account multiple categories during induction. This usually requires special stim-

ulus presentation or other experimental procedures or measures beyond what is typically

used in inductive inference tasks (Chen, Ross, & Murphy, 2014, 2016; Papadopoulos,

Hayes, & Newell, 2011; Verde, Murphy & Ross, 2005). Thus, it is possible that people

might learn to generalize using model averaging instead.

Our analysis of learning how to generalize predicts that people should learn how to gen-

eralize in a domain based on the structure of the concepts observed in that domain. In

Experiment 1, we test this prediction in a perceptual domain (rectangles) by teaching peo-

ple to represent rectangles according to the appropriate set of dimensions for the concepts

learned over rectangles. In Experiment 2, we investigate this prediction in a structured con-

ceptual domain (animals) using a property induction task. In Experiment 3, we explicitly

examine whether people perform model averaging or selection, in a different structured

conceptual domain (numbers), using individual-level analyses. These three experiments

across a broad range of domains provide a robust test of the model’s predictions.

3. Experiment 1: Learning dimensions to represent rectangles

The proposed model predicts that a learner should be able to infer the dimensions for

representing rectangles in a novel domain from observed examples of concepts expressed
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Fig. 2. Learning hypothesis spaces. (a) A two-dimensional perceptual domain. Each point in the space corre-

sponds to a rectangle and a concept is a group of rectangles that share a property (in this case, being called a

novel word). The rectangles in each concept share either the same width or height, which are more likely

under the width and height hypothesis spaces. After observing these two concepts, the model learns to gener-

alize based on the width and height hypothesis spaces. (b) An analogous example of how the model learns

hypothesis spaces in a conceptual domain.
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in that domain. Preliminary support for this prediction is provided by the results of Gold-

stone (1994), who showed that teaching people a novel axis-aligned concept could affect

generalization along that axis. To perform a more thorough test of our predictions, we

conduct an experiment in which we examined how learning concepts without feedback

affects people’s generalization judgments. We use rectangles varying in width and height

as our set of stimuli and define concepts on two sets of experimentally manipulated

dimensions: same width or height and same aspect ratio or area. These two sets of dimen-

sions correspond to four hypothesis spaces for generalization shown in Fig. 1(a–b). Previ-
ously, Krantz and Tversky (1975) found that people weakly favor using area and aspect

ratio as separable dimensions. However, people can use either pair of dimensions for gen-

eralizing depending on the context of previously learned concepts. This natural flexibility

makes rectangles an ideal candidate for testing our predictions.

3.1. Methods

3.1.1. Participants
A total of 86 undergraduates from UC Berkeley participated for course credit.

3.1.2. Stimuli and procedure
The stimuli are rectangles varying in width and height (13–115 pixels in increments of

approximately 25 pixels, with monitor dimensions of 18:75� 10:5 inches with

1; 920 � 1; 080 resolution). The stimulus set is shown in Fig. 3. Depending on their

assigned condition, participants learn 16 concepts that are either aligned with or orthogo-

nal to the dimensions given by Fig. 4.3

Participants read the following “cover story,” which sets the task in a more naturalistic

context: “On an island in the Pacific Ocean, scientists found the ancient ruins of a small

civilization. While excavating the ruins, they discovered symbols on the doors of the

ruined houses. The scientists believe that the symbol on the door of the house carries

information about the family that lived there. Some of the symbols were labeled, and

each symbol was found with more than one label.”

There are two phases to the experiment: training and test. For the training phase, there

are two between-subjects conditions: the axis-aligned condition (n = 42), in which people

learn the 16 axis-aligned concepts shown in Fig. 4(a), and the diagonal-aligned condition

(n = 44), in which people learn the 16 diagonal-aligned concepts shown in Fig. 4(b). The

conditions are matched such that every stimulus was presented the same number of times

to the participants, there are the same number of objects in each concept, the concepts

span the space of objects, and the variability of objects over each dimension is equal.

This allows us to infer that any differences in generalization behavior must be due to dif-

ferences in the structure of the concepts learned by participants in the conditions (as

everything else was identical). Thus, our predictions are supported if we observe that the

axis-aligned participants generalize novel properties more on the axes (constant width or

height) than the diagonal-aligned participants, and conversely for the diagonals (constant

aspect ratio or area).
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The 16 concepts are presented to participants in a random order as examples of objects

that are called different nonsense names randomly chosen from a standardized list. For

each trial in the training phase, the objects in each concept are displayed on the screen

and participants are asked whether they thought the current object shown individually

1 2 3 4 5 6 7 8 9

1

9

8

7

6

5

4

3

2

Fig. 3. The set of stimuli used in Experiment 1 (not to scale).

Axis-Aligned Concepts

(a) (b)
Diagonal-Aligned Concepts

Fig. 4. The 16 concepts for the (a) axis-aligned and (b) diagonal-aligned conditions. Each concept is the col-

lection of objects on a straight line on the grid. For the axis-aligned condition, all objects share either the

same width or height. For the diagonal-aligned condition, all objects in a concept share either the same

aspect ratio or area. Each object occurs the same number of times in each condition.
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below the objects in the concept could be called that name. For each concept, this is done

with every object with dimension values in 1; 3; 5; 7; 9f g � 1; 3; 5; 7; 9f g (we only used

this subset of the stimuli to keep the experiment relatively short). The test phase of the

experiment is identical to the first phase except participants generalizations are tested for

concepts consisting of single objects ( 2; 2ð Þ; 2; 8ð Þ; 5; 5ð Þ; 8; 2ð Þ; 8; 8ð Þf g were tested) over

the total 9� 9 set of objects. No feedback is ever given in either condition.

3.2. Results and discussion

Fig. 5(b) shows participant generalization responses for the test phase in the two

conditions. The responses were aligned and then averaged over the five concepts per

participant and then over participants in the condition. We then took the difference

between the responses for the two conditions and compared them to the difference

between the generalization predictions produced by the Bayesian model shown in

Fig. 5(a).4 Participants in the diagonal-aligned condition generalized more on the diag-

onals than those in the axis-aligned condition (and vice versa), supporting the model

predictions (16/24 predicted to be larger by the axis-aligned condition, p ¼ :08; and

27/32 for the diagonal-aligned condition, p\:001).5 As the differences in generaliza-

tion between the two groups of participants in Fig. 5(b) is not limited to the axes

and diagonals, our results are not consistent with the “coincidence effect” of Tversky

and Gati (1982), which predicts generalization only when the dimension values are

precisely equal. Overall, these results are consistent with the predicted change in the

pattern of generalization that is indicated by our hierarchical Bayesian model.

4. Learning hypothesis spaces and selective attention

The results of Experiment 1 show a clear effect of prior experience on people’s pat-

terns of generalization for novel concepts: The axes along which people generalize

depend on the kind of concepts that they had been exposed to. This phenomenon has

some parallels with previous work on dimensionally selective attention in the categoriza-

tion literature, which has shown that if a dimension is more relevant for accurately cate-

gorizing a set of stimuli, participants will rely on that dimension more than other

dimensions to generalize, a phenomenon known as selective attention (Kruschke, 1992;

Nosofsky, 1986; Shepard, 1964). When categories are defined as regions in some geomet-

ric space, the result of selectively attending to a useful dimension is to “stretch” it rela-

tive to other dimensions such that changes in the attended dimension affect generalization

more than changes in the other dimensions (which selective attention “shrinks”). For

example, in the Generalized Context Model and its variants (Kruschke, 1992; Nosofsky,

1986), the calculation of distance, bij, between stimuli xi and xj is affected by the selec-

tive attention to each dimension wd
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bij ¼
XD
d¼1

wd xid � xjd
�� ��r !1=r

;

where wd is non-negative and the amount of attentional weight sums to one. This is then

used to specify the similarity between pairs of stimuli sij by defining a generalization gra-

dient, for example sij ¼ expð�bijÞ.
Our results in Experiment 1 can be interpreted in similar light: if we characterize the

different dimensions along which rectangles can be represented as being given different

weights in people’s generalizations, then our results can be taken as showing that people

can shift those weights from favoring one set of dimensions (area and aspect ratio) to

another (height and width). Indeed, this shouldn’t come as a surprise: there is a natural

parallel between this kind of shift of dimensional attention and our hierarchical Bayesian

approach to generalization.

The two hypothesis spaces contrasted with one another in Experiment 1 can be inter-

preted as picking out different axes along which rectangles should be represented for gen-

eralization. Within each hypothesis space, we might imagine that hypotheses are axis-

aligned regions—the multi-dimensional analogue of the one-dimensional intervals that

Shepard (1987) used in his original analysis of generalization. For the original case,

Tenenbaum (1999, Appendix B) showed that the Bayesian generalization model with a

Difference in Participant ResponsesDifference in Model Predictions
(a) (b)
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Fig. 5. Model predictions and results for Experiment 1. (a) Predicted differences in generalization produced

by Bayesian models learning from the axis-aligned and diagonal-aligned concepts. (b) Differences between

participant responses in the axis-aligned and diagonal-aligned conditions. The results are presented as bubble

plots where the size of the bubble represents the degree of generalization. Solid and open bubbles represent

positive and negative values, respectively. The generalizations people produced were aligned and then aver-

aged over the five concepts per participant and over participants. Participants in the diagonal-aligned condi-

tion generalized more on the diagonals than those in the axis-aligned condition (and vice versa).
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Gamma distribution for the prior on the size of each dimension of the regions produces

patterns of generalization given by.

PðyjxÞ / exp �
XD
d¼1

wd xd � ydj j
 !

;

where wd depends on the parameters of the prior: If the prior favors smaller regions along

that dimension, then wd is greater, consistent with an increased cost of generalizing along

that dimension. This is proportional to the weighted Minkowski distance formula when

r = 1. This is appropriate given that selective attention focuses on the case of stimuli

with separable dimensions which is typically modeled by a weighted Minkowski distance

with r = 1.

Using this result, we can characterize the Bayesian hypothesis space learning approach

as adjusting the relative contribution of two different generalization gradients, each

assigning different weights to the underlying dimensions. One hypothesis space assigns

zero weight to height and width and non-zero weight to area and aspect ratio. The other

assigns zero weight to area and aspect ratio and non-zero weight to height and width.

The average of the generalization gradients that result from these different hypothesis

spaces can thus be approximated by a single generalization gradient in which the weights

of all four dimensions are adjusted.

Despite these parallels, there are significant ways in which the previous empirical and

theoretical treatment of selective attention relates to our results. First, selective attention

is typically implemented using error-driven learning to adjust the weights assigned to dif-

ferent dimensions of a psychological space prior to applying a simple generalization func-

tion (e.g., Kruschke, 1992). Typical studies examining category learning and selective

attention highlight the importance of corrective feedback (e.g., Rehder & Hoffman,

2005). Further, recent work has found differences in supervised human category learning

depending on whether participants guess and are given feedback when taught exemplars

from each category, or simply observe labeled examples from each category (Kurtz,

2015; Levering & Kurtz, 2015). Thus, to the best of our knowledge, it is unknown

whether people learn to selectively attend to dimensions during supervised category learn-

ing in the absence of feedback. Our studies examine this type of context and find that

people can change the dimensions they use in generalization without corrective feedback.

Second—and perhaps more important—under our approach, the change in the way that

dimensions are treated is a result of a qualitative shift of representation rather than a

quantitative shift of attention. In the hierarchical Bayesian model, this shift is a result of

a discrete change in the hypothesis space being used. In the case of model selection, gen-

eralization only depends on the dimensions consistent with that hypothesis space. Varia-

tion along other dimensions is ignored, assuming that the variation is not large enough to

change which dimension is most diagnostic. Even in model averaging, we expect system-

atic changes in which the dimensions associated with specific hypothesis spaces come to

dominate over time while the contribution of others diminishes to zero.
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Because our framework provides a computational-level account, we anticipate that

there are (algorithmic-level) process models that could capture the pattern of behavior

shown in our experiment through appropriately tuned mechanisms for selective attention

based on distributional information within each concept (though it would be difficult to

capture these results with purely feedback-driven selective attention mechanisms). How-

ever, a shift in which continuous dimensions are used to support generalization is only

one aspect of the predictions of our framework. To demonstrate that our approach pro-

vides a broad account of learning how to generalize, we conducted two experiments with

more structured concepts, showing that similar results hold in domains where it is harder

to pick out stimulus dimensions and apply a selective attention account, and where we

can test some of the more specific predictions of the framework.

5. Experiment 2: Learning a hypothesis space for animals

Our extension to the Bayesian generalization framework for learning how to generalize

predicts that people should use the concepts observed in a given context to generalize

new concepts in that context. In Experiment 2, we test this prediction in a conceptual

domain by exploring how participants generalize properties in a property induction task

in which we demonstrate that certain animals have some property and ask participants to

evaluate which other animals share that property. With this task, we target the question

of whether the context of learned concepts affects how people generalize properties in

property induction.

5.1. Methods

5.1.1. Participants
At UC Berkeley, 752 undergraduates participated for course credit. There were four

between-subjects conditions, with 189, 188, 190, and 185 participants in the predator-
prey pairs, geographic, predators vs. prey, and taxonomic conditions, respectively.

5.1.2. Stimuli and procedure
After reading a story about proteins found in the blood of eight animals (cougar, por-

cupine, lion, antelope, jaguar, sloth, striped hyena, and gazelle), participants rate how

likely four other animals (salmon, desert fox, bald eagle, and panda) are to share a pro-

tein with a grizzly bear. The groupings of animals sharing the same protein are deter-

mined by the participant’s condition as shown in Fig. 6.

For example, participants in the predator-prey pairs condition read the following

instructions (other conditions used the same cover story except animals shared proteins

according to the appropriate conceptual relationship given in Fig. 6):

“Imagine that you are a scientist, trying to learn about animal physiology. You hear

that other scientists have recently discovered some proteins in the blood of different ani-

mals that protect them against Toma Disorder. Here are their findings so far:
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Protein A has been found in cougar and porcupine blood.

Protein B has been found in lion and antelope blood.

Protein C has been found in jaguar and sloth blood.

Protein D has been found in striped hyena and gazelle blood.

Scientists have recently found Protein E in grizzly bear blood. You want to figure out

which other animals might have Protein E in their blood.”

After reading the cover story, participants respond on a 1-7 Likert rating scale, ranging

from 1 (Very Unlikely) to 7 (Very Likely), how likely they think it was for Protein E to

be found in the blood of the four test animals (salmon, desert fox, bald eagle, and

panda).

5.2. Results and discussion

Fig. 7(a) shows the averaged participant judgments. Each group of bars depicts how

generalization judgments change for the same test item depending on the context. Partici-

pants generalize a protein found in grizzly bear blood differently depending on the con-

text of which animals shared other proteins. We conducted an analysis of deviance on a

mixed-effects ordinal logistic regression (following Liddell & Kruschke, 2018), which

resulted in a significant effect of context, v2 3;N ¼ 752ð Þ ¼ 25:24; p\:001, and an inter-

action of context with judgment v2 9;N ¼ 752ð Þ ¼ 161:02; p\:001. In particular, partici-

pants generalize the protein in grizzly bear blood to a prey, salmon, more when other

predator–prey pairs shared a protein (t 2981ð Þ ¼ 4:10; p\:001). Further, they generalize

the protein in grizzly bear blood to a biological relative, panda, more when other taxo-

nomic relatives shared a protein (t 2981ð Þ ¼ 6:38; p\:001). Thus, participants extend

properties based on the conceptual relations they observed in the context.

Protein A Protein B Protein C Protein D Protein E
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Fig. 6. Assignments of animals to proteins for the conditions in Experiment 1 with appropriate groupings of

animals being used in each condition. The assignments determine the context of previous concepts that are

used by participants and the model to learn how to perform property induction.
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To evaluate the model, each conceptual structure (condition) is represented as a

hypothesis space. The prior distribution over them has one parameter for the weight of

the taxonomic hypothesis space, with the remaining mass distributed unfiormly over the

other hypothesis spaces. The parameter was set to 0.9999 by minimizing the distance

between the model results and the participant responses. This large value is consistent

with prior research suggesting that taxonomic relationships are salient for induction of

biological properties (Heit & Rubinstein, 1994).

The hypothesis spaces were formulated prior to looking at the participant responses.

The predator–prey pairs hypothesis space contains typical pairings of predator-prey rela-

tionships. For example, in this hypothesis space, the cougar is in two hypotheses (with

porcupine and sloth), and the grizzly bear is in one hypothesis (with salmon). The geo-
graphic hypothesis space has three hypotheses, each containing the animals typically

found on the continent (South America, Africa, and North America). The predators vs.
prey hypothesis space has two hypotheses, preys (porcupine, antelope, sloth, gazelle, and

salmon) and predators (cougar, lion, jaguar, hyena, grizzly bear, desert fox, and bald

eagle). The taxonomic hypothesis space contains 10 hypotheses: the big cats, bovids (an-

telope and gazelle), bears, and single member hypotheses for the other animals. To ensure

that a hypothesis space never has zero probability, a “catch-all” hypothesis containing

every animal was also added to each hypothesis space. The size of each hypothesis is the

number of animals it contains and the prior distribution over hypotheses in each hypothe-

sis space was uniform.

(a)

(b)

Fig. 7. (a) Participant responses and (b) model averaging results for Experiment 2. Participants and the

model change how they extend a property (having a protein that is found in the blood of grizzly bear) appro-

priate to the observed conceptual structure of the context (assignment of animals to proteins).
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Fig. 7(b) shows the model results for Experiment 2. The model qualitatively captures

how people change their judgments for each test animal in the four contexts. Both people

and the model generalize from the grizzly bear to each test animal the most in its favored

context. Also, both give the largest generalization judgments to the salmon in the preda-
tor-prey pairs context and the panda in the taxonomic context. Additionally, model aver-

aging accounts for participant responses better quantitatively (r ¼ :93, Pearson’s and

Spearman’s correlations), then model selection (r ¼ :86 and r ¼ :28, Pearson’s and Spear-

man’s correlations, respectively).

6. Experiment 3: Model averaging and model selection with number concepts

Experiments 1 and 2 support that people can learn to generalize in a context based on

the concepts observed in that context, as predicted by our extension to the Bayesian gen-

eralization framework. The results of Experiment 2 also provide weak support for people

performing model averaging rather than model selection. However, as we only have a

single data point from each participant, it is difficult to determine whether participants

generalize using model averaging or model selection. In Experiment 3, we expand on

Experiment 2 by asking each participant to generalize multiple times given different

information, thus enabling us to identify which strategy each participant is using. To pro-

vide converging evidence for the framework, we used a different domain for the experi-

ment: numbers between 1 and 100.

6.1. Methods

6.1.1. Participants
A total of 188 adults residing in the United States were recruited through Amazon

Mechanical Turk and received $2.00 for their participation. Participants were excluded

from analyses if they gave the same response to every question throughout the experi-

ment (four participants) or if they had previously participated (four participants). Eight

participants in total were excluded for such reasons, resulting in a final sample of 180

participants. Participants were assigned to either a magnitude or mathematical condition.
Three different between-subjects sets of stimuli were used for each condition, which

resulted in six groups of 30 participants each.

6.1.2. Stimuli and procedure
We use a variant of the number game task described by Tenenbaum (2000). Partici-

pants are informed that they would learn about four simple computer programs, each of

which accepts a certain set of numbers between 1 and 100. The participants’ goal is to

determine which numbers each program accepts. Participants are told that they would see

several random examples of accepted numbers from each program.

The experiment consists of a learning phase and test phase. In the learning phase, partic-

ipants are introduced to the first three "programs. "For each program, participants are
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shown three accepted numbers one at a time, which together imply a particular number

concept. For participants in a magnitude condition, the concepts are defined by a shared

property of their magnitudes, such as being “between 10 and 20” or “between 72 and 90.”

For participants in a mathematical condition, the concepts are defined by a mathematical

property shared by the three numbers, such as being “multiples of 5” or “even numbers.”

We use three different stimulus sets of paired magnitude and mathematical conditions. Par-
ticipants in the magnitude and mathematical conditions within each stimulus set were

shown the same numbers over the course of the study, but the numbers were arranged into

different concepts in the two conditions. See Fig. 8 for full details of the stimuli.

Example numbers are shown to participants one at a time. After each new example is dis-

played, participants are given a set of 16 response numbers, displayed on one page, in ran-

dom order. Participants provide responses on a 1–7 Likert rating scale, ranging from 1

(Very Unlikely) to 7 (Very Likely), for how likely they think it is that the program would

accept each number. On each trial, participants were shown a single number and asked to

provide Likert ratings for a set of response numbers. The same sets of response numbers are

used across conditions, within a stimulus set. Each program had a different response set. In

the learning phase, this set is comprised of sixteen numbers that fall into four categories:

Magnitude (four numbers), Mathematical (four numbers), and Random (four numbers). The

Magnitude response numbers have high posterior probability in the magnitude condition,

and the Mathematical response numbers have high posterior probability in the mathematical

condition. Random numbers are unrelated to the example numbers in both conditions.

The learning phase provides a context within which participants can learn a hypothesis

space for generalization. In the test phase, we examine whether the context changes par-

ticipants’ generalization patterns for a novel, ambiguous example. Participants are intro-

duced to the final program and are shown a single example number (the test number).

The test number was chosen to have minimal difference in a priori probability under each

hypothesis space. In the test phase, participants provide ratings for 20 response numbers.

Eight of these numbers are unrelated to the example number (Random type), four are

related by magnitude (Magnitude type), four are related mathematically (Mathematical

type), and an additional four are related by both mathematical properties and magnitude

(Both type).

Although the test number does not by itself imply a particular concept or concept type,

we predicted that participants in the magnitude condition would generalize more to Mag-

nitude response numbers and participants in the mathematical condition would generalize

more to Mathematical response numbers in accordance with the predictions of the hierar-

chical model. Further, we predicted minimal difference across conditions in generalization

to Random and Both numbers.

6.2. Results and discussion

Fig. 9(a) shows average participant responses for the test case across all stimulus sets,

aggregated by response number types. Fig. 10(a) and (c) show averaged participant

responses for a particular test case (stimulus set 1), not aggregated by number types,
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illustrating the different generalization patterns seen in the different conditions. Partici-

pants generalized program acceptance differently depending on the property type (magni-
tude or mathematical) that defined previously observed acceptance. An Analysis of

Deviance on Ordinal Linear Regression revealed main effects of condition

F 1; 2880ð Þ ¼ 66:59; p\:0001, and response number type F 3; 522ð Þ ¼ 58:56; p\:0001, an
interaction effect of condition and type F 3; 2880ð Þ ¼ 39:64; p\:0001, and no effect of

stimulus set F 2; 174ð Þ ¼ 1:92; p ¼ :15.
Further, participants generalized to Magnitude numbers more when observed concepts

were defined by magnitude properties M ¼ 5:32; SD ¼ 1:21ð Þ than when they were

Fig. 8. Concepts and example numbers used in each condition. Within each stimulus set, the same nine

example numbers are shown to participants during the learning phase, but they are arranged into different

types of concepts (magnitude or mathematical) in the two conditions. Within each stimulus set, the same test

number is used across conditions.
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defined by mathematical properties ðM ¼ 2:82; SD ¼ 1:65; t 178ð Þ ¼ 11:58; p\:0001Þ,
and participants generalized to Mathematical numbers more when observed concepts were

defined by mathematical properties M ¼ 4:53; SD ¼ 1:47ð Þ than when they were defined

by magnitude properties M ¼ 2:43; SD ¼ 1:36; tð178ð Þ ¼ 9:97; p\:0001). Thus, partici-
pants extended properties according to the type of relations that were observed to define

concepts in the context.

There were marginal but not significant differences across conditions in generaliza-

tion to Both numbers; participants generalized to Both numbers slightly more in the

magnitude condition M ¼ 4:49; SD ¼ 1:20ð Þ than in the mathematical condition

M ¼ 4:10; SD ¼ 1:59; tð178ð Þ ¼ 1:86; p ¼ :06Þ, which is a pattern also observed in our

model; the model assigns higher probability to Both numbers in the magnitude condi-

tion (M ¼ 0:44Þ than in the mathematical condition M ¼ :30ð Þ. There was also a mar-

ginal but not significant difference across conditions in generalization to Random

numbers; participants generalized to Random numbers slightly more in the mathemati-

cal condition M ¼ 2:31; SD ¼ 1:26ð Þ than in the magnitude condition

M ¼ 1:98; SD ¼ 0:98; tð178ð Þ ¼ 1:97; p ¼ :05Þ, which may reflect a tendency to

assume uncertainty about the extent of a number’s mathematical properties.

To form model predictions, each property type (magnitude or mathematical) is a

hypothesis space. The prior distribution over the two spaces contains a parameter k for

the weight of the mathematical hypothesis space, with the remaining mass 1� kð Þ. ing
assigned to the magnitude space. We used 5,075 hypotheses adapted from the hypothesis

space used in Tenenbaum et al. (2011), which consists of 24 mathematical concepts (even

numbers, odd numbers, squares, cubes, primes, multiples of 3, 4,..., 12, powers of 2, 3,...,

10) and 5,050 magnitude concepts (every contiguous interval between 1 and 100). Both

hypothesis spaces contained a “catch-all” hypothesis that contained all numbers between

1 and 100, to ensure that a hypothesis space never had zero probability. Tenenbaum
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Fig. 9. (a) Average participant responses and (b) model averaging results for Experiment 3 across all three

stimulus sets, aggregated by response number type. Participants and the model extend concept membership

differentially, depending on which feature types (magnitude or mathematical) defined concepts in the

observed context. Error bars show standard error.
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(1999) originally included a third category of hypotheses: numbers that end in 0–9. We

excluded these hypotheses for simplification. The prior over the mathematical hypothesis

space was uniformly distributed. Following Tenenbaum et al. (2011), the prior over the

magnitude hypothesis space was distributed according to an Erlang distribution,

p hð Þ / ðjhj =r2Þe� hj j=r, where r ¼ 10, to capture the intuition that intervals of intermedi-

ate size are more likely concept candidates than very large or very small intervals. The

size of each hypothesis is the number of numbers it contains.

Additionally, we incorporated a noise parameter, e, which accounts for participants’

uncertainty about the properties of numbers and is incorporated into the likelihood such

that:

PðdjhÞ ¼ ð1� eÞ
jhj þ e

100
if d 2 h

¼ e
100

otherwise

Fig. 9(b) shows model results, averaging over number types. Fig. 10(b) and (d) show

model predictions for a magnitude and mathematical test trial, not aggregating by number
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Fig. 10. Participant and model averaging responses to the test number (32, starred) in Stimulus Set 1. (a and

b) Magnitude condition. (c and d) Mathematical condition. Participants’ generalization patterns change

depending on the previously observed concepts. The model provides a good qualitative fit to these patterns.

Error bars show standard error.
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type. The model qualitatively captures participants’ different patterns of generalization in

the two conditions. Both participants and the model strongly favor generalization to num-

bers that relate to the example along the same type of feature as that which defined previ-

ously observed concepts—despite the fact that the single example number does not by

itself imply any particular concept or concept type. Additionally, the model accounts for

participant responses well quantitatively on the test trial (r ¼ :72. Sarman, r ¼ :85.
arson), as well as on participant responses throughout the entire experiment, including

both learning and test phase (r ¼ :83. Sarman, r ¼ :87. Prson).
We are interested in whether hypothesis space learning is better characterized by model

averaging or model selection. In model averaging, inferences are made by taking a

weighted average of the probabilities of each property under each hypothesis space. In

model selection, only the hypothesis space with the maximum probability is used to draw

inferences. We compare human generalization behavior to these two models. We also

compare to a null, non-learning model, which performs full hierarchical Bayesian gener-

alization with model averaging but does not update its estimate of the probabilities of

each hypothesis space over the course of the experiment; the probability of each space is

fixed from the start by a prior.

We compare models with Bayes Factor estimates obtained through grid estimation. We

consider a grid of values for epsilon and lambda, with values bounded at 0 and 1 and

intervals of 0.02. This yields a set of 2,500 parameterizations per model. We obtain the

likelihood of each model and parameterization per participant with ordinal logistic regres-

sion, which permits the prediction of the participants’ discrete Likert scale ratings from

the model’s continuous posterior probability estimates. The Bayes Factor is estimated as

the ratio of the model likelihoods, averaged over all parameter combinations. We inter-

pret Bayes Factors with the scheme of Kass and Raftery (1995) and bin Bayes Factors

according to the interpreted strength of evidence.

Fig. 11 shows the percentage per participant of Bayes Factors in each bin, with com-

parisons between (a) model selection and non-learning, (b) model averaging and non-

learning, and (c) model selection and model averaging. We first compare model selection

and model averaging to the null non-learning model. In line with the interpretation of our

experimental manipulations, the majority of participants are better fit by model selection

or model averaging than non-learning (Fig. 11a & b), with this difference considerably

stronger for model averaging. This supports the interpretation that participants are learn-

ing which hypothesis space to use in generalization through the course of the experiment.

We can now ask whether participants’ hypothesis space learning behavior is better

described as a model averaging or model selection strategy. We find that 66% of partici-

pants are better fit by model averaging than model selection. The calculated Bayes Fac-

tors suggest very strong evidence for model averaging over model selection for 48.89%

of participants, strong evidence for 4.44%, positive evidence for 7.78%, and weak evi-

dence for 4.44%. There is very strong evidence for model selection over model averaging

for 1.67% of participants, positive evidence for 19.44% of participants, and weak evi-

dence for 13.33% of participants. Our results show an overall preference for a model
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averaging strategy, with a smaller proportion of participants producing judgments consis-

tent with a model selection strategy.

7. General discussion

Forming appropriate generalizations requires learning appropriate hypothesis spaces for

generalization, regardless of whether generalization occurs across stimuli that have con-

tinuous dimensions or discrete features. In this article, we outlined two proposals for how

people should learn to generalize by extending the Bayesian generalization framework:

(a) model selection, where the hypothesis space most consistent with previously observed

properties in that context is used for future generalizations, and (b) model averaging,
where people perform a weighted average over the generalization behavior of each

hypothesis space, with weights given by how consistent each hypothesis space is with

previously observed concepts in the current context. We then conducted three behavioral

experiments to test these computational proposals. In Experiment 1, people learned about

novel words for rectangles that were consistent with selectively attending to two of four

(correlated) dimensions. In Experiment 2, people learned to generalize a novel animal

property in a novel context. We found that aggregate predictions supported the model

averaging hypothesis. However, it was possible that this was an artifact produced by aver-

aging over individuals that each generalize by sampling a single hypothesis space (Estes,

1956). We only received one judgment from each participant and so examining their

inferences at the individual level was not possible. In Experiment 3, we tested these pos-

sibilities in detail using novel number concepts in a novel context and found converging

individual-level support that people perform model averaging when they learn to general-

ize.

Our empirical results complement previous work by exploring how people learn the

appropriate pattern of generalization for a novel blank property in a domain using the

previously learned properties in that domain, and our computational work extends the

Bayesian generalization framework to show how a learner can learn how to generalize. In

the remainder of the article, we discuss the implications of our work for understanding
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Fig. 11. Model comparisons for (a) model selection vs. non-learning, (b) model averaging vs. non-learning,

and (c) model averaging vs. model selection.
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human inductive reasoning, process-level concerns for the extended Bayesian generaliza-

tion framework, and limitations and future directions.

7.1. Broader implications for inductive reasoning

The problem of induction has long puzzled philosophers (Goodman, 1955; Hume,

1748; Quine, 1960). Inductive inference is essential in environments that provide noisy,

unreliable data. Yet it is—by definition—an ill-posed problem, and thus requires signifi-

cant constraints on the learning system. The constraints required to make inductive infer-

ences in many evolutionarily ancient cognitive systems may be hardwired. However,

humans are remarkable for their ability to flexibly and reliably make inductive inferences

in arbitrary domains for which the requisite constraints could not have been entirely built

in, such as in science and medicine. A growing body of literature suggests that humans,

including infants as young as 9 months, are able to learn certain inductive biases from

limited data (Dewar & Xu, 2010; Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson,

2002). Our work contributes to this line of research and shows that, across multiple

domains, concept learning occurs simultaneously at multiple levels of abstraction.

Abstract information, such as the kind of features (e.g., color) that labels are distributed

over, is relevant across a broader array of contexts than specific information, such as the

particular color (e.g., red) that correlates with a label. Thus, what is learned at this

abstract level can be transferred across learning episodes, providing constraints to those

new contexts and substantially accelerating the learning process. Our results show that

humans are not only sensitive to this abstract information, but additionally possess an

understanding of how this information constrains lower-level possibilities, thus enabling

inferences that are consistent with optimal Bayesian inference over hierarchically struc-

tured hypothesis spaces. Our model synthesizes the hierarchical Bayesian approach to

overhypothesis learning with the Bayesian generalization framework, providing a domain-

general computational framework for learning how to generalize. Further, we present a

correspondence between learning a hypothesis space and learning to selectively attend to

particular stimulus dimensions. This suggests a role for learned selective attention in

inductive inference: Learned selective attention may function as a filter that provides

Bayesian optimal inductive biases on a learning problem. Our results emphasize the flexi-

bility of human inductive inference and suggest that this flexibility may be due to power-

ful meta-learning mechanisms.

7.2. Psychologically plausibility and process-level concerns

The results of Experiments 2 and 3 support individuals learning to generalize in a

domain by averaging over hypothesis spaces. From a computational standpoint, this is a

remarkable feat. The extended Bayesian generalization framework, defined by Eqs. 1, 2,

3, 5, and 6, contain several summations over all hypotheses in multiple hypothesis spaces,

and then a summation over the set of hypothesis spaces itself. Due to the computational

complexity of the standard Bayesian generalization model, researchers have developed
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psychologically plausible approximations for it (Shi, Griffiths, Feldman, & Sanborn,

2010). The standard model is defined by Eqs. 1 and 2, which is only one component of

the extended framework. If this component is computationally complex enough to warrant

the development of sophisticated, yet psychologically valid, approximation techniques

(Shi et al., 2010), how could people learn to generalize according to the extended Baye-

sian generalization framework? Further, previous work in category-based inductive rea-

soning has found robust support for people selecting a category and predicting based on

it, rather than averaging (e.g., Murphy & Ross, 1994). Yet our experimental results pro-

vide support for people learning to generalize in a manner consistent with the extended

Bayesian generalization framework. How do we reconcile our results with previous com-

putational and empirical results?

First, it is important to note that our implementations of the extended Bayesian gener-

alization framework are not intended as process-level models of human generalization.

Rather, they are models within a computational-level framework. The framework is a lan-

guage for specifying the goal of human generalization behavior and its normative solution

(Marr, 1982). It is not a proposal of how the mind achieves this goal. Second, recent

work on category-based inductive reasoning has expanded the set of circumstances where

people’s inferences are consistent with averaging rather than selecting (Chen et al., 2014,

2016; Hayes & Newell, 2009; Konovalova & Le Mens, 2018). For example, Konovalova

and Le Mens (2018) analyzed previous experiments in this literature and found that they

violated a central assumption of the tested averaging models: The features of exemplars

were not conditionally independent given their category labels. When tested with cate-

gories where the features were conditionally independent given the exemplars’ category

labels, people act in accordance with averaging. Thus, people averaging over possibilities

when performing inductive inferences may not be as psychologically implausible as pre-

viously thought.

Regardless of whether category-based induction is a selection or averaging process, a

full explanation of human generalization based on the extended Bayesian generalization

framework will need a process-level implementation. Although we leave a full formula-

tion and evaluation to future work, a promising direction for developing a process-level

account is to build it from a psychologically plausible, process-level model of the original

Bayesian generalization framework (Shi et al., 2010). Here is a sketch of a process-level

account. Consider M approximations to the Bayesian generalization framework, one for

each hypothesis space, using Shi et al. (2010)’s process model. Their process model pro-

vides approximations for the generalization gradient and posterior probability of hypothe-

ses after observing a set of objects that have some property. Thus, it already provides an

account for the first term for generalizing according to the extended Bayesian generaliza-

tion model (either averaging or selection, Eqs. 3 and 4, respectively). The generalization

models are all independent of each other and thus can be calculated in parallel without

much additional cost.

The weights for each generalization model, the second term in Eq. 5, is more compli-

cated to calculate. Note that this is the posterior probability of a hypothesis space after

observing a set of concepts in the current context. No other posterior probability is
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needed to calculate the term given by Eq. 5. It is plausible that this could be approxi-

mated and sequentially updated in a similar manner as Shi et al. (2010). They used an

importance sampling scheme, where a set of exemplars are used to approximate the pos-

terior, where each exemplar corresponds to a hypothesis and its fit of the current observa-

tions. Rather than hypotheses, the exemplars in the process model for the extended

Bayesian generalization framework would correspond to hypothesis spaces. To calculate

the fit of a hypothesis space to a set of observations requires summing the fit of each

hypothesis within the hypothesis space. This adds an extra order of complexity to the

potential process model. These calculations would suffice to be a process-level implemen-

tation of generalizing according to the extended Bayesian generalization framework. One

additional possible concern is the summation over generalization gradients for each

hypothesis space. This summation can be approximated by sampling hypothesis spaces

from the posterior probability over hypothesis spaces and then averaging over the gener-

alization gradients of each sampled hypothesis space. It would be challenging to dissoci-

ate this possibility from explicit model averaging, but it may be possible to do so using a

cognitive load manipulation. This would be a rational process model, meaning that it was

directly derived to be an approximation to the computational-level model (Sanborn, Grif-

fiths, & Navarro, 2010). Note that this is just one possibility of how a psychologically

plausible process-level implementation of a model in this framework could be defined.

Making a concrete implementation of this model, as well as other possible process mod-

els, and empirically testing them is an important direction for future research.

7.3. Limitations and future directions

In this article, we provided a computational framework for understanding how people

learn to generalize that is empirically validated across three separate experiments. How-

ever, this is only one of the first steps in a full explanation of how people learn to gener-

alize. Within the proposed computational framework, we demonstrated that learning how

to generalize is formally equivalent to learning a hypothesis space, which is a fundamen-

tal and relatively unexplored issue for Bayesian models of cognition. One assumption of

our framework is that the set of hypothesis spaces is known a priori. Although it may

make sense to assume that some hypothesis spaces are innate (e.g., generalizing over a

one-dimensional continuous dimension), some hypothesis spaces are clearly learned (e.g.,

an adult’s concept of numbers). We leave this question for future work.

Following other work in the Bayesian literature (including this article), one possibility

would be to include a higher, more abstract level in the hierarchy. This would enable sets

of hypothesis spaces to be inferred. But then how would the sets of sets of hypothesis be

learned? There must be some highest level to the hierarchical model. Although this may

be possible, spelling out the model and testing it empirically is a substantial undertaking.

Interestingly, there are some efforts in statistics to formulate such a model (e.g., the

Automatic Statistician; Ghahramani, 2015). This type of model, at least as presently

implemented, would be unable to learn to generalize as people did in Experiments 2 and

3 from only the observations given to people because it lacks appropriate hypothesis
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spaces to evaluate, but perhaps it would if it was given the same information and obser-

vations about animals and numbers as people experience throughout their lives. Charac-

terizing “naturally observed evidence” for domains such as animals and numbers is a

difficult undertaking. An alternative approach would be to use a domain where most peo-

ple are novices (e.g., radiology) and “teach” these models with the same evidence as peo-

ple are given in these domains as they become experts. Would the set of hypothesis

spaces of the trained model match that of an expert radiologist? When the expert radiolo-

gist learns about a new type of tumor, she would be likely to bring many of the previ-

ously learned concepts in the radiology domain to speed her generalization of the new

type of tumor to other images. Would the model also learn to generalize new types of

tumors in this manner?

A more concrete direction for future research is testing the extended Bayesian general-

ization framework’s account of selective attention to other models that learn selective

attention (e.g., ALCOVE; Kruschke, 1992). Although no existing results are likely to dis-

sociate the two accounts, they are dissociable using carefully designed experiments. The

Bayesian generalization framework is only sensitive to the number and range of exem-

plars observed in a concept, but exemplar-based approaches are sensitive to the distribu-

tion of exemplars within this range. Thus, they should make different predictions for how

category learning affects selective attention when exemplars differ in how they vary

within the range (e.g., uniform vs. only at the edges), which we plan to test in future

work (including converging tests, such as the Garner Interference Task; Garner & Fel-

foldy, 1970). In addition, our approach predicts that changes in the attention given to par-

ticular dimensions should be correlated, insofar as those dimensions correspond to a

particular hypothesis space. For example, in the case of rectangles, we should expect to

see the weights of height and width increase or decrease together, likewise area and

aspect ratio. This kind of correlated shift in selective attention is not captured by most

existing models (see Navarro, 2010, and Heller et al., 2009, for extensions to the Rational

Model of Categorization that also could capture correlated shifts in selective attention).

8. Conclusions

Generalization is a fundamental problem solved by every cognitive system in essen-

tially every domain. Previous analyses of the generalization problem (Shepard, 1987;

Tenenbaum & Griffiths, 2001) indicated how an ideal learner should act assuming that an

appropriate hypothesis space for generalizations is known. However, how people arrive at

an appropriate hypothesis space has been left as an open question. For some cognitive

systems that have been fine-tuned over the course of evolution, it may be conceivable

that people are born with appropriate constraints for performing generalization in that

domain. However, people are capable of performing rapid generalization in arbitrary

novel domains, suggesting that they are able to infer these constraints from their observa-

tions of the properties of stimuli. Focusing on the problem of learning how to generalize,

our analysis shows how an ideal learner would infer hypothesis spaces from the structure
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of learned concepts. Our experimental results suggest that people do so in a way that is

consistent with our framework, which provides a novel explanation of how people learn

to generalize.

In addition to providing and empirically testing an explanation of how people learn to

generalize, our results also serve an important role for Bayesian models in psychology.

Bayesian models have been used to explain a range of different cognitive phenomena

(Chater, Tenenbaum, & Yuille, 2006; Tenenbaum et al., 2011), but the hypothesis spaces

used in the models are often hand-picked by the modeler and usually specific to the par-

ticular investigated phenomenon. This leaves open the question of how people choose the

hypotheses for a given set of observed stimuli. Our framework presents an answer to this

problem—a hypothesis space is used for a set of observed stimuli depending on its prior

probability and how well it explains the observed stimuli. For the moment, we leave open

the problem of where the hypothesis spaces come from, but we are in the process of con-

structing hypotheses to answer this question.
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Notes

1. The following convention is used: A lowercase italicized letter denotes a single

stimulus or hypothesis, an uppercase italicized letters denotes the upper limit of a

dimension, a bold lowercase letter denotes a vector, an uppercase bold letter

denotes a set of vectors or matrices, and a curly uppercase letter denotes a space or

a set of spaces.

2. The set of hypothesis spaces may be innately endowed or constructed from a prob-

abilistic grammar. The framework is agnostic to where the set of hypothesis spaces

comes from, but it is an important question for future research.

3. The stimuli were generated in Matlab and presented to the participants using the

Psychophysics Toolbox (Brainard, 1997).

4. The model’s hypothesis spaces consisted of intervals over four one-dimensional

hypothesis spaces (width, height, aspect ratio, and area), which are defined by

Equations 6 and 7. Predictions were made by taking the difference between the
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generalization probability (Eq. 3) given the concepts in the axis-aligned and diago-

nal-aligned conditions.

5. Only the absolute differences in generalization predicted by the model greater than

0.06 were included. Both statistical tests are one-sided Binomial sign tests.
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