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Abstract

Many researchers across cognitive science, economics, and evolutionary biology have studied
the ubiquitous phenomenon of social learning—the use of information about other people’s
decisions to make your own. Decision-making with the benefit of the accumulated knowledge
of a community can result in superior decisions compared to what people can achieve alone.
However, groups of people face two coupled challenges in accumulating knowledge to make
good decisions: (1) aggregating information and (2) addressing an informational public goods
problem known as the exploration-exploitation dilemma. Here, we show how a Bayesian social
sampling model can in principle simultaneously optimally aggregate information and nearly
optimally solve the exploration-exploitation dilemma. The key idea we explore is that Bayesian
rationality at the level of a population can be implemented through a more simplistic heuristic
social learning mechanism at the individual level. This simple individual-level behavioral rule
in the context of a group of decision-makers functions as a distributed algorithm that tracks a
Bayesian posterior in population-level statistics. We test this model using a large-scale dataset

from an online financial trading platform.



1 Introduction

There are thousands of investment opportunities listed on the world’s various stock exchanges.
The options each person has for what occupations to pursue or what paths to take in life are vast.
Even in decisions as mundane as where to buy a cup of coffee or where to go out to eat for dinner,
a city dweller is faced with a dizzying array of options—Boston’s North End neighborhood
has over 50 Italian restaurants; downtown Manhattan has hundreds of bars. Furthermore,
the information available about the options in each of these cases changes over time, creating
complex and ever-evolving decision-making landscapes for many of the choices we face. Yet
we do not have to make these decisions alone. Entire communities of people are faced with
the same sets of options in many decision-making contexts, and can communicate information
about the different options available in the decisions at hand. Decision-making with the benefit
of the accumulated knowledge of a community can result in superior decisions compared to what
people can achieve alone [1, 2, 3, 4, 5]. Which of the many potential investment opportunities,
career paths, or coffee shops is the best fit for a person like you? Relying on information from
other people can be an effective component of how to decide.

However, decision-making in the context of a group of people presents its own challenges.
Two coupled challenges that groups face in accumulating reliable knowledge to make good deci-
sions are (1) aggregating information and (2) addressing an informational public goods problem
known as the exploration-exploitation dilemma [6, 7, 8]. The problem of information aggregation
is a matter of how to get information as efficiently as possible from as many people as possible
who have faced the same decision. In other words, the challenge of information aggregation, at
least in cases where preferences are roughly shared, is for decision-makers to pool the experi-
ences they have had and to determine the most informed beliefs about the qualities of options
available in the decision at hand. A naive version of ideal information aggregation—directly
sharing all personal preferences and experiences—is not possible for people to do, but even if it
were, the second challenge of the exploration-exploitation dilemma would still remain to be met.
The exploration-exploitation dilemma is a matter of balancing relying on the knowledge that
a population of decision-makers has accumulated with contributing to that pooled knowledge
through exploration that goes beyond what is known already. If all decision-makers focus on the
best-looking options at a given time according to all the available aggregated information, the

group will learn little about less-explored potentially higher quality options. Both of these chal-



lenges are intrinsic computational problems that groups face in accumulating knowledge about
the world. How do groups of people in shared decision-making contexts address these chal-
lenges? Are there mechanisms of human collective behavior that enable effective information
aggregation and a good balance between exploration and exploitation?

We answer these question by developing a new model that synthesizes approaches from two
strands of related work on modeling human social learning. We establish that a simple heuristic
social decision-making procedure called social sampling is capable of achieving ideal information
aggregation and a good trade-off between exploration and exploitation. To test our model,
we study how people address the problems of information aggregation and exploration versus
exploitation in a large, highly instrumented social system. We examine collective behavior in
an online social financial trading platform. In this environment, users are able to follow and
copy each other’s trades, and users are therefore faced with a difficult decision of who among
the many users of the platform to follow. This observational dataset allows us to study social
learning in a large group regime, which is prohibitively costly in the laboratory but theoretically
important since the emergent properties of our model fully appear only in large groups. A unique
advantage of the environment we study among observational datasets of large groups is that
explicit objective evidence of trading performance is available to both users on the site and to us
as analysts. We can therefore compute normative benchmarks for ideal information aggregation
and exploration versus exploitation, and check the predictions of our model by comparing how

closely collective behavior accords with these normative benchmarks.

2 Background

Our work contributes to the extensive literature on social learning, which studies the use of
information about other people’s decisions to make your own. One key line of work on social
learning has centered on what kinds of social learning behaviors and mechanisms people engage
in social learning contexts, and how the various candidates behavioral models solve or fail to
solve computational problems like information aggregation and exploration versus exploitation.
Mathematical and computational models are commonly employed in this literature to try to
answer these questions by modeling behavior and then studying the properties of those models.
Two different classes of models have been especially common, heuristic social learning models

and Bayesian social learning models [9, 10], and prior works have also combined these classes.



Our contributions rely on a new synthesis of these two approaches.

2.1 Heuristic Social Learning Models

Heuristic social learning models describe behavior as resulting from simple hard-coded rules
involving a combination of social observation and individual consideration [11]. In cognitive
science, Goldstone and colleagues have studied a range of heuristic social learning mechanisms
[12], as well as how these different mechanisms affect task performance and allow groups to
collectively solve problems, from exploring complex decision landscapes [13, 4, 14] to finding
shortest paths [15]. Economists and sociologists have a parallel scholarly literature on heuristic
social learning models [16, 6, 17, 18, 19, 20]. Researchers in complex systems have also studied
a range of similar models, including replicator dynamics [21], majority dynamics [22, 23], linear
opinion dynamics [24], statistical physics models [25], and contagion models [26]. The heuristic
approach has been used to study both problems of information aggregation and exploration

versus exploitation, although typically in separate pieces of work using separate models.

2.2 Bayesian Social Learning Models

Bayesian social learning models relate closely to the frameworks of rational agent modeling and
Bayesian cognition [27, 28, 29]. The core premise of Bayesian cognition is that agents have a
mental model of the world that is used for making inferences about the world. Bayesian social
learning models most commonly examine how social observation can be optimally integrated into
this process of rational Bayesian inference. Griffiths and others in cognitive science have studied
how social learning relates to cultural accumulation [30, 31, 32, 33, 34, 35| and optimal use of
social information [36, 37, 38]. Economists and sociologists have a parallel scholarly literature on
Bayesian social learning models examining similar questions [39, 40, 41, 42, 43]. Another highly
related line of work is that of Pérez-Escudero and de Polavieja [44] and colleagues [45, 46, 47].
These researchers were some of the first to specify Bayesian models of social decision-making in
the context of collective animal behavior. Their model is also distinctive among Bayesian social
learning models because it has been successfully empirically tested on human behavioral data.
Bayesian social learning models are most often used to study information aggregation, but a
similar class of rational game theoretic equilibrium-based analyses have also been used to study

the exploration-exploitation trade-off [48].



2.3 Boundedly Rational Social Learning Models

Researchers have also studied a class of models in between the heuristic and Bayesian ap-
proaches called boundedly rational models, which are motivated by the fact that Bayesian
computation is too computational intensive to be cognitively plausible. While Bayesian mod-
els involve optimal reasoning according to agents’ veridical mental models, boundedly rational
models explore relaxations of these assumptions. Most boundedly rational social learning mod-
els involve agents performing exact inference in approximate mental models of the environment
[49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. Typical simplifying assumptions made in this
type of boundedly rational model are that agents neglect certain dependencies between obser-
vations. Other boundedly rational models involve agents performing approximate inference, or
acting probabilistically, using exact mental models of the environment [61, 45, 37]. As with
fully Bayesian models, the focus of much of the work on boundedly rational models has been

on studying information aggregation.

2.4 Synthesizing Bayesian and Heuristic Models with Distributed Algorithms

The advantage of the heuristic approach is that heuristics tend to be better descriptive mod-
els with better fidelity to data. Their key weakness is that they tend to be post hoc and
underconstrained—there are few unifying principles to guide researchers towards particular
forms of heuristic mechanisms that might be expected to be observed. In contrast, Bayesian so-
cial learning models are often less cognitively plausible due to the extreme complexity involved
in fully rational Bayesian reasoning. The advantage of Bayesian models, though, is that they
have the normative force of the axiomatic foundation of optimal statistical inference and deci-
sion theory, and therefore come with a fuller explanation for why we would expect a particular
mechanism to be observed. With the exception of some theoretical work such as by Rahimian
and colleagues [59], boundedly rational models typically keep the structure of Bayesian mod-
els while sacrificing the normative force of their axiomatic foundations, effectively specifying
heuristic models using Bayesian language.

Our contribution is to use the framework of distributed algorithms to develop a much closer
synthesis of the Bayesian and heuristic approaches to modeling social learning. While heuristic
models and fully rational Bayesian models are at first glance inconsistent, complex distributed
computations are possible from combinations of simple agents [62, 63]. Is it possible that

some simple heuristic mechanism might be able to function as a distributed algorithm for ideal



Bayesian inference at the group level?

The new synthesis of the heuristic and Bayesian perspectives we present combines the
unique explanatory benefits of each. The key idea we explore is that Bayesian rationality
at the level of a population can be implemented through a heuristic social learning mecha-
nism at the individual level. In this formulation, the computational problems of information
aggregation and exploration-versus-exploitation are solved through collective computation at
the group level, while individuals behave according to a simple rule-of-thumb heuristic we call
“social sampling”. Our social sampling model, which has close parallels to models of evolu-
tionary dynamics [64, 65, 66], offers a Bayesian formulation of social learning that represents
population-level statistics as tracking a Bayesian posterior distribution despite more simplis-
tic heuristic individual-level behavior. This Bayesian social sampling model shows how groups
can in principle simultaneously optimally aggregate information and nearly optimally solve the
exploration-exploitation dilemma through what would otherwise appear to be a simple social
learning heuristic.

Our modeling effort draws upon Goldstone’s and others’ efforts to identify simple rules that
can implement distributed computation [67, 63], and upon the Bayesian approach of “top-down”
computational modeling [68, 69, 70] in which the information processing problem is specified
by analysis of the decision-making environment and an optimal solution is derived from the
principles of statistics, decision-theory, and in our case, distributed algorithms. Our normative
analysis explains why social sampling, among many plausible heuristics, is a uniquely suitable
mechanism for groups to employ. Our approach complements other recent frameworks for
reconciling heuristic and Bayesian cognition that propose certain classes of heuristic as rational
under resource constraints [71, 72]. We propose that social resources can buttress Bayesian

computation in aggregate, even while individual cognition is resource-constrained.

3 Social Sampling Model

In order to understand how heuristic social learning behavior could lead to distributed Bayesian
computation in aggregate, we first construct a model that demonstrates this effect. This model
involves a large group, i.e. a population, of agents who incorporate social and asocial sources of
information in a temporally extended (repeated) shared decision task. The model makes direct

predictions, which we test empirically. The goal of the model is to establish how a population



Mathematical Notation

v, |, 2

Standard mathematical notation for “element in”, “for all”, “such that”, and
summation over a set

P(), P(-|)

Notation for the marginal probability and conditional probabilities of
observations/events

N,

{' . '}a (’7 ')v P()

Standard mathematical notation for the set of non-negative integers, a set of
arbitrary elements, an open interval, and a power set

| Domain | Name | Social Sampling Model | eToro Application
Indices
. Number of time steps in the Total number of days of data
T N Time .. .
repeated decision-making task | analyzed
N N Agents Number of agents (decision- _Nt is the_ number of follow-
makers) ing relationships on day ¢
M N Obtions Number of options available M, is the number of traders
P for agents to decide between available to follow on day ¢
1,...,T, Indices for time, agents, and Indices for day, following
tyi,j | 1,..., N, options in the decision-making | user/follow relationship, and
1,....,.M task followed trader
Decision-Making Environment
.. The decision of agent i at ’_I‘he trader fOl.l Oweq b}.] the user
it 1,...,.M Decision . in follow relationship 7 on
time ¢
day t
The? Out'come. generateld by An indicator variable that
option j at time t, which .
: equals 1 if the ROI from the
Tt {0,1} Performance | determines the reward for )
. . trades of trader j on day ¢
an agent choosing that option . .. .
. is positive, and 0 otherwise.
on that time step.

_ N Pooularit The number of agents who The number of followers trader
Pt P Y chose option j at time t — 1 7 has at the end of day ¢t — 1
Model Parameters

The probability of option j The estimated underlying prob-
Ny (0,1) Quality generating a positive perform- ability of user j displaying
ance outcome on any time step | positive performance on any day
The probability of the highest The highest estimated underly-
n* (0,1) quality option generating a ing probability of positive
positive performance outcome performance among all users
The mde.x of an thlon tenta- The index of a trader that the
tively being considered by .. . .
. . . user in follow relationship i is
0it 1,...,.M agent ¢ at time ¢ in an S . .
. . considering following during
inner step of the social
. day t
sampling model
Model Analysis
1 M and In the hide-and-seek model, The set of indices of the traders
j* 73’ (1 v M) the index of the single highest with the highest estimated prob-
s quality option ability of positive performance.
The set of performance The days up to and including
+ Performance | outcomes that option j has t on which trader j has
Tj,<t {071} : : , ps o
History generated on all time steps up | had positive versus nonpositive
to and including ¢ performance
Total The set of all performance The record of all traders’ cur-
X< | {0, 1}(M xt) . histories for all options at rent and past performances on
= Information .
time ¢ day t
Table 1: Table of notation used in our social sampling model specification, analysis, and appli-

cation.




of decision-makers using a simple heuristic rule might be able to address the computational
problems of information aggregation and balancing exploration versus exploitation to accumu-
late information about a decision at hand as a population over time. The notation we use is
summarized in Table 1.

We assume that at each time ¢, a set of N agents is faced with a decision between M
distinct options. Each of these options, j € 1,..., M, has an underlying quality, n; € (0,1),
and generates a directly observable asocial performance signal, z;; € {0,1}, at each time ¢.
This performance signal, xj;, is a related to the reward outcomes in the decision-making task.
A decision-maker i receives a positive reward from option j on time step t if ;; = 1 and a
non-positive reward on that time step if x;; = 0, with the probability of a positive performance
signal/reward corresponding to the underlying quality of the option, P(zj; = 1|7;) = n;. We let
n* denote the underlying quality of the highest quality option, * > 7;,Vj. We denote the history
of performance signals for an option j up to a particular time ¢ as x; <t = {xj1,xj2,..., 2},
and we denote the total information that has been available about all options up to time ¢ as
X< ={x1<t,2<t,..., T <t} Inaddition to the asocial information in X <;, decision-makers
also have social information available to them at each time step. We assume that the social
information decision-makers can observe is the popularity of each option in the decision at hand
at each time. We let a;; € 1,..., M denote the decision of agent ¢ at time ¢, i.e. the option
that agent ¢ chose to select at time . The popularity of option j at time ¢ is the number of
decision-makers who select that option on the previous time step, pj; = Efi L a1 = j).

The social learning mechanism we study, which we call social sampling, is a variant of
heuristic two-stage decision mechanisms studied by previous researchers [73, 74, 75, 76, 77].
The social sampling model that we propose supposes that people first select options to con-
sider by consulting others’ decisions, and then commit to options being considered by privately
evaluating whether the options seem good according to recent information available. This first
step reduces the cognitive burden of evaluating many options by allowing the decision-maker to
consider only a small set of options, rather than all the options available. In contrast to prior
proposed two-stage social learning models, we propose that in this second step the decision-
maker performs an abbreviated Bayesian computation to assess the quality of the option being
considered, which is what enables Bayesian aggregation at the group level in this model.

In the first stage of making a decision at time ¢, an agent ¢ chooses option o5 € 1,..., M

to consider at random with probability proportional to the current popularity of that option,



Social Sampling Procedure

1: for timetin 1,...,7 do
2: for agent ¢in 1,..., N do
3: while a;; = None do
4: (sample): Agent i samples 0;; to consider with P(o; = j) = ﬁ
k=1 Pkt
5: (accept/reject): Agent i decides a;; := o0; with probability (n*)%st(1—n*)(1=%st)

Figure 1: Algorithmic description of the social sampling model. The total number of options
considered in the inner while loop is a geometric random variable that is finite with probability
one, with mean bounded by 1/(1 —7*) when n* > 0.5.

Plog =j) = %. In the second stage of making a decision, the agent decides whether to
accept or reject the option being considered, o, based on that option’s most recent performance
signal. The agent commits to making decision o; with probability P(ay; = jlog = j) =
P(zj|n; = n*) = (n*)%(1 — *)1=2¢), This quantity used in the second stage of decision-
making is a Bayesian likelihood function giving the likelihood that option o; is the highest
quality option. This second stage is a heuristic use of a Bayesian quantity that is motivated
by recent results in the cognitive science literature arguing that people resort to approximate
Bayesian computations in many decision-making scenarios [78, 71]. In the case that the option
0;; is rejected in the second stage, the agent repeats this two-stage procedure, choosing another
option to consider o}, with the same probability proportional to p;;. The same option may
be considered again or another option may be considered. This two-stage decision-making
procedure is repeated until an option is accepted in the second stage. An algorithmic description
of the model is given in Figure 1.

Because each option is considered according to the same process in each repetition, there
is a simple closed form equation that gives the overall probability that agent ¢ makes decision
j on time step t, P(a;; = j). In each loop of the two-stage process, the joint probability of an
agent considering and accepting an option j at time ¢ is the multiplication of the probability in
each of the two stages, P(ai = j, 01 = j) = P(oix = j)P(ai = j| o = j) = %(n*)%(l -
7]*)(1_%”5). The probability that some option at all is accepted on a particular loop of the two-

M Pjt
J=1 ZIQ/[:l Pkt

each loop of selecting and accepting j given that some option is ultimately accepted on that

stage process is given by > (n*)%t(1 — *)(1=%it) . The conditional probability on

iteration is then given by dividing these quantities. Since this probability is identical on each



iteration of the loop, the overall probability of an agent choosing option j at time ¢ is:

Plag = j) = pjt ()t (1 — ")t~
) S pr (e (1 — ) ke

Both of the two stages in the social sampling model are crucial. Incorporating social in-
formation in the first stage by sampling according to popularity allows for the aggregation of
information over time, while a personal assessment based on new information in the second stage
allows new information to be incorporated. It’s also important to note that while a Bayesian
computation is being used in the second stage of the two-stage social sampling model, it is only
a highly bounded one. The only information each decision-maker accesses is the most recent
performance signal associated with the one option or the small set of options being considered.
What we will show is that even though each individual decision-maker accesses only this small
amount of information, the boundedly rational heuristic social sampling model collectively yields
a fully rational Bayesian sampling scheme that leverages all the information available over time

for all options.

3.1 Model Analysis

Despite its simplicity and heuristic appearance, the social sampling model can achieve both
excellent information aggregation and a highly efficient balance between exploration and ex-
ploitation. In order to analyze the social sampling model, we consider a simplified model of the
decision-making environment. In this simplified model, known as a “hide-and-seek” problem
[79], there is a single best option j* that has a probability 7 = n* of producing positive re-
wards, while all other options j’ produce positive and negative rewards uniformly at random,
nj = 0.5. When the number of options is large or when n* = 0.5 + € for small € > 0, this
hide-and-seek setting can be thought of as a pessimistic assumption about the identifiability of
the best option in the environment. In other words, this setting can be interpreted as one in
which good options are rare or difficult to identify. Similar results can also be derived in more

general contexts [80].

3.2 Information Aggregation with Social Sampling

We first relate the expected popularity of each option under social sampling to a Bayesian

posterior distribution involving all information that has been available in the environment. In



the case of the hide-and-seek environment model, the true state of the world is characterized
by the identity of j*, so the rational analysis only needs to consider whether each option is or
is not option j*.

Given the history of all rewards up to time ¢, X <, (as defined above) the Bayesian posterior

distribution over the environment parameter is

()%t (1 — )%t P(j = j* | X o)

P(j=45"1X =
(] J | St) Zk(n*)xkt(l — n*)l_xkfp(k = j* | -X<t)7

where we assume a uniform prior P(j = j*) = ﬁ This posterior probability bears a striking
resemblance to the probability of choosing option j under social sampling. In fact, in an infinite
population of decision-makers who implement social sampling, the following invariant will be
maintained: pj; = P(j = j*| X ). Popularity can thus be precisely understood as compactly
summarizing the past information about the options available to decision-makers. In other
words, popularity under social sampling has an exact correspondence to a Bayesian posterior

distribution that each option is best in a hide-and-seek environment.

3.3 Exploration-Exploitation with Social Sampling

We now argue that social sampling can also be expected to achieve a good balance between
exploration versus exploitation by relating the aggregate dynamics of the social sampling model
to a well-known, near-optimal single-agent decision-making procedure for multiarmed bandits
known as Thompson sampling [81]. A multiarmed bandit is a sequential decision-making task
with essentially the same structure as we describe for the context of our model. The Thomp-
son sampling algorithm is a commonly studied approach to solving multiarmed bandits that
relies on establishing Bayesian posterior distributions for the underlying quality of each option
available. To make a decision on a particular time step, the single-agent algorithm proba-
bilistically samples an option with probability equal to the probability that option is the best
option available given the rewards the agent has seen. In a single-agent environment where
each option has a distinct reward probability 7; and where agent 7 is taking an action a;; on
each time step t and observing reward z,,, ; as a result, the Thompson sampling probability is
P(n; > np VE|xq; 1, Tayyt). Thompson sampling works well in practice [82] in both station-
ary and non-stationary environments and was recently proven to achieve a near-optimal balance

between exploration and exploitation in the stationary case [83, 84].



To relate social sampling to Thompson sampling, we note that in the case of the hide-
and-seek environment, P(n; > n, Vk|x) = P(j = j*|z) for any set of observations .
Therefore, since in an infinite population of agents we have from the previous section that
P(ait) = P(j = j*| X <¢), the probability that agent i takes action a; in social sampling is
equal to the Thompson sampling probability given all information available to the group and

under the parametric assumption of the hide-and-seek context.

4 Modeling “Follow” Decisions in a Financial Social Network

To empirically test the social sampling model, we examine collective behavior in an online social
financial trading platform called eToro [85]. eToro’s platform allows users to make trades on
their own, predominantly in foreign exchange markets, or to choose other users on the site to
follow. When one user chooses to follow another, the follower allocates a fixed amount of funds
to automatically mirroring the trades that the followed user makes. eToro then proportionally
executes all of the trades of the followed user on the follower’s behalf. Although in general,
copying someone else’s trading could lead to market movement that affects the return of those
trades, the trading on eToro is marginal enough that it is unlikely to cause such feedback
effects. Therefore, the problem of choosing who to follow on eToro can be well modeled as a

choice between options with exogenous reward outcomes.

4.1 eToro Context

Day trading in foreign exchange markets is notoriously risky, and typically amounts to little
more than gambling. eToro—as a company that mechanizes, encourages, and profits from
users’ day trading—faces controversy and criticism about its intentions and practices. Many
users complain about losing money because of high fees and deceptive performance statistics.
However, some users systematically lose less money on eToro, and traders who follow others
tend to perform better than users who make trading decisions for themselves [85].

There are several decisions that are intertwined with each other on eToro: whether to put
money into the platform at all, how much of your money to trade yourself, and how much to
use in social trading. These decisions interact with each other, and also interact both with your
own perceptions of your abilities, your judgements about the reliability and capabilities of the

platform, and your impression of how well other people on the site trade.
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Figure 2: A histogram plotting for each user the fraction of their trading activity that is purely
nonsocial. Most users engage in either purely social trading or purely nonsocial trading on the
platform we study, which justifies our analysis decision to focus only on social trading (i.e.,
decisions about whose trades to copy on the site).
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Figure 3: The vast majority of users on the platform we study achieve close to zero mean daily
return on investment. Users are therefore presented a difficult problem of finding good traders
to follow.

Our study simplifies these complexities by focusing on the choices that are made within
social trading behavior exclusively. That is, we only model who decides to follow whom and
we do not factor into consideration the trade-offs between investing by following others versus
trading for yourself. Empirically this decision is justified by the fact that the majority of users on
the site use it either for social trading (following other peoples’ trades) or for nonsocial trading
exclusively or almost exclusively, generally not so much for both kinds of trading. Figure 2
shows the distribution of the proportion of trades for each user that are nonsocial versus social.
40% of users on the site never conduct a nonsocial trade. 27% never conduct a social trade.
90% conduct 75% all of their trades as either exclusively social or exclusively nonsocial. These
numbers suggest that empirically we can focus on social trading as a relatively isolated mode
of behavior on the site from nonsocial trading.

This analysis choice is also informed by our theoretical motivation. Most social learning
models involve discrete forced choice situations between a fixed set of options. While we could

consider nonsocial trading and social following to both be options in a fuller decision-making
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Figure 4: A histogram of the fraction of users who followed a certain number of traders per day.
For each user who followed at least one trader, we take the median number of traders that user
followed across all days they followed at least one trader. Roughly 75% of the users followed a
median of a single trader

model, these options are quite different in terms of how they are supported by the platform.
In contrast, the choice of who to follow is a relatively clear discrete forced choice within the
platform, and highly distinct in the platform design from either copying individual trades or
making individual trades in the markets the site provides access to. For the remainder of the
paper we therefore only consider modeling follow decisions. The decision-making problem in
this case is that each user can choose to follow anyone with a public profile on the site, and
traders generate new information about their performance each day through their new trades.
A user who wants to follow someone must choose who to follow on each day among all the
options available.

Another simplification made by our study is treating each follow relationship as a separate
independent decision. While modeling the follow decisions as independent has its limitations
(e.g., neglecting the constraint that a user can’t follow the same trader multiple times), the
actual number of traders each user tends to follow is often just one trader per day (see Figure
4), and we only analyze the model predictions in aggregate rather than at an individual level.

While the hide-and-seek model we use to derive our analytical results does not need to apply
in order for social sampling behavior to be employed, it is worth noting that the assumptions
of the hide-and-seek model are not far from what we observe in the eToro context. As shown
in Figure 3, the vast majority of users have very close to zero average return. Users who are
looking for someone to follow can therefore reasonably expect that there are at most a handful
of people on the site, if even one, that they will benefit from following. The challenge the users

face is to find such people among the incredibly noisy information from trading behavior.



In order to assist in users’ decisions about who to follow, eToro provides information about
the trades and trading performance of each user via a search interface and public profiles.
eToro’s interface also reports the current popularity of each user, i.e., the number of people
currently following that user. The eToro interface has many other complex facets, and has
changed substantially over time. At the present time of writing, there were additional features
for automatic search, such as a “Top Investors” category that uses a curated combination of
search filters. While the current range of advanced curated search features did not exist to our
knowledge at the time of data collection, there were many ways to find traders to follow at that
time too, such as featured users and followers listed in users profiles. We unfortunately have no
way to reconstruct which users might have been highlighted in such ways, but the predominant
search mechanism at the time of our data collection was a table of all the site’s users that could
be sorted by popularity or various user statistics. The user statistics included a measure of risk,
percentage of profitable weeks, and a “gain” statistic most closely related to the performance
metric we will use in our modeling. We focus on the gain statistic from that search interface
because it was the performance measure that was most emphasized in the search interface and

in users’ profile pages at the time of data collection.

4.2 Model Application

Despite all these ways to search for traders to follow on eToro at the time of our data collection,
the interface does not make it easy to make good decisions. The statistics presented vary over
time and must be carefully integrated to form a complete picture of each trader’s performance.
The statistics reported by the platform are potentially overinflated by the platform designers to
incentivize trading activity, and the traders on the platform themselves also try to manipulate
their performance statistics to make themselves look good, such as by leaving trades open when
those trades have lost money. The easiest way to learn if someone will make you money is to start
following them and see what happens, but of course trading performance is highly stochastic.
Users on eToro are therefore faced with a difficult decision problem of choosing who to follow
among a large set of options of users, given unreliable, multidimensional, temporally varying
performance signals, as well as social signals of popularity. We use the social sampling model
to understand how well the community of users on eToro manages to address this information

processing challenge.



5 Methods

5.1 Data

We received our data from the eToro company. The data was generated from the normal activity
of users of the website etoro.com. The raw data was in the form of a list of trades conducted on
the site. We processed the data to reconstruct follower relationships and aggregate performance
statistics. More details on eToro and our data processing are given in the appendix. To keep our
analysis computationally tractable, we focused on the first year of data we received, from June
1, 2011 to June 30, 2012. Because of the way we measure active users, the actual days analyzed
are July 4, 2011 to June 29, 2012. This time period included 57,455 users. We included each
user on each day that user was active, giving us 3,606,903 data points to analyze. We do not

endorse eToro as a company or the usage of its services.

5.2 Popularity and Performance Signals

We analyze one year of data at a daily temporal granularity, and we model the follow decisions
each user makes on each day. Although we do not have access to the specific performance
statistics that were displayed to users, we summarize trading performance with return on in-
vestment (ROI) from closed trades on the most recent day, which is closely related to the “gain”
performance metric presented to the site’s users. Details on how we constructed this proxy are
given in our appendix. We set the performance signal x;; associated with following a trader j
on a particular day t to be positive if liquidating that person’s new trades from that day at the
end of the day would yield ROI greater than zero, and set z;; to zero otherwise.

Putting these pieces together with our formal model, we have that at each time ¢ there
is a set of traders 1,..., M; that each social user on eToro could choose to follow, and each
trader generates performance signals/rewards xj; to followers each day. We study how the
new popularity p;;41 of each trader j on each day ¢ is determined as a function of the prior
popularity of that trader p;; and their latest performance signal, z;;. We let follows;; be the
number of new followers trader j gets on day ¢, and let un follows;; be the number of followers
trader j loses on day t. In other words, pj;y+1 = pjt + followsj; — unfollowsj;. Our analysis
assumes each follow decision is independent. We let N; = Z;‘itl pjt+1 be the total number of

follow relationships at the end of day t.



5.3 Regression Analysis

In our results, we first aim to test the multiplicative interaction between popularity and per-
formance induced by the two stages in the social sampling model. To test for the presence
of this interaction, we build a regression model of the new follow decisions made on each day.
The regression model we use predicts the normalized number of new followers each user gets
on each day based on that user’s normalized popularity from the previous day, and that user’s
performance on that day. We include fixed effects for each user and each day. This regression
model is s<IGTEE = By + P By + jeBpers + Pt jiBinteraction + B + B We com-
pare the fit of this regression to a reduced model that omits the interaction term. We also
compare to another baseline model that looks at aggregated performance over a 30-day period,
% = [y + ROI ;30) Bperf + B + Bi, where ROI ](30) is the 30-day rolling average daily

ROI of user j. This longer term performance baseline allows us to test whether new followers

can be predicted just based on performance, using a longer term performance statistic.

5.4 Fitting the Social Sampling Model

In addition to our regression analysis, we also directly fit the social sampling model to our
data. To conduct this model fitting, and to generate model predictions, we compute the follow
decisions users on eToro would have been expected to have made on each day according to the
social sampling model. We examine aggregates of these decisions in the form of predicting the
total number of followers each trader on eToro has on each day. We predict the number of
followers each user will have on each day given the performance and popularity of that user
(and of every other user) on the previous day, and given the total number of followers across
all users on those days.

In the social sampling model, decision-makers make decisions independently, so the proba-
bility that a given decision-maker i chooses a specific new option j at time ¢ is given by the deci-

15 (SS) _ _(n*)"t(—n*)' " it pje
sion probability Pjt = S () ()T Tkt

across all traders to the true value observed in the data, N;. The expected number of followers

. We fix the total number of follow relationships

user j gets at time ¢ according to this model is then pﬁﬂ = NtPj(f 9 We fit 7* by minimizing
the mean-squared error in the log daily change in popularity, sign(f ollowsgfs) —unf ollowsg-fs))
log(|f0ll0ws§-fs) — unfollowsg-fs)| + 1), where followsg-fs) — unfollowsg.fs) = pg‘s;i)t —pjt- A

coarse grid search over [0.5,0.51,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9] indicates that n* = 0.51

presents the best fit.



5.5 Posterior Comparison

A key prediction of the social sampling model is that the popularity of each trader should track
their performance over time. In order to test this prediction, we compute a normative posterior
distribution based on the performance histories of each trader. Rather than employing the hide-
and-seek posterior we used in our model analysis, we use a slightly relaxed model that allows
for the possibility that multiple traders have the highest underlying quality n*. In this case, we
let j* be the set of traders with n; = n*, and aim to then compute the posterior P(j € j* | X <¢).
Without this relaxation, computing the posterior is complicated by missing data on days when
traders were inactive. As in the hide-and-seek model we employed in our model analysis, we

assume that traders outside the set n* have n; = 0.5.

()3t (1—n*)'3t
(%) "3t (1—n*) 't +0.5" 3t it ?

The posterior here then becomes P(j € j* |xj<¢) = where wj; =

Zgifl xjq is the number of positive performance signals a trader has had over time, and [;; =

33(1 — xjq) is the number of negative performance signals a trader has had. We then

normalize these values to obtain the probability given by Thompson sampling on this posterior:

Ples” |=j5,<t)
o Pkej™ |xr,<¢
Pjt

by the total number of follow relationships on each day, S o In our empirical analysis, we

- We compare these Thompson sampling values to daily popularity normalized

use n* = 0.51 based on our model fitting procedure.

5.6 Simulating Performance

Finally, to explore the balance between exploration and exploitation achieved by the social
sampling model in the eToro dataset, we simulate the behavior of an entire population of social
samplers over the duration of our dataset. We look at how a population of social samplers would
perform with alternative values of n*. To do so, we retrospectively simulate social sampling using
the actual profits and losses from trades on eToro. To accommodate predicting positive changes

in popularity for traders with zero followers, we add a small smoothing constant to popularity,

()3t (A—n*)' "3t (pji+e)
e () ke (1—n* )1 =%kt - (ppy+e)

have some probability of gaining followers. We arbitrarily set ¢ = 0.0001. On each day, we set

where € > 0 is a small smoothing parameter that ensures all users

the size of the population of social sampling agents to NV;. As in our model fitting, we examine

simulated behavior over the range n* € [0.5,0.51,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9].
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Figure 5: Daily changes in popularity on eToro tend to be positive for those traders who are
performing well and negative for those traders who are performing poorly, and the magnitude
of those changes are greater as popularity increases. (Left) A scatter plot illustrating the
observed relationship between daily change in popularity on eToro with past popularity and
recent performance. There is one data point shown for each trader on each day. Points are
colored by whether recent performance is positive or negative. (Center) A binned plot visualizing
the same data to highlight the trends we observe. (Right) Predicted changes in popularity
according to a fitted social sampling model.

6 Results

6.1 Evidence for Social Sampling

Our first analysis confirms that the dynamics of popularity on eToro are well-modeled by social
sampling. These results are summarized in Figure 5. Traders who perform well on the site tend
to gain followers, and traders who perform poorly tend to lose followers. At the same time, the
magnitude of these changes becomes larger as the popularity of the trader increases. People
with few followers are unlikely to gain many followers, even when they perform well. People
with higher popularity gain more followers when they perform well, but lose more followers
when they perform poorly (the interaction coefficient, Sinteraction = 0.92, p < 0.0001, is positive
and statistically significant). The regression model that includes the interaction term between
popularity and recent performance improves the amount of variance explained to an R? of 0.37
compared to the model without an interaction term, R? = 0.27, and a model that just includes
a longer term performance metric, R? < 0.01. This analysis shows that neither popularity nor
performance alone can explain how users decide on new traders to follow.

Simulations from a social sampling model with n* parameter fitted to the data confirm that
social sampling can replicate this pattern of changes in popularity. These results are shown in
Figure 5. We also check that the fitted value of n* = 0.51 qualitatively matches the descriptive
statistics of the dataset. Figure 6 shows that, consistent with the interpretation of n* in our
model analysis as the plausible highest probability of positive returns, 95% of users have lower

than a probability of 0.51 of achieving positive returns.
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Figure 6: Plots showing the relationship between the value of n* fitted to follow decisions users
made and the descriptive statistics of the eToro dataset. (Left) A scatter plot comparing the
number of days each user was active in our dataset and the proportion of days each user achieved
positive ROI. Each point in the plot is a single user. The plot shows that the vast majority
of users have below 51% days with positive ROI, and many of those with higher proportions
were only active on a smaller number of days. (Right) A histogram plotting the frequency with
which users have certain proportions of days with positive ROI.

Anecdotal reports from users of eToro also corroborate the social sampling model. One
website states: “Here are some tips and things we look at when selecting the Professional
Investors/Traders we copy: Most people will still want to start with looking at the ‘most
copied traders’... Popularity is obviously a decent ‘starting’ point for finding traders to analyze
further... putting in some time and effort to analyze the additional statistics is likely to lead to
better long term results.”! Another user explains: “[Ranking by gain] is what eToro’s [standard]
ranking system is showing. And but this is not so much the way to really choose who’s a good
trader because you just don’t know how long these traders have been trading until you go into
details. Another good idea is to do this: What I'll do is, you just go to ‘Copiers’, you just
select the ‘Copiers’ tab and show the ones who have the most copiers. Now, this isn’t a full-on
good guide either, just choosing the amount of copiers. Cuz as you see, there are other traders
in this line who have been making more. Like an example, over 300%, over 300%, and they’re
down the line just cuz they’ve got less copiers.”? These users are both describing how to use

popularity as a kind of first-pass filter, before looking at performance information.

6.2 Information Aggregation

We next directly test whether in this environment the aggregate population statistic of pop-
ularity tracks a normative Bayesian posterior distribution, i.e. that the variations in belief in

the population of users reflect a rational representation of uncertainty about the decision of

'«“eToro Tips: Find Best Gurus” from SocialTradingGuru.com (http://socialtradingguru.com/tips/etoro-

tips/select-etoro-gurus).
24How to Choose Good Traders or Gurus to Copy in Etoro? - Video Guide” YouTube
(https://www.youtube.com/watch?v=di7Sw587has, 3:02)
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Figure 7: Plots showing the match between normalized posterior values and popularity on eToro.
(Left) Each point is user on a particular day. The user’s log normalized posterior on that day
is plotted against that user’s log normalized popularity. The plot reveals a positive relationship
between the normalized posterior for each user on each day and normalized popularity. (Right)
Each point represents the average popularity of all users within a range of posterior values, using
an evenly spaced binning. This plot further highlights the relationship between popularity and
the normative posterior distribution of the environment in our data.

whom to follow. We find that normalized popularity is positively correlated (r = 0.03) with
the normalized posterior described in our Methods section. Looking just at users with greater
than zero followers, the correlation is higher (r = 0.17). Taking the logarithm of each quantity
to reduce the impact of outliers increases the correlation (r = 0.06 for all traders and r = 0.43

for traders with greater than zero popularity). Figure 7 visualizes this relationship.

6.3 Exploration-Exploitation

The results of our simulation analysis are shown in Figure 8. We estimate the mean daily ROI
for a population of social sampling agents that use different values of n* in our eToro data. A
value close to 0.5 may be optimal in more general contexts [80], but is conservative in our data.
Values closer to 0.5 lead to slower learning, and even though the population of users on eToro
maintain rational representation of uncertainty, we observe that collective learning is slower
than optimal for this dataset. Therefore, even though social sampling may have the capacity
to achieve an optimal balance of exploration versus exploitation given an appropriate 7 value,

the observed balance is suboptimal.

7 Discussion

We have examined how people address the computational problems of information aggregation

and the exploration-exploitation dilemma in a large, highly instrumented social system. We
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Figure 8: Simulated mean daily ROI within a population of social samplers following the traders
on eToro over the time period we study, for different values of *. These simulations check how
well the social sampling model balances exploration versus exploitation. The fitted value of n*
that achieves the best predictive accuracy of eToro follow decisions is suboptimal in terms of
mean daily ROI in these simulations.

proposed a social sampling model that accurately models millions of decisions performed within
an online social financial trading platform. Social sampling consists of a two-step decision-
making process of seeking recommendations from other people, and then privately evaluat-
ing those recommendations. We established a relationship between social sampling and a
well-known, near-optimal Bayesian learning and decision-making procedure called “Thomp-
son sampling”[81, 84, 83]. This relationship reveals that groups can dynamically aggregate
information, while collectively balancing exploration and exploitation, by using a simple proba-
bilistic decision-making mechanism that approximately implements Thompson sampling in the
aggregate. We empirically validated the information aggregation property predicted by this re-
lationship, and also explored the balance people achieve between exploration and exploitation.
Our results indicate that a form of Bayesian population rationality emerges from heuristic social
learning in the case we study. The balance between exploration versus exploitation we observed
in this case was suboptimal, although still consistent with the social sampling model under a

suboptimal parameter setting.

7.1 Connections to the Wisdom of Crowds

Beyond the literature on social learning we sought to inform, our paper also contributes to
an ongoing debate in the literature on the wisdom of crowds around whether or in what ways
social learning undermines versus promotes the wisdom of crowds [86, 87, 24, 88]. Many formal
models of the wisdom of crowds rely on individuals in the crowd having independent pieces

of information rather than information gained through social observation. The incorporation



of both social information and making decisions based on your own experience is a crucial
component of the social sampling model we study. In the context of eToro, all users in principle
have access to all the same information. Any trader profile can be viewed by anyone. However
it would be impossible for every user to view every profile to make a decision about who to
follow. Independent pieces of information therefore come into play through users’ personal
analyses of the performance of particular traders that those users decide to consider following.
Simultaneously, paying attention to popularity facilitates ongoing aggregation of the information
from those personal assessments.

Independent judgments through personal assessment and gradually gaining experience in the
environment can also play a deeper role in social sampling. In the context of the social sampling
model, the way private assessments come into play is in whether to accept or reject the popular
options you are considering. In the basic social sampling model decisions are resampled every
day, but a more robust model with equivalent collective behavior is a win-stay lose-sample kind
of dynamic [89] in which individuals stick with the options they have adopted until the personal

evidence they collect through paying attention to that option invalidate it as a good choice.

7.2 Potential Extensions

Looking beyond the eToro context, we can think about further extensions of the social sampling
model. In many cases, preferences or taste will vary greatly from one individual to the next. In
such cases, overall popularity is less relevant to an individual as an informative social signal. A
similar challenge is to incorporate different levels of expertise among decision-makers. In some
cases, there will only be a small set of experts who can evaluate options accurately, even if
many people are expressing opinions. The social sampling model we examined can be viewed
as social sampling on a random network. Looking at social sampling on complex networks, or
networks with properties such as homophily, is also a natural next step. Similar studies have
been investigated in the broader literature on social learning [42, 90, 91]. To better understand
how social sampling might be related to shared belief formation, looking at social sampling in
cases where individual beliefs are components of more complicated systems of beliefs is also
an interesting possibility [92]. It could also be interesting to extend our theoretical analysis to
investigate optimal solutions to a related set of multi-armed bandit problems where multiple
arms are pulled simultaneously. Thompson sampling algorithms have also been studied for

this problem formulation [93]. In all these potential extensions, the distinctive charge of the



social sampling approach would be to constrain the extensions so that valid Bayesian learning
still occurs in the aggregate. To do so may require careful attention to the computer science

literature on distributed Bayesian inference.

7.3 Limitations

We finally address various limitations our work. Mathematical modeling always involves ab-
straction, and there are many details of the eToro context that are mismatched with an idealized
social sampling model. First and foremost, it’s almost certainly the case that our social sam-
pling model is only an approximation of what is happening on eToro. There are undoubtedly
a variety of behaviors that people display in interacting with the site, some of which conform
more or less to the social sampling model, others of which are somewhat approximated by the
model, and a final category of which completely diverge. All our evidence for the social sampling
model is at the aggregate level, in the trends in changes in popularity. Our analysis shows that
social sampling is not a bad approximation in aggregate. We focused on Marr’s computational
level of analysis [68]—of specifying a computational problem faced by users on eToro—and we
studied one plausible distributed algorithm that we have some evidence for observing in terms of
aggregate dynamics. Aside from assessing some anecdotal reports, we did not delve deeply into
Marr’s implementation level of analysis and examine how particular users detailed interactions
with the site might yield the aggregate dynamics we observe or might implement the distributed
algorithm of social sampling.

There are also other ways the social sampling model itself and our rational analysis of the
eToro environment could be improved. We neglected the possibility of correlation in reward
signals across time, changes in trader skill over time, traders coming or leaving the ecosystem,
and the network effects of followers following followers. Along similar lines, there are several
reasons to question how to interpret the fitted parameters of the social sampling model. Past
performance of trading is not necessarily informative about future performance. People are risk
averse: they care about both returns and the variance of returns. People are also choosing
whether to follow others or make their own investment decisions. The fit of the model could
surely be improved with further extensions along these lines, but these extensions would also
yield a model that is more difficult to analyze. We focused on a simple model in order to isolate
and test the key insights from social sampling. We are encouraged by the fact that our current

social sampling model can replicate the average dynamics of popularity in its predictions.



There are also several questions about the generalizability of our findings. eToro is an online
sociotechnical system with an interface designed by software developers to facilitate following
behavior. A major threat to generalizability is the contingency of our results on the design
choices of this system. For instance, affording users the ability to sort traders by popularity
surely encourages attention to that feature, and position bias in that returned list may affect how
social sampling is implemented [94]. However, the ways in which information is presented on the
website do not guarantee the outcomes of our results. There is always an interaction between
the structure of an environment and agent behavior in the environment in determining collective
behavior. In the case we study, the users could very plausibly rely exclusively on performance
statistics, which are prominently featured and easily searchable, rather than relying on social
information at all, for instance. Even if the results were determined by the interface, though, our
model would still be a contribution to understanding how that particular interface design yields
good properties in terms of information aggregation and exploration versus exploitation in the
population of users on the site. One of the strengths of normative models of the sort we pursue is
exactly their usefulness for design questions of that sort. This topic deserves further research and
offers a compelling connection to the literature on platform design from the computer science
communities of human-computer interaction and computer-supported cooperative work. Recent
research in these fields has begun to investigate how interface design can impact the extent to
which individuals conform to Bayesian reasoning in interacting with data visualizations [95].
Future work synthesizing that line of work with our own could study how interface design
moderates the extent to which online communities are able to effectively co-produce knowledge
and accumulate information through distributed Bayesian computation. It is possible that
design aspects such as featured traders might promote knowledge production relative to this
normative ideal, or it is possible that such design features undermine knowledge production.
What we have focused on showing in our work is that the framework of distributed Bayesian
computation is at least a useful lens for studying these questions, and that the behavior on eToro
shows a surprising degree of conformity to a normative standard along these lines—whether
that is due to innate human behavioral mechanisms, encouragement from the interface, or a
combination of both.

In general we are encouraged by the similarity between the social sampling model and the
many other two-stage decision-making models from the existing literature [73, 74, 75, 76, 77].

The specific form of social sampling that differentiates it from other two-stage models was



motivated more by theoretical considerations and constraints from the literature on cognitive

science than by fitting to the eToro context. Social sampling is an intuitive heuristic that could

easily be implemented in a variety of contexts. eToro was uniquely suitable as a test of social

sampling because of its ecological validity and the existence of the explicit, objective information

signals needed to compute a normative posterior.
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S1 Supplementary Information

S1.1 Data Source

We received our data from a company called eToro. The data was generated from the normal
activity of users of their website, etoro.com. The two main features of the eToro website during
the time our dataset was being collected were a platform that allowed users to conduct individual
trades and a platform for finding and following other users of the site. We refer to the site’s

users interchangeably as either users or traders. The internal algorithms and the website design



have changed over time, but the following description represents to the best of our knowledge
the main contents and features of the website during the time period of our data.

The eToro website includes basic functionality for use as a simple trading platform. This
platform allows users to enter long or short positions in a variety of assets. Entering a long
position simply consists of buying a particular asset with a chosen currency. Entering a short
position consists of borrowing the same asset to sell on the spot, with a promise to buy that asset
at a later time. Taking a long position is profitable if the price of the asset increases, while taking
a short position is profitable if the price of the asset decreases. Users can also enter leveraged
positions. A leveraged position is one in which a user borrows funds in order to multiply returns.
Leveraged positions have more risk because users will lose their own investment at a faster rate
if the price of the asset decreases.

At the time our data was collected, eToro focused on the foreign exchange market, so the
trading activity mainly consisted of users trading in currency pairs—buying and selling one
currency with another currency. However, users were also able to buy or sell other commodities
such as gold, silver, and oil, and eventually certain stocks and bundled assets. The average
amount of money invested in individual trades on eToro was about $30, and, after accounting
for leverage, individual trades on average result in about $4000 of purchasing power. These
amounts are small compared to the trillions of dollars traded daily in the foreign exchange and
commodity markets?, so individual traders are unlikely to have substantial market impact with
their trades.

Besides providing a platform for individual trading, eToro also offers users the ability to
view and mimic the trades of other users on the website. To be clear in our terminology, when
referring to one user following another user to mimic their trades, we will call the first user
the “following user” and the second the “target user”. When referring to a specific mimicked
trade, we will refer to the original trade as the “parent trade” and the copy as the “mimicked
trade”. eToro refers to “following” as “copying”, and “mimickers” as “copiers”. eToro also
offers an option to “follow” users without mimicking their trades, but we do not have data on
these follow relationships.

While there is functionality for mimicking individual trades on e¢Toro, we focus on the

website’s functionality for mirroring all the trades of specific users. Mirroring works as follows.

3 According to the Bank for International Settlements’ 2013 “Triennial Central Bank Survey”, the foreign
exchange market (in which most of the trading on eToro occurs) has a daily trading volume of trillions of USD.



First, a following user allocates funds that will be used for mirroring a target user. The following
user’s account then automatically executes all of the trades that the target user executes. The
sizes of these trades are scaled up or down according to how much money the following user
has allocated as funds for that follow relationship. When beginning a follow relationship, the
following user can specify either to only mimic new trades of the target user or to also open
positions that mirror all the target user’s existing open positions. When a user stops following a
target user, the following user can choose to either close all the open mimicked trades associated
with that relationship or to keep those trades open.

There are certain limitations that eToro places on mimic trading. For example, users can
follow no more than 20 target users with no more than 40% of available account funds allocated
to a single target user. Users can also make certain adjustments to their mimicked trades. For
example, following users can close a trade early or adjust a trade’s “stop loss” amount.

eToro also offers an interface to assist users in finding traders to follow. The central feature
of this interface at the time our data was collected was a tool that presented a list of other users
on the site. This list could be sorted either by the number of followers those users had or by
various performance metrics, such as percentage of profitable weeks or a metric called “gain”.
In a separate part of the site, users also had real-time or near real-time access to details of
individual trades being executed by other users of the site.

In addition to searching for basic information using these tools, the website also allows users
to view more detailed profiles of other traders on the site. These profiles present information
such as the number of followers the user has had over time, the “gain” of the user over time,

and information about opened and closed trades.

S1.2 Data Processing

The dataset provided to us by eToro consists of a set of trades from the eToro website. The
aggregated data we used in our analyses will be released upon publication. The entire dataset
contains trades that were closed between June 1, 2011 and November 21, 2013. We used the
first year of data for tractability.

Each entry in the dataset we received includes a unique trade ID, a user ID, the open date
of the trade, the close date of the trade, the names of the particular assets being traded, the
amount of funds being invested, the number of units being purchased, the multiplying amount

of leverage being used to obtain those units, the open rate of the pair of assets being traded, the



close rate of that pair, and the net profit from the trade. For entries associated with mimicked
trades, there is additional information. For individually mimicked trades, the parent trade
ID is included. For trades resulting from follow relationships between users, “mirror IDs” are
included in addition to parent trade IDs. A mirror ID is an integer that uniquely identifies a
specific follow relationship. When a user begins to follow another user, a new mirror ID for
that pair is created.

In order to study the relationship between previous popularity, perceived quality, and the
follow decisions of users on eToro using this dataset, we first had to extract the popularity and
the performance of each user on each day. For our main analysis, to best match the statistics
that the eToro interface presented to users, we defined performance as investing performance
measured as average return on investment (ROI) from closed new trades on each day. In this
computation, the ROI for a trade is determined by the profit generated from the trade divided
by the amount withdrawn from the user’s account to make the trade. If on a particular day
a user did not make any trades in the previous 30 days, the performance of that user is not
defined and the user is removed from the analysis for that day. This exclusion criterion removes
inactive users from the analysis.

We use ROI rather than a risk-adjusted performance metric because the most prominent
performance metric presented to users on eToro is what eToro calls “gain”. eToro states this
metric is computed using a type of “modified Dietz formula”, an equation closely related to
ROI. Thus, ROI should better capture the perceived objective quality of following each user,
though perhaps not true underlying quality.

We estimated the number of followers each user had on each day from the “mirror IDs”
present in the data we received. We first identify which two users are participating in each
mirror ID, and we then determine the duration of the follow relationship between those two
individuals as beginning on the first date we observe that mirror ID and ending on the last
date we observe that mirror ID. From these time intervals we can then estimate the number of
followers each user has on each day, as well as when each follow relationship begins.

We conduct our main analysis using approximately one year of data, from June 1, 2011 to
June 30, 2012. However, we skip the first month of data when analyzing changes in popularity
so that we are only using the period of time for which we have accurate estimates of previous
popularity and changes in popularity. We also do not analyze changes in popularity that occur

over weekends. Only a small percentage of trades occur on weekends since trading on eToro



is closed on Saturdays and opens late on Sundays. Since the way we measure changes in
popularity depends on having observed trades, days on which there is little to no trading can

lead to inaccurate estimates of changes in popularity.

S1.3 Imputing Missing Trades

There are a small number of observed mimicked trades that lack parent trades in the dataset.
Since these missing parent trades are predominantly unprofitable, and since overestimating the
performance of popular traders could substantially bias our results, we developed a method
for recovering these missing parent trades. Certain fields of mimicked trades (including the
open dates, close dates, assets traded, trade directions, and associated open and close rates) are
typically almost identical to the fields of their associated parent trades. These similarities allow
us to recover the direction of profit of these missing trades with high reliability. However, the
initial amounts invested and the units purchased in missing parent trades are more difficult to
infer. To estimate the amounts invested in each missing parent trade, we use the fact that the
ratios between the units invested in mimicked trades and the units invested in their associated
parent trades are relatively stable for a particular mirror ID. Specifically, we use the following
procedure. We first, for each mirror ID, compute the median ratio between the units invested
in each of the observed mimicked trades associated with that mirror ID and the units in each of
those trades’ parents. For a particular missing parent, we then find all of the mimicked trades
in our data with this missing trade as a parent. We then gather what the units invested in the
parent trade would be according to each of the median ratios associated with those mimicked
trades, and we take the median of those unit values. We use this final quantity as the number
of units we presume were purchased in the original trade. We finally compute the amount of
funds invested in each missing trade and the ultimate profit made from each of those trades
from the inferred units purchased and the open and close rates of a single observed mimicked

trade. We conduct our main analysis using these imputed trades.

S1.4 Descriptive Statistics

We now provide descriptive statistics of the eToro data in our main analysis. Figure S1 indicates
that many users are sporadic in their investment activities, but the total amount of money
invested per day on eToro remains fairly stable over time. Figure S2 indicates that mean ROI

on eToro varies around zero but tends to be slightly negative and appears to have a slightly
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Figure S1: Statistics on the amount invested by all users on eToro per day.
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Figure S2: Statistics on user return on investment.

increasing trend over time. Figure S3 indicates that the total number of followers on eToro
increases over time, but the maximum popularity on a particular day divided by the total
number of followers on that day remains relatively stable over time. Figure S4 shows that the

vast majority of users have zero followers, and the distribution of followers is long-tailed.
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Figure S3: Statistics on the number of followers and maximum popularity over time.
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