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Abstract

People’s assessment of their ability varies in whether it is mea-
sured once following a task or sequentially via confidence
judgments recorded throughout. Multiple models have been
developed to predict one-off judgments of performance, which
have often distinguished between peoples’ biases about their
general ability in a domain and their sensitivity to correctness.
We propose a rational model of sequential self-assessment
which allows us to make predictions about each individual
separately—unlike in the one-off case which looks exclusively
at the population level—and to identify, in addition to bias and
sensitivity, the extent to which individuals’ beliefs are respon-
sive to their most recent evidence over the course of a task. We
fit our model to data where participants solve algebraic equa-
tions and show that bias, sensitivity, and responsiveness vary
meaningfully across participants.
Keywords: Bayesian modeling; Monte Carlo methods; parti-
cle filter; self-assessment; metacognition

Introduction
Self-assessment — the act of judging one’s performance on
a task — is a fundamental metacognitive skill that can be
studied in a wide variety of tasks, from trivia (e.g., Bur-
son, Larrick, & Klayman, 2006) to mathematics (e.g., Nel-
son & Fyfe, 2019). When related to a task where success
can be measured, as in an algebra test, self-assessment itself
can be measured and analyzed by capturing individuals’ be-
liefs about their performance, and comparing it to their ob-
served performance. Researchers have typically done this
in one of two ways, either via one-off judgments made fol-
lowing a task (e.g., in Kruger & Dunning, 1999), or with
a sequence of confidence judgments collected throughout a
task (used by, e.g., Krueger & Mueller, 2002; Burson et al.,
2006). Multiple researchers have sought to model the for-
mer type of judgments (e.g., Fleming & Daw, 2017; Healy
& Moore, 2007; Krajč & Ortmann, 2008; Jansen, Rafferty, &
Griffiths, 2018), which allows for distinguishing group-level
differences in bias, or “self-concept” as in Ehrlinger, Johnson,
Banner, Dunning, and Kruger (2008), and sensitivity to cor-
rectness, both of which are parameters in Fleming and Daw
(2017). Previous work has discriminated between these abili-
ties across domains (Jansen, Rafferty, & Griffiths, 2017), task
difficulty (Burson et al., 2006), gender (Correll, 2001), and
even growth mindset (Ehrlinger, Mitchum, & Dweck, 2016).

Measures of self-assessment that involves sequential con-
fidence judgments made by each individual participant are

frequently employed in the educational literature and re-
ferred to as “metacognitive monitoring” (e.g., Nelson & Fyfe,
2019). Having people monitor their performance throughout
a task gives the chance to identify individual in addition to
group-level differences in calibration, and is therefore bet-
ter for determining what underlies in self-assessment cali-
bration. However, sequential confidence judgments have not
been modeled to the same extent as aggregated single judg-
ments.

Here, we present a rational model that makes predictions
about individuals’ confidence judgments based on (a) their
correctness on each problem, (b) their prior beliefs about their
ability (frequently referred to as “bias”), and (c) their skill at
determining whether they are correct on a single problem (of-
ten called “sensitivity”). This approach makes it possible to
determine the variability of accuracy in individual-level pre-
dictions and also has the potential to reveal individual differ-
ences, which can be separately examined and analyzed across
different domains. We observe that participants vary greatly
in their prior beliefs about their ability. Additionally, some
do not seem to know when they have correctly solved a prob-
lem while others are quite aware. We additionally see that
some individuals are more responsive to their recent progress
on a task while others do not update their beliefs as much, so
we develop a version of the model that incorporates the idea
of responsiveness as a parameter and compare it to models
where this parameter is equal to zero.

Using this rational modeling to disentangle causes of mis-
calibration separately for each person enables us to identify
whether there are patterns in responses or personal charac-
teristics (e.g., age or experience learning about a particular
domain) that regulate the different parameters in our model.
This customized modeling approach promises a more accu-
rate picture of a given individual’s metacognitive abilities
than any that have been undertaken previously.

Background: Measuring Self-Assessment
Results from studies of self-assessment show that multiple
individual-level characteristics may cause differences in cal-
ibration to performance on a task. Ehrlinger and Dunning
(2003), for example, proposed that a person’s “self-concept,”
their beliefs about their overall skill in a domain, is founda-



tional to their beliefs about their performance on a specific
task. These views about the self are likely to be very dif-
ferent, especially in domains like math where variable self-
concepts have been widely documented (e.g., Seaton, Parker,
Marsh, Craven, & Yeung, 2014). Thus, analyzing individu-
als’ confidence judgments can assist in capturing even smaller
individual-level differences across domains.

In Ehrlinger and Dunning (2003), men and women per-
formed comparably on a science test, but women underes-
timated their ability compared to men. In a similar vein,
Correll (2001) argued that cultural beliefs about gender and
math ability harmed girls’ perceptions of their competence.
A model of consecutive self-assessment can still account for
these sorts of group-level differences (in additional to indi-
vidual differences) because this type of analysis will specify
the full distribution of individual parameters within groups.

Some have argued that aggregating confidence judgments
is a superior method to requesting a single judgment per par-
ticipant (e.g., Krueger & Mueller, 2002), but really these are
different types of judgments that may both be important in
distinct ways: single judgments following a task are useful
for a person to determine what they will be capable of in
the future, while confidence judgments, which convey some-
one’s tracking of their ability, are necessary for determining
which more specific skills require targeted study. On a linear
equation-solving task, for example, self-assessments made
following the task will be used by someone to decide whether
to keep practicing at their level or to move on to quadratic
equations or another more advanced topic. Tracking perfor-
mance throughout this task, on the other hand, will provide
insight into whether there is a specific algebra skill they are
having trouble with (e.g., distribution or combining terms).
We will be able to analyze how different individuals update
their perceptions of their ability throughout a task with this
formal model of sequential self-assessment.

Modeling Sequential Confidence Judgments
Through a computational model, we can generate a more ac-
curate representation of the form of the function that links
each participant’s confidence throughout a task to their actual
performance. In this section, we describe a rational model
and the predictions it will make under a variety of circum-
stances. Following this, we fit alternative versions of the
model to data where participants solved algebraic equations.

Model assumptions
Our model makes similar assumptions to previous modeling
work (e.g., Jansen et al., 2018; Fleming & Daw, 2017), but
at the problem-by-problem level rather than at task comple-
tion and treats individuals as making confidence judgments
that are consistent with Bayesian inference about their abil-
ity. We assume a rational agent makes each judgment based
on their beliefs about their ability so far (which includes both
their prior beliefs before beginning the task and their perfor-
mance on already solved problems), the task’s difficulty, and
individuals’ sensitivity to their correctness on each problem.

Xp,2Xp,1 ... Xp,n
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Figure 1: Graphical representation of the model: each ob-
served item Xp,t is influenced by latent variables βt (difficulty
of problem at time t) and θp,t (perceived ability of person p
at time t) as well as a constant ε (ability to determine cor-
rectness). The difficulties of all problems βt and the prior
over perceived ability θp,1 are drawn from normal distribu-
tions with means µβ, µθ and standard deviations σβ, σθ. Each
subsequent θp,t>1 is drawn from a N(θp,t−1,σdyn).

We assume that the priors over a person p’s perceived abil-
ity before beginning the task (θp,1) and the difficulty of each
problem (βt ) are normally distributed1 and we compute the
probability of a person’s correctness at a particular time point
t (Xp,t ) which is dependent on perceived ability and difficulty
parameters up to and including the current time point.2

At each time point, we compute the probability of respond-
ing to a problem correctly or not given the person’s prior per-
ceived ability and the difficulty of this problem which acts as
the likelihood in this Bayesian computation. To do so, we use
the 1-parameter IRT model, known as the Rasch model. We
borrowed this from the psychometrics literature as our rep-
resentation of the likelihood because it is commonly used to
evaluate student ability (Embretson & Reise, 2013). We are
turning this idea inward and thinking of people as intuitive
psychometricians tracking their own ability. If the problem is

1Alternative distributions may be considered in future work, as
these would produce different predictions about individuals’ beliefs
going into the task.

2For ease of reading, we drop the p in the subscripts, as we as-
sume that the model is run separately for each individual.



solved correctly, the likelihood is equal to:

P(Xt = 1|θt ,βt) =
1

1+ e−(θt−βt )
. (1)

When an incorrect response is made, the likelihood is equal
to one minus the probability of a correct response: P(Xt =
0|θt ,βt) = 1−P(Xt = 1|θt ,βt) =

1
1+e(θt−βt )

.
This version of the likelihood assumes that individuals are

flawless in their judgments of correctness, so we include an
error parameter (ε), which represents the probability of incor-
rectly guessing performance on an individual problem:

P(Xt = 1|θt ,βt ,ε) = (1− ε) ·P(Xt = 1|θt ,βt)

+ ε ·P(Xt = 0|θt ,βt). (2)

Because we are modeling sequential confidence judg-
ments, perceived ability at time t depends on perceived ability
at all problems up to t−1. At time t = 1, θ1 is drawn from a
normal distribution with mean µθ and standard deviation σθ.
At all subsequent time points, the dynamics governing how θt
is related to θt−1 is specified by p(θt |θt−1). We assume a nor-
mal distribution for θt centered at θt−1 and that the variance
of this distribution, σdyn, is a parameter of the model which
controls how reactive people are to their most recent data.

We additionally need to adjust the likelihood function for
all t > 1 to incorporate all previous problems, so we define the
probability of responding to a question correctly given some-
one’s perceived ability and the difficulty of the problems so
far as the product of all likelihoods up through the current
problem. We combine this likelihood with a person’s pre-
vious ability belief p(θt−1,X1:t−1) and the dynamics of per-
ceived ability p(θt |θt−1) via Bayes’ rule to compute each per-
son’s posterior beliefs about their own ability on each prob-
lem at time t:3

p(θt |θ1:t−1,X1:t) ∝

∫
βk

p(Xk|θk,βk,ε)p(βk)dβk

· p(θt−1|X1:t−1)

· p(θt |θt−1). (3)

A graphical representation of the model dependencies is
shown in Figure 1. In model simulations presented next,
we vary prior beliefs about ability via µθ, the likelihood by
increasing ε, and the dynamics of perceived ability through
changes to σdyn.

Generating model predictions
Because the integrals in Equation 3 are intractable to calcu-
late exactly, we require an algorithm that can dynamically
update the posterior on θt in light of new data. We use a
standard sequential Monte Carlo method known as a parti-
cle filter (see Doucet & Johansen, 2009, for an overview).
To produce a model simulation for a given set of parameters

3To obtain estimates of people’s inferences over their ability, we
marginalize over the difficulty parameters (βt ).
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Figure 2: Model predictions in a toy example where partici-
pants solve 10 problems in a baseline model (µθ, µβ = 0, σθ,
σβ = 1, and ε= 0). Each point shows the weighted average of
the posterior distribution on each θt , corresponding to confi-
dence judgments at each time point. The first judgment made
before the first problem is simply based on the prior over abil-
ity. The hashed areas demarcate problems solved incorrectly.

with a particle filter, we follow Algorithm 1 to generate pos-
terior distributions of each θt given X1:t . At each time point
t > 1, we represent the posterior with a set of n θt values, or
particles, from a probability distribution based on the parti-
cles at the previous time t − 1. Each vector of particles has
a normalized set of n weights equal to the cumulative likeli-
hoods as in Equation 3. If the variance of these weights is
large we want to remove particles with low weights and mul-
tiply ones with higher weights, so we resample n new parti-
cles using the normalized weights as a distribution, and then
adjust the weights to be uniform. The likelihoods then accu-

Algorithm 1: PARTICLE FILTER ALGORITHM

1. Sample a set of n particles θi
t , (i = 1...n)

(a) If t = 0: from the prior N(µθ,σθ);
(b) If t > 1: from the particle at time t−1

p(θi
t |θi

t−1);
2. Compute weights wi

t(θ
i
1:t) which are equal to the

product of the previous likelihoods p(X1:t |θi
1:t) since

resampling: wi
t(θ

i
1:t) ∝ wi

t−1(θ
i
1:t−1)p(Xt |θi

t);
3. Resample: if resampling criterion satisfied,
resample {W i

t ,θ
i
1:t} to obtain n new equally weighted

particles { 1
n , θ̂

i
1:t}



mulate again as new data come in. For each time point, we
convert the vector of associated particles into probabilities of
a correct response via Equation 1 (which is a sigmoid func-
tion) and take the weighted average of all particles to obtain a
model prediction of each confidence judgment between 0 and
1 over time (see Figure 2 for a baseline example of model
predictions where we set all adjustable parameters ε, µθ, and
σdyn equal to zero).4

Changing the prior When we adjust the prior over a per-
son’s beliefs about their ability (µθ), we observe changes to
their overall beliefs. In the toy example in Figure 3a, when
we assign a higher mean over ability (µθ = 1), confidence
judgments tend to be higher overall. Shifting the prior mean
downward (µθ = −1) most depresses confidence judgments
early on, when the person has limited data from the task, but
as they have more experience, their estimates of their ability
become more similar to the case with the higher prior mean.

Changing the likelihood Increasing ε to include more er-
ror in individual judgments of correctness lowers confidence
following correct responses and raises them after incorrect
responses (see Figure 3b).

Changing dynamics By varying the dynamics of our
model, we can control the extent to which participants learn
from their entire set of previous responses. When σdyn = 0, a
new particle at time t will be exactly the same as the old par-
ticle at time t− 1 because the probability distribution places
all the mass at the one location. As σdyn increases, there
is a higher chance of the particle moving farther away from
its previous location. In Figure 3c, we observe that a larger
value of σdyn results in recent observations having a greater
influence on beliefs. In particular, as seen in this example,
when the simulated participant answers multiple problems
correctly in a row, their confidence increases more steeply
when σdyn = 2 than when it is zero (and decreases similarly
after multiple sequential incorrect answers).

Fitting the Models to Data
To see how well models with different sets of parameter val-
ues compare to actual judgments, we designed an experiment
to elicit sequential self-assessments from individuals. To see
whether the parameter adjusting the dynamics of the model
(σdyn) is necessary to generate better model predictions, we
fit each individual’s data to a version of the model with no
dynamic updating (σdyn = 0)—which we refer to as the static
model—and a second version, the dynamic model, where
σdyn > 0. This distinction is consistent with the idea of ‘mind-
set’ (Ehrlinger et al., 2016) such that the static model captures
a fixed mindset (because θ is fixed) while the dynamic model
represents a growth mindset (since θ varies and we can track
how it changes). We chose a mathematical domain because,
as previously discussed, there are many cultural influences on

4In all models implemented here, we opted to generate n =
10,000 particles and used the Effective Sample Size as threshold
for determining when to resample.

self-views that may impact participants’ prior beliefs about
their ability (captured by µθ), and adult participants will also
have had different amounts of math education, which is likely
to impact their sensitivity to their correctness (or ε).

Procedure
We conducted a study to elicit confidence judgments from in-
dividuals on Amazon’s Mechanical Turk. Participants solved
20 multiple-choice algebraic equations and prior to each were
asked “You are about to solve a problem. How confident are
you that you will solve it correctly?” as well as following
the final problem (on a scale from 0 to 100), which resulted
in a total of 21 judgments each. All participants received the
same problems in the same order, so that problem difficulty
was preserved and individuals could be directly compared. To
vary problem difficulty, equations required varying amounts
of steps and skills (e.g., combining like terms, fractions) to
solve, such as 15− x = 19 and 6(−10+3x)+2(5x+6/5) =
−10x. There were four multiple-choice options per problem
and the three distractor solutions were designed to be the re-
sults of different errors a participant might make.

We obtained a total of 199 responses, but excluded 17 for
failing an instructional manipulation at the beginning of the
survey and an additional 3 who claimed to have used assis-
tive technology to solve the problems (they were asked to use
nothing but pencil and paper). This left us with 179 responses
for analysis, with an average number of problems correctly
solved of 10.85 out of 20.

Model simulations
We compared each individual’s data to both the static model
(where σdyn = 0) and the dynamic model (σdyn > 0). In order
to make this comparison, we generated sets of model simu-
lations for each participant given their set of correct and in-
correct responses by performing a grid search over µθ and
ε for the static model and these two parameters along with
σdyn for the dynamic model such that values of µθ ∈ [−3,3],
ε ∈ [0,0.5],5 and σdyn ∈ [0.01,6] were considered. We took
steps of 0.05 for ε, giving 11 possible values, steps of 0.2
for µθ, resulting in a total of 31 values, and increasing steps
of σdyn

6 for a total of 31 values, which produced 341 static
model predictions and 10,571 dynamic model predictions.
These parameter values were chosen based on initial attempts
to model a subset of participants such that a representative
spectrum of possible parameters were considered.

Results
For each participant, we compared their confidence judg-
ments to each set of model predictions by calculating the sum
of squared errors (SSE). We took the models with the smallest
SSE amongst the static models and then the dynamic models
to identify the parameters associated with the best fit model

5Because ε is a probability, we only consider values from 0 to 0.5
in our simulations because this value signifies guessing at chance.

6The values considered were (0.01, 0.02, 0.03, ..., 0.2, 0.4, 0.6,
0.8, 1, 1.5, 2, 2.5, 3, 4, 5, 6).
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Figure 3: Model predictions on the same toy example as in Figure 2 for (a) when the mean on ability (θpt ) is adjusted (µθ = 1
or −1), (b) when the error parameter ε is adjusted (ε = 0.2 or 0.4), and (c) when (σdyn) is zero or nonzero (σdyn = 2). In all
three plots, the parameters we are not adjusting are equal to zero.

in each case. As expected, individuals’ confidence judgments
were represented by different combinations of parameter val-
ues (see Figure 4 for some interesting examples) and though
there were some parameters that were more common amongst
participants, values varied across individuals (see Figure 5).
To determine whether the dynamic or static model fit the data
better in general, we calculated each model’s Bayesian infor-
mation criterion (BIC) by taking the sum of all individuals’
likelihoods (calculated from their SSEs) for each model.

We observed a somewhat higher BIC for the dynamic
model (32232.71) than for the static model (31124.55) when
fitting the models to all participants. Since the models
are nested, we conducted a likelihood ratio test yielding
χ2(179) = 365.36, p < .001 which is significantly above the
threshold for significance, and thus provides evidence to pre-
fer the dynamic model generally across participants (even
though for some, the model with σdyn = 0 was a better fit,
as seen in Figure 5c.

As we might intuit, it appears that some individuals have
more dynamic ability beliefs compared others. We thus cal-
culated both models’ BIC values for each individual sepa-
rately since we have 21 confidence judgments per participant:
the dynamic model fit the data better for 142 participants
(meaning it had a lower SSE compared to the static model)
and for 35 participants, this difference was significant such
that the χ2 test with one degree of freedom was above the
threshold of 3.84 for significance (e.g., χ2(1) = 11.20, p <
0.001 shown in Figure 4a and χ2(1) = 8.91, p < 0.01 in
Figure 4b). This suggests that sequential self-assessment
judgments reflect a changing estimate of underlying ability
for many people and that at least on an algebraic equation-
solving task, most individuals update their confidence ac-
cording to performance on the most recent problems. We
can clearly see that these parameters return interpretable
and meaningful results on an individual rather than group
level which contributes information beyond what previous
metacognitive modeling efforts have provided.

Discussion

We constructed a Bayesian model to predict confidence judg-
ments made sequentially throughout a task and observed that
different parameter values described the best-fit models for
individual participants. This confirms real-world intuitions
that there are individual differences in prior beliefs about abil-
ity (µθ), knowledge of performance following a given prob-
lem (ε), and reactivity to recent performance (σdyn). Based
on the examples presented, we can also conclude that our ra-
tional model can accurately predict individuals’ confidence
judgments, which acts as a good proxy for evolving perceived
ability over time. Our approach demonstrates that, by model-
ing their moment-by-moment confidence judgments, we can
identify individuals with dynamic (growth mindset) or static
(fixed mindset) beliefs about their own ability in a given do-
main without relying on self-report of the construct itself.
With this dataset, we were able to see that more dynamic ver-
sions of the model generally provided superior model fits to
human confidence judgments.

There are many avenues for further expanding upon the
model presented in this paper. Next, we will look at individ-
ual characteristics that might determine groupings of param-
eter values. We exclusively analyzed data from an algebraic
equation-solving task, so in future work we will compare
the range of individual parameters across different domains.
Specifically, we will compare metacognitive ability on math-
ematical tasks to trivia tasks where people may have lower
sensitivity to their performance following each item (captured
by higher ε values) or potentially increased sensitivity since
they cannot make simple computational errors (so lower ε).
This will likely depend on the type of trivia asked as well as
the question formats.

The data we collected contain not only confidence judg-
ments, but overall judgments of ability following a task. In
future work, we will compare versions of the model that pre-
dict confidence judgments to versions that predict one-off
estimates of performance to see whether in aggregate, peo-
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Figure 4: Model predictions for four example participants where grey areas signify incorrect responses: (a) the best fit static
model was parametrized by ε = 0.25 and µθ = 1 and the best fit dynamic model had parameters ε = 0.2, µθ = 1, and σdyn = 0.6;
(b) was fit by ε = 0.05 and µθ =−1.7 while the dynamic model is fit by ε = 0.1, µθ =−1.3, and σdyn = 2; (c) the best fit static
model for this participant was parametrized by ε = 0.3 and µθ =−0.3 while the dynamic model is fit by ε = 0.45, µθ =−0.1,
and σdyn = 1.6; (d) was best fit by ε = 0.25 and µθ = −1.9 for the static model and ε = 0.35, µθ = −2, and σdyn = 0.2 for
the dynamic model. The dynamic model fit the data significantly better than the static model in (a) and (b). In (c) and (d),
the dynamic and static models fit the data equally well. Confidence judgments were made out of 100, so displayed are scaled
versions of participants’ responses here.

ple are better calibrated to their ability during or after a task
and be able to inquire about what is behind someone hav-
ing greater accuracy in their assessments at one time point
and not another. Individuals might be very knowledgeable in
their confidence judgments, for example, but then overesti-
mate their performance following the task to maintain their
self-concept. There might be similarly protective instincts in
the reverse direction, where people may be optimistic during
a challenging task to maintain their motivation, but end up
with a realistic picture of their ability following the task.

Given how frequently metacognitive monitoring is studied
in educational domains, we hope to apply this rational model
of self-assessment to more real-world data in the hopes of
gleaning what is at the source of metacognitive judgments for
students on an individual basis and demonstrate the useful-
ness of computational modeling in more applied settings.
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Figure 5: Histograms of values of (a) µθ, (b) ε, and (c) σdyn for each person’s best-fit model. Note that when ε = 0 this indicates
that the static model fit the data better for that individual.
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