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A B S T R A C T   

Highly influential “dual-process” accounts of human cognition postulate the coexistence of a slow accurate 
system with a fast error-prone system. But why would there be just two systems rather than, say, one or 93? Here, 
we argue that a dual-process architecture might reflect a rational tradeoff between the cognitive flexibility 
afforded by multiple systems and the time and effort required to choose between them. We investigate what the 
optimal set and number of cognitive systems would be depending on the structure of the environment. We find 
that the optimal number of systems depends on the variability of the environment and the difficulty of deciding 
when which system should be used. Furthermore, we find that there is a plausible range of conditions under 
which it is optimal to be equipped with a fast system that performs no deliberation (“System 1”) and a slow 
system that achieves a higher expected accuracy through deliberation (“System 2”). Our findings thereby suggest 
a rational reinterpretation of dual-process theories.   

1. Introduction 

Starting in the 1960s, a number of findings began to suggest that 
people’s judgments and decisions systematically deviate from the pre-
dictions of logic, probability theory, and expected utility (Gilovich, 
Griffin, & Kahneman, 2002; Kahneman & Tversky, 1979; Tversky & 
Kahneman, 1974; Wason, 1968). These deviations are often referred to 
as cognitive biases and have fueled the heated debate about human ra-
tionality (Gigerenzer, 1991; Kahneman & Tversky, 1996; Stanovich, 
2009). It is commonly assumed that cognitive biases result from people’s 
use of rather arbitrary heuristics (Gilovich et al., 2002; Tversky & Kah-
neman, 1974), thus leading some to conclude that people are funda-
mentally irrational (Ariely, 2009; Marcus, 2009; Sutherland, 2013). 
However, others have argued that many apparent errors in human 
judgment can be understood as rational solutions to a different construal 
of the problem participants were presumably trying to solve (Austerweil 
& Griffiths, 2011; Griffiths & Tenenbaum, 2001; Hahn & Oaksford, 
2007; Hahn & Warren, 2009; Oaksford & Chater, 1994, 2007; Parpart, 
Jones, & Love, 2017; Tenenbaum & Griffiths, 2001). 

These rational explanations build on the methodology of rational 

analysis (Anderson, 1990; Chater & Oaksford, 1999), which aims to 
explain the function of cognitive processes by assuming the human mind 
is well-adapted to the structure of the environment and the problems 
people are trying to solve. In other words, rational analysis assumes that 
the human mind implements a (near) optimal solution with respect to 
the underlying computational problem the mind is trying to solve. 
Anderson (1990) original formulation of rational analysis directed 
practitioners to “Make the minimal assumptions about computational 
limitations” (p. 29). More recent approaches refine rational analysis by 
exploring the consequences of the fact that the mind is constrained by 
having limited computational resources (Gershman, Horvitz, & Ten-
enbaum, 2015; Griffiths, Lieder, & Goodman, 2015; Howes, Lewis, & 
Vera, 2009; Lewis, Howes, & Singh, 2014; Lieder & Griffiths, 2020b). 
For instance, resource-rational analysis extends this idea and assumes that 
the human mind is well-adapted to problems after taking into account 
the constraint of limited time or cognitive resources (Griffiths et al., 
2015; Lieder & Griffiths, 2020b). In other words, resource-rational 
analysis assumes that the human mind rationally trades-off the benefit 
of accurate solutions against the time and cognitive resources required 
to achieve them. Under this framework, when time or cognitive 
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resources are abundant, then it is rational to perform more computation, 
and when time or cognitive resources are limited, then it is rational to do 
less computation. In this way, many supposedly ad-hoc heuristics have 
been reinterpreted as being rational solutions when resources are 
limited (Bhui & Gershman, 2017; Howes, Warren, Farmer, El-Deredy, & 
Lewis, 2016; Khaw, Li, & Woodford, 2017; Lieder, Griffiths, & Hsu, 
2018; Lieder, Griffiths, Huys, & Goodman, 2018a, 2018b; Sims, 2003; 
Tsetsos et al., 2016). Furthermore, people appear to adaptively choose 
between their fast heuristics and their slower and more deliberate 
strategies based on the amount of resources available (Lieder & Griffiths, 
2017) 

However, an issue still remains unresolved in the push for the 
resource-rational reinterpretation of these heuristics. Since the exact 
amount of computation to do for a problem depends on the particular 
time and cognitive resources available, a larger repertoire of reasoning 
systems should enable the mind to more flexibly adapt to different sit-
uations (Gigerenzer & Selten, 2002; Payne, Bettman, & Johnson, 1993). 
In fact, achieving the highest possible degree of adaptive flexibility 
would require choosing from an infinite set of diverse cognitive systems. 
However, this is not consistent with behavioral and neuroscientific ev-
idence for a small number of qualitatively different decision systems 
(Dolan & Dayan, 2013; van der Meer, Kurth-Nelson, & Redish, 2012) 
and similar evidence in the domain of reasoning (Evans, 2003, 2008; 
Evans & Stanovich, 2013). 

One reason for a smaller number of systems could be that as the 
number of systems increases it becomes increasingly more time- 
consuming to select between them (Lieder & Griffiths, 2017). This 
suggests that the number and nature of the mind’s cognitive systems 
might be shaped by the competing demands for the ability to flexibly 
adapt one’s reasoning to the varying demands of a wide range of 
different situations and the necessity to do so quickly and efficiently. In 
our work, we formalize this explanation, allowing us to derive not only 
what the optimal system is given a particular amount of resources, but 
what the optimal set of systems is for a human to select between across 
problems. 

Such an explanation may provide a rational reinterpretation of dual- 
process theories, the theory that the mind is composed of two distinct 
types of cognitive systems: one that is fast, intuitive, and fallible and one 
that is deliberate, slow, and accurate (Evans, 2008; Kahneman & Fred-
erick, 2002, 2005). Similar dual-process theories have independently 
emerged in research on decision-making (Dolan & Dayan, 2013) and 
cognitive control (Diamond, 2013). While recent work in these areas has 
addressed the question of how the mind arbitrates between the two 
systems (Boureau, Sokol-Hessner, & Daw, 2015; Daw, Niv, & Dayan, 
2005; Keramati, Dezfouli, & Piray, 2011; Lieder & Griffiths, 2017; 
Shenhav, Botvinick, & Cohen, 2013), it remains normatively unclear 
why the mind would be equipped with these two types of cognitive 
system, rather than another set of systems. 

The existence of the accurate and deliberate system, commonly 
referred to as System 2 (following Kahneman & Frederick, 2002), is 
easily justified by the benefits of rational decision-making. By contrast, 
some authors have characterized the fast and fallible system, known as 
System 1, as a set of kluges that lead to dreadful mistakes (Ariely, 2009; 
Marcus, 2009; Sutherland, 2013). This raises the question why this 
system exists at all. Recent theoretical work provided a normative 
justification for some of the heuristics of System 1 by showing that they 
are qualitatively consistent with the rational use of limited cognitive 
resources (Griffiths et al., 2015; Lieder et al., 2018a, 2018b; Lieder, 
Griffiths, & Hsu, 2018) – especially when the stakes are low and time is 
scarce and precious. Thus, System 1 and System 2 appear to be optimal 
for different kinds of situations. For instance, you might want to rely on 
System 1 when you are about to get hit by a car and have to make a 
split-second decision about how to move. But, you might want to employ 
System 2 when deciding whether or not to quit your job. 

Here, we formally investigate what set of systems would enable 
people to make the best possible use of their finite time and cognitive 

resources. We derive the optimal tradeoff between the cognitive flexi-
bility afforded by multiple systems and the cost of choosing between 
them. To formalize this problem, we draw inspiration from the artificial 
intelligence literature on designing intelligent agents that make optimal 
use of their limited-performance hardware by building upon the math-
ematical frameworks of bounded optimality (Russell & Subramanian, 
1995) and rational metareasoning (Hay, Russell, Tolpin, & Shimony, 
2012; Russell & Wefald, 1991b). We study this problem in four different 
domains where the dual systems framework has been applied to explain 
human decision-making: binary choice, planning, strategic interaction, 
and multi-alternative, multi-attribute risky choice. We investigate how 
the optimal cognitive architecture for each domain depends on the 
variability of the environment and the cost of choosing between multiple 
cognitive systems, which we call metareasoning cost. 

This approach allows us to extend the application of resource- 
rational analysis from a particular system of reasoning to sets of cogni-
tive systems, and our findings provide a normative justification for dual- 
process theories of cognition. Concretely, we find that across all four 
domains the optimal number of systems increases with the variability of 
the environment but decreases with the costliness of determining when 
which of these systems should be in control. In addition, when it is 
optimal to have two systems, then the difference in their speed-accuracy 
tradeoffs increases with the variability of the environment. In variable 
environments, this results in one system that is accurate but costly to use 
and another system that is very fast but sometimes less accurate. These 
predictions mirror the assertions of dual-process accounts of cognition 
(Evans, 2008; Kahneman, 2011). Our findings cast new light on the 
debate about human rationality by suggesting that the apparently con-
flicting views of dual-process theories and rational accounts of cognition 
might be compatible after all. 

The remainder of this paper is structured as follows: We start by 
summarizing previous work in psychology and artificial intelligence that 
our article builds on. We then describe our mathematical methods for 
deriving optimal sets of cognitive systems. The subsequent four sections 
apply this methodology to the domains of binary choice, planning, 
strategic interaction in games, and multi-alternative risky choice. We 
conclude with the implications of our findings for the debate about 
human rationality and directions for future work. 

2. Background 

Before delving into the details of our analysis, we first discuss how 
our approach applies to the various dual-process theories in psychology, 
and how we build on the ideas of bounded optimality and rational 
metareasoning developed in artificial intelligence research. 

2.1. Dual-process theories 

The idea that human minds are composed of multiple interacting 
cognitive systems first came to prominence in the literature on reasoning 
(Evans, 2008; Stanovich, 2011). While people are capable of reasoning 
in ways that are consistent with the prescriptions of logic, they often do 
not. Dual-process theories suggested that this is because people employ 
two types of cognitive strategies: fast but fallible heuristics that are 
triggered automatically and deliberate strategies that are slow but 
accurate. 

Different dual-process theories vary in what they mean by two 
cognitive systems. For example, Evans and Stanovich (2013) distinguish 
between dual processes, in which each process can be made up of 
multiple cognitive systems, and dual systems, which corresponds to the 
literal meaning of two cognitive systems. Because our work abstracts 
these cognitive systems based on their speed-accuracy tradeoff our 
analysis applies both at the level of systems or processes as long as the 
systems or processes accomplish speed-accuracy tradeoffs. Thus, our 
theory still applies to both dual “processes” and dual “systems”. 

There is also debate over how the two systems would interact. Some 
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theories postulate the existence of a higher-level controller that chooses 
between the two systems (Norman & Shallice, 1986; Shenhav et al., 
2013), some that the two systems run in parallel, and others that the 
slower system interrupts the faster one (Evans & Stanovich, 2013). The 
analysis we present simply assumes that there is greater metareasoning 
cost incurred for each additional system. This is clearest to see when a 
higher-level controller needs to make the decision of which system to 
employ. Alternatively, if multiple cognitive systems operated in parallel, 
the cost of arbitrating between these systems would also increase with 
the number of systems – just like the metareasoning cost. So, we believe 
our analysis would also apply under this alternative assumption. 

Since their development in the reasoning literature, dual-process 
theories have been applied to explain a wide range of mental phenom-
ena, including judgment and decision-making, where it has been 
popularized by the distinction between System 1 and System 2 (Kah-
neman, 2011; Kahneman & Frederick, 2002, 2005), and moral 
reasoning, where the distinction is made between a fast deontological 
system and a slow utilitarian system (Greene, 2015). In parallel with this 
literature in cognitive psychology, research on human reinforcement 
learning has led to similar conclusions. Behavioral and neural data 
suggest that the human brain is equipped with two distinct decision 
systems: a fast, reflexive, system based on habits and a slow, deliberate 
system based on goals (Dolan & Dayan, 2013). The mechanisms 
employed by these systems have been mapped onto model-based versus 
model-free reinforcement learning algorithms. A model-free versus 
model-based distinction has also been suggested to account for the na-
ture of the two systems posited to underlie moral reasoning (Crockett, 
2013; Cushman, 2013). 

The empirical support for the idea that the human mind is composed 
of two types of cognitive systems raises the question of why such a 
composition would evolve from natural selection. Given that people 
outperform AI systems in most complex real-world tasks despite their 
very limited cognitive resources, we ask whether being equipped with a 
fast but fallible and a slow but accurate cognitive system can be un-
derstood as a rational adaption to the challenge of solving complex 
problems with limited cognitive resources (Griffiths et al., 2015). 

2.2. Bounded optimality and resource-rational analysis 

Recent work has illustrated that promising process models of human 
cognition can be derived from the assumption that the human mind 
makes optimal use of the cognitive resources that are available to it 
(Griffiths et al., 2015; Howes et al., 2009; Lewis et al., 2014). This idea 
can be formalized by drawing on the theory of bounded optimality which 
was developed as a foundation for designing optimal intelligent agents. 
In contrast to expected utility theory (Von Neumann & Morgenstern, 
1944), bounded optimality takes into account the constraints imposed 
by performance-limited hardware and the requirement that the agent 
has to interact its environment in real time (Horvitz, 1987; Russell & 
Subramanian, 1995). The basic idea is to mathematically derive a pro-
gram that would enable the agent to interact with its environment as 
well as or better than any other program that its computational archi-
tecture could execute. Critically, the agent’s limited computational re-
sources and the requirement to interact with a potentially very complex, 
fast-paced, dynamic environment in real-time entail that the agent’s 
strategies for reasoning and decision-making have to be extremely 
efficient. This rules out naive implementations of Bayes’ rule and ex-
pected utility maximization as those would take so long to compute that 
the agent would suffer a decision paralysis so bad that it might die before 
taking even a single action. 

The fact that people are subject to the same constraints makes 
bounded optimality a promising normative framework for modeling 
human cognition (Griffiths et al., 2015). Resource-rational analysis ap-
plies the principle of bounded optimality to derive optimal cognitive 
strategies from assumptions about the problem to be solved and the 
cognitive architecture available to solve it (Griffiths et al., 2015), 

building on previous work on computationally bounded rational anal-
ysis (Howes et al., 2009; Lewis et al., 2014). Recent work illustrates that 
this approach can be used to discover and make sense of people’s heu-
ristics for judgment (Lieder et al., 2018a), decision-making (Lieder et al., 
2018a; Lieder, Griffiths, & Hsu, 2018), goal pursuit (Prystawski, Moh-
nert, Tosic, & Lieder, 2021), and memory and cognitive control (Howes 
et al., 2016). The resulting models have shed new light on the debate 
about human rationality (Griffiths et al., 2015; Lieder et al., 2018a, 
2018b; Lieder, Griffiths, & Hsu, 2018; Lieder, Krueger, & Griffiths, 
2017). 

Previous work applying bounded optimality to human cognition has 
focused on the question of what kind of cognitive system or strategy is 
optimal for a specific task and environment. In this paper, we take a 
different approach. Rather than considering individual systems or stra-
tegies, we ask what sets of systems or strategies are most beneficial to an 
agent in a particular environment, where that agent is assumed to then 
intelligently choose which of these options to deploy when solving a 
specific task. To do so, we use the theory of rational metareasoning as a 
foundation for modeling how the agent should decide when to rely on 
which system or strategy. 

2.3. Rational metareasoning as a framework for modeling the adaptive 
control of cognition 

Previous research suggests that people flexibly adapt how they 
decide to the requirements of the situation (Payne, Bettman, & Johnson, 
1988). Recent theoretical work has shown that this adaptive flexibility 
can be understood within the rational metareasoning framework devel-
oped in artificial intelligence (Lieder & Griffiths, 2017). Rational met-
areasoning (Hay et al., 2012; Russell & Wefald, 1991b) formalizes the 
problem of selecting computations so as to make optimal use of finite 
time and limited-performance hardware. The adaptive control of 
computation afforded by rational metareasoning is critical for intelligent 
systems to be able to solve complex and potentially time-critical prob-
lems on performance-limited hardware (Horvitz, Cooper, & Heckerman, 
1989; Russell & Wefald, 1991b). For instance, it is necessary for a 
patient-monitoring system used in emergency medicine to metareason 
in order to decide when to terminate diagnostic reasoning and recom-
mend treatment. (Horvitz & Rutledge, 1991). This example illustrates 
that rational metareasoning may be necessary for agents to achieve 
bounded-optimality in environments that pose a wide range of problems 
that require very different computational strategies. However, to be 
useful for achieving bounded-optimality, metareasoning has to be done 
very efficiently. 

In principle, rational metareasoning could be used to derive the 
optimal amount of time and mental effort that a person should invest 
into making a decision (Shenhav et al., 2017). Unfortunately, selecting 
computations optimally is a computation-intensive problem itself 
because the value of each computation depends on the potentially long 
sequence of computations that can be performed afterwards. Conse-
quently, in most cases, solving the metareasoning problem optimally 
would defeat the purpose of trying to save time and effort (Hay et al., 
2012; Lin, Kolobov, Kamar, & Horvitz, 2015; Russell & Wefald, 1991a). 
Instead, to make optimal use of their finite computational resources 
bounded-optimal agents (Russell & Subramanian, 1995) must optimally 
distribute their resources between metareasoning and reasoning about 
the world. Thus, studying bounded-optimal metareasoning might be a 
way to understand how people manage to allocate their finite compu-
tational resources near-optimally with very little effort (Gershman et al., 
2015; Keramati et al., 2011). 

Recent work has shown that approximate metareasoning over a 
discrete set of cognitive strategies can save more time and effort than it 
takes and thereby improve overall performance (Lieder et al., 2014). 
This approximation can drastically reduce the computational 
complexity of metareasoning while achieving human-level performance 
(Lieder et al., 2014; Lieder & Griffiths, 2017). Thus, rather than 
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metareasoning over all possible sequences of mental operations to 
determine the exact amount of time to think, humans may simply 
metareason over a finite set of cognitive systems that have different 
speed and accuracy tradeoffs. This suggests a cognitive architecture 
comprising multiple systems for reasoning and decision making and a 
executive control system that arbitrates between them – which is 
entirely consistent with extant theories of cognitive control and mental 
effort (Norman & Shallice, 1986; Shenhav et al., 2013, 2017). 
Dual-process theories can be seen as a special case of this cognitive ar-
chitecture where the number of decision systems is two. 

According to this perspective, the executive control system selects 
between a limited number of cognitive systems by predicting how well 
each of them would perform in terms of decision quality and effort and 
then selects the systems with the best predicted performance (Lieder & 
Griffiths, 2017). Research on voluntary task switching has found that 
choosing between alternative cognitive processes requires time and 
effort (Arrington & Logan, 2004). Based on Hick’s law (Hick, 1952) one 
should expect that the more options the executive control system can 
choose between, the more time and mental effort it will take to make 
those choices. Our model of how people choose between cognitive 
processes (Lieder & Griffiths, 2017) suggests this cost would be roughly 
proportional to the number of available processes. At the same time, 
increasing the number of systems also increases the agent’s cognitive 
flexibility thereby enabling it to achieve a higher level of performance 
across a wider range of environments. Conversely, reducing the space of 
computational mechanisms the agent can choose from entails that there 
may be problems for which the optimal computational mechanisms will 
be no longer available. This dilemma necessitates a tradeoff that sacri-
fices some flexibility to increase the speed at which cognitive mecha-
nisms can be selected. This raises the question of how many and which 
computational mechanisms a bounded-optimal metareasoning agent 
should be equipped with, which we proceed to explore in the following 
sections. 

3. Deriving bounded-optimal cognitive systems 

We now describe our general approach for extending resource- 
rational analysis to the level of cognitive architectures. The first step 
is to model the environment. For the purpose of our analysis, we char-
acterize each environment by the set of decision problems 𝒟 that it poses 
to people and a probability distribution P over 𝒟 that represents how 
frequently the agent will encounter each of them. The set of decision 
problems 𝒟 could be quite varied, for example, it could include deciding 
which job to pick and deciding what to eat for lunch. In this case P would 
encode the fact that deciding what to eat for lunch is a more common 
type of decision problem than deciding which job to pick. Associated 
with each decision problem d is a utility function Ud(a) that represents 
the utility gained by the agent for taking action a in decision problem d. 

Having characterized the environment in terms of decision problems, 
we then model how people might solve them. We assume that there is a 
set of reasoning and decision-making systems 𝒯 that the agent could 
potentially be equipped with. The question we seek to investigate is 
what subset ℳ⫅𝒯 is optimal for the agent to actually be equipped with. 
The optimal set of systems ℳ is dependent on three costs: (1) the action 
cost: the cost of taking the chosen action, (2) the reasoning cost: the cost 
of using a system from ℳ to reason about which action to take, (3) the 
metareasoning cost: the cost of deciding which system to use to decide 
which action to take. For simplicity, we will describe each of the costs in 
terms of time delays, although they also entail additional costs, 
including metabolic costs. 

As an example, consider the scenario of deciding what to order for 
lunch at a restaurant. The diner has a fixed amount of time she can spend 
at lunch until she needs to get back to work, so time is a finite resource. 
The action cost is the time required to eat the meal. A person might have 
multiple systems for deciding which items to choose. For example, one 
system may rely on habit and order the same dish as last time. Another 

system may perform more logical computation to analyze the nutritional 
value of each item or what the most economical choice is. Each system 
has an associated reasoning cost, the time it takes for that system to 
decide which item to order. 

It is clear that the diner has to balance the amount of time spent 
thinking about what meal to pick (reasoning cost) with the amount of 
time it will take to actually eat the meal (action cost), so that she is able 
to finish her meal in the time she has available. If the diner is extremely 
time-constrained, perhaps because of an urgent meeting she needs to get 
back to, then she may simply heuristically plop items onto her plate. But, 
if the diner has more time, then she may think more about what items to 
choose. 

In addition to the cost of reasoning and the cost of acting, having 
multiple decision systems also incurs the cost of selecting and arbitrating 
between them. Drawing on previous work in cognitive psychology, we 
formalize the function of selecting between multiple decision systems as 
rational metareasoning (Lieder & Griffiths, 2017). That is, we formalize 
the problem solved by whatever mechanisms the mind might use to 
select and arbitrate between its decision systems using the mathematical 
framework of rational metareasoning developed in artificial intelligence 
(Russell & Wefald, 1991b) without making any assumptions about what 
those mechanisms might be. Our only assumption about those mecha-
nisms is that they are costlier when the number of decision systems is 
larger. One of the mechanisms that people might sometimes use to select 
between multiple decision systems is reasoning about costs and benefits. 
In our restaurant example, the metareasoning cost might then corre-
spond to how much time it takes the diner to decide how much to think 
about whether to rely on her habits, an analysis of nutritional value, or 
any of the other decision mechanisms she may have at her disposal. If 
the diner only has one system of thinking, then the metareasoning cost is 
zero. But as the number of systems increases, the metareasoning cost of 
deciding which system should be in control increases. This raises the 
question of what is the optimal ensemble of cognitive systems, how 
many systems does it include, and what are they? We can derive the 
answer to these questions by computing minimizing the expected sum of 
action cost, reasoning cost, and metareasoning cost over the set of all 
possible ensembles of cognitive systems. 

In summary, our approach for deriving a bounded-optimal cognitive 
architecture proceeds as follows:  

1. Model the environment. Define the set of decision problems 𝒟, the 
distribution over them P, and the utility for each problem Ud(a).  

2. Model the agent. Define the set of possible cognitive systems 𝒯 the 
agent could have.  

3. Specify the optimal mind design problem. Define the metric that 
the bounded agent’s behavior optimizes, i.e., a trade-off between the 
utility it gains and the costs that it incurs; the action cost, reasoning 
cost, and metareasoning cost.  

4. Solve the optimal mind design problem. Solve (3) to find the 
optimal set of systems ℳ⫅𝒯 for the agent to be equipped with. 

Once we have done this, we can begin to probe how different parts of 
the simulation affect the final result in step (4). For example, we expect 
that the optimal cognitive architecture for a variable environment 
should comprise multiple cognitive systems with different characteris-
tics. But at the same time, the number of systems should not be too high, 
or else the time spent on deciding which system to use, the meta-
reasoning cost, will be too high. In other words, we hypothesize that the 
number of systems will depend on a tradeoff between the variability of 
the environment and the metareasoning cost. Our simulations show that 
this is indeed the case. 

4. Simulation 1: Two-alternative forced choice 

Our first simulation focuses on the widely-used two-alternative 
forced choice (2AFC) paradigm, in which a participant is forced to select 
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between two options. For example, categorization experiments often 
require their participants to decide whether the presented item belongs 
to the category or not, and psychophysics experiments often require 
participants to judge whether two stimuli are the same or different. Even 
in simple laboratory settings, judgments made within a 2AFC task seem 
to stem from systematically different modes of thinking. Therefore, 
2AFC tasks are a prime setting to start in evaluating our theory for dual 
process systems. But before describing the details of our 2AFC simula-
tion, we first review evidence of dual-process accounts of behavior in the 
2AFC paradigm. 

A very basic binary choice task presents an animal with a lever that it 
can either press to obtain food or decide not to press (Dickinson, 1985). 
It has been shown that early on in this task rodents’ choices are governed 
by a flexible brain system that will stop pressing the lever when the they 
no longer want the food. By contrast, after extensive training their 
choices are controlled by a different, inflexible brain system that will 
continue to press the lever even when the reward is devaluated by 
poisoning the food. Interestingly, these two systems are preserved in the 
human brain and the same phenomenon has been demonstrated in 
humans (Balleine & O’Doherty, 2010). 

Another example of two-alternative forced-choice is the probability 
learning task where participants repeatedly choose between two op-
tions, the first of which yields a reward with probability p1 and the 
second of which yields a reward with probability p2 = 1 − p1. It has been 
found that depending on the incentives people tend to make these 
choices in two radically different ways (Shanks, Tunney, & McCarthy, 
2002): When the incentives are low then people tend to use a strategy 
that chooses option one with a frequency close to p1 and option two with 
a frequency close to p2 – which can be achieved very efficiently (Vul, 
Goodman, Griffiths, & Tenenbaum, 2014). By contrast, when the in-
centives are high then people employ a choice strategy that maximizes 
their earnings by almost always choosing the option that is more likely 
to be rewarded – which requires more computation (Vul et al., 2014). 

The dual systems perspective on 2AFC leaves open the normative 
question: what set of systems is optimal for the agent to be equipped 
with? To answer this question, we apply the methodology described in 
the previous section to the problem of bounded-optimal binary-choice. 

4.1. Methods 

As in the 2AFC probability learning task used by Shanks et al. (2002), 
the agent receives a reward of +1 for picking the correct action and 0 for 
picking the incorrect action. An unboundedly rational agent would al-
ways pick the action with a higher probability of being correct. Yet, 
although simple in set-up, computing the probability of an action being 
correct generally requires complex inferences over many interconnected 
variables. For example, if the choice is between turning left onto the 
highway or turning right to smaller backroads, estimating the proba-
bility of which action will lead to less traffic may require knowledge of 
when rush hour is, whether there is a football game happening, and 
whether there are accidents in either direction. 

To approximate these often intractable inferences people appear to 
perform probabilistic simulations of the outcomes, and the variability 
and biases of their predictions (Griffiths & Tenenbaum, 2006; Lieder 
et al., 2018a) and choices (Lieder, Griffiths, & Hsu, 2018; Vul et al., 
2014) match those of efficient sampling algorithms. Previous work has 
therefore modeled people as bounded-optimal sample-based agents, 
which draw a number of samples from the distribution over correct 
actions and then picks the action that was sampled most frequently. 
(Griffiths et al., 2015; Vul et al., 2014). In line with this prior work, we 
model probabilistic reasoning as sampling (see below). 

Let a0 and a1 be the actions available to the agent where a1 has a 
probability θ of being the correct action and a0 has a probability 1 − θ of 
being correct. The probability θ that a1 is correct varies across different 
environments, reflecting the fact that in some settings it is easier to tell 
which action is correct than in others. For example, it is obvious between 

the choice of a two-month old tomato and a fresh orange that the more 
nutritious choice is the latter. In this case, it is clear that the fresh orange 
is correct with probability near one. On the other hand, it may be quite 
difficult to decide between whether to attend graduate school at two 
universities with similar programs. In this case, the difference between 
the probabilities of each being correct may be quite marginal, and both 
might have close to a 0.5 chance of being correct. We model the vari-
ability in the difficulty of this choice by assuming that θ is equally likely 
to be any value in the range (0.5, 1), i.e θ ~ Pθ = Unif(0.5, 1). We 
consider the range (0.5, 1) instead of (0, 1) without loss of generality 
because we can always rename the actions so that a0 is more likely to be 
correct than a1. 

To make a decision the sample-based agent draws some number of 
samples k from the distribution over correct actions, i ~ Bern(θ), and 
picks the action ai that it sampled more.1 If the agent always draws k 
samples before acting, then its expected utility across all environments is 

Eθ[U∣k] =
∫

θ
[P(a1 iscorrect)⋅P(Agentpicks a1∣k)

+ P(a0 iscorrect)⋅P(Agentpicks a0∣k)]Pθ(dθ). (1)  

Appendix A provides a detailed derivation of how to calculate the 
quantity in Eq. (1). If there were no cost for samples, then the agent 
could take an infinite number of samples to ensure choosing the correct 
action. But this is, of course, impractical in the real world because 
drawing a sample takes time and time is limited. Vul et al. (2014) show 
how the optimal number of samples changes based on the cost of sam-
pling in various 2AFC problems. They parameterize the cost of sampling 
as the ratio, re, between the time for acting and the execution time of 
taking 1 sample. Suppose acting takes one unit of time, then the amount 
of time it takes to draw k samples is k/re. The total amount of time the 
agent takes is 1 + k/re. Thus, the optimal number of samples the agent 
should draw to maximize its expected utility per unit time is 

k∗ = arg max
k∈ℕ0

Eθ[U|k]
1 + k

re

. (2) 

When the time it takes to generate a sample is at least one tenth of the 
time it takes to execute the action (re ≤ 10), then the optimal number of 
samples is either zero or one. In general, the first sample provides the 
largest gain in decision quality and the returns diminish with every 
subsequent sample. The point where the gain in decision quality falls 
below the cost of sampling depends on the value of re. Since this value 
can differ drastically across environments, achieving a near-optimal 
tradeoff in all environments requires adjusting the number of samples. 
Even a simple heuristic-based metareasoner that adapts the number of 
samples it takes based on a few thresholds on re does better than one 
which always draws the same number of samples (Icard, 2014). 

Here, as well as in Simulations 2 and 3, we use the speed-accuracy 
tradeoffs achieved by drawing different numbers of samples to model 
how fast and how accurate additional cognitive systems could be. In 
doing so, we make no assumptions about which kinds of mechanisms 
those systems might use. Instead, we use sampling as an as-if model of 
the speed-accuracy tradeoffs of those hypothetical cognitive systems. 
The actual mechanisms of those systems would likely be qualitatively 
different decision strategies. The only think that they might have in 
common is that all of them are assumed to perform some amount of 
computation during the choice. For brevity we refer to these systems as 
“deliberate” systems without making any claims about their 
mechanisms. 

An even simpler mechanism that people are known to employ is to 

1 If there is a tie, then the agent picks either a0 or a1 with equal probability. 
However, for odd k, the agent’s expected utility after drawing k samples, 
Eθ[U|k], is equal to its expected utility after drawing k + 1 samples, Eθ[U|k+ 1]. 
Thus, we can restrict ourselves to odd k where no ties are possible. 
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learn simple stimulus-response reflexes (Dolan & Dayan, 2013; Thorn-
dike, 1927). These reflexes will generate the correct decision in some 
percentage of situations regardless of how difficult it is to reason about 
them (p). Instead, the accuracy of the resulting reflexes depends on the 
decision maker’s learning history with the cues that are available in the 
current situation. This mechanism is qualitatively different from prob-
abilistic reasoning because it does not involve any deliberation. Its de-
cisions are instantaneous and sometimes less accurate than probabilistic 
reasoning. We therefore model the accuracy of this mechanism as the 
accuracy of choosing the action with the highest expected utility minus ε 
(i.e., 

∫ 1
0.5 p(θ)⋅θ dθ − ε = 0.75 − ε) and assume that it doesn’t cost the 

decision-maker any time (i.e., k = 0). For instance, ε = 0.1 means that 
the expected accuracy of the reflexive system is about 10% lower than 
the accuracy of always choosing the action that is more likely to be 
correct. We interpret these assumptions as a proxy for the 
speed-accuracy tradeoff of System 1 without making any claims about 
what the mechanisms of System 1 might be. To keep our equations 
simple, we will refer to the performance of this system as Eθ[U|k = 0]
even though its mechanisms and speed-accuracy tradeoff are qualita-
tively different from those of the deliberate systems. 

Here, we study an agent that chooses its decision system from a finite 
subset ℳ of all conceivable cognitive systems that comprises our model 
of System 1 and multiple systems that perform varying amounts of 
computation during the decision with speed-accuracy tradeoffs resem-
bling those of drawing different numbers of samples. Furthermore, we 
assume that the time spent metareasoning increases linearly with the 
number of systems. By analogy to Vul et al. (2014), we formalize the cost 
of selecting and arbitrating between these various cognitive systems in 
terms of the ratio rm of the time it takes to act over the time it takes to 
predict the performance of a single system. 

We can again calculate the total cost of arriving at a decision while 
now taking into account the cost of selecting and arbitrating between its 
various decision systems. Just as before, the agent spends one unit of 
time executing its action, and either 0 (System 1) or k/re units of time 
(deliberate systems) to arrive at a decision. But now, we also account for 
the time it takes the agent to predict the performance of a system: 1/rm. 
The total amount of time it takes the agent to metareason, that is to 
predict the performance of all systems, is |ℳ|/rm. Therefore, the total 
amount of time is 1+

πℳ(re)
re

+
|ℳ|

rm
. We assume the agent picks the optimal 

system out of the set of possible systems ℳ: 

k∗ = arg max
k∈ℳ∪{0}

Eθ[U|k]
1 + k

re
+

|ℳ|

rm

, (3)  

where k = 0 corresponds to System 1 and k ≥ 1 corresponds to one of the 
“deliberate” systems. 

Given this formulation of the problem, we can now calculate the 
optimal set of cognitive systems. The set of cognitive systems that results 
in the optimal expected utility per time for the bounded sampling agent 
is 

ℳ∗ = arg max
ℳ⊂ℕ

Ere

⎡

⎢
⎢
⎣maxk∈ℳ∪{0}

Eθ[U|k]
1 + k

re
+

|ℳ|

rm

⎤

⎥
⎥
⎦ (4)  

Eq. (4) resembles Eq. (3) because both optimize the agent’s expected 
utility per time. The difference is that Eq. (3) calculates the optimal 
number of samples for a fixed cost of sampling, while Eq. (4) calculates 
the optimal number of systems for a distribution of costs of sampling. 

Note that the optimal set of systems depends on the distribution of 
the sampling cost re across different environments. Since sampling an 
action generally takes less time than executing the action, we assume 
that re is always greater than one. We can satisfy this constraint on re by 
modeling re as following a shifted Gamma distribution, i.e re − 1 ~ Γ(α, 
β). 

4.2. Results 

Fig. 1 shows a representative example2 of the expected utility per 
time as a function of the number of systems for different metareasoning 
costs. Under a large range of metareasoning costs the optimal number of 
systems is just one, but as the costliness of selecting a cognitive system 
decreases, the optimal number of systems increases. However even 
when the optimal number of systems is more than one, each additional 
system tends to only result in a marginal increase in utility, suggesting 
that one reason for few cognitive systems may be that the benefit of 
additional systems is very low. 

Fig. 2 shows that the optimal number of systems increases with the 
variance of re and decreases with the cost of selecting between cognitive 
systems (i.e., 1

rm
). Interestingly, there is a large set of plausible combi-

nations of variability and metareasoning cost for which the bounded- 
optimal agent has two cognitive systems. In addition, when the 
optimal number of systems is two, then the gap between the values of 
the two systems picked increases with the variance of re (see Table 1), 
resulting in one system that has high accuracy but high cost and another 
system that has low accuracy and low cost, which matches the charac-
teristics of the systems posited by dual-process accounts. Importantly, as 
illustrated in Table 1, we found that when it is optimal to have two 
cognitive systems and the variability of the environment exceeds some 
threshold then the bounded optimal cognitive architecture comprises 
System 1 and a deliberate system.3 Thus, the conditions under which we 
would most expect to see two cognitive systems like the ones suggested 
by dual-process theories are when the environment is highly variable 
and arbitrating between cognitive systems is costly. 

We also found that as the sub-optimality (ε) of the reflexive system 
(k = 0) increases from 5% to 10% and from 10% to 20% an increasingly 
higher amount of environmental variability (σ2(re)) is required for the 

Fig. 1. The reward rate in two-alternative forced choice (Simulation 1) usually 
peaks for a moderately small number of decision systems. The expected utility 
per time of the optimal choice of systems, ℳ★, as a function of the number of 
systems (|ℳ|). As the costliness of metareasoning, 1

rm 
decreases, the optimal 

number of systems increases. In this example E[re] = 100, σ(re) = 100, and the 
expected accuracy of the reflexive system is about 10% lower than the accuracy 
of choosing the action with the highest expected utility (ε = 0.1). 

2 For all experiments reported in this paper, we found that alternative values 
for E[re], ε, or Var(re) did not change the qualitative conclusions, unless other-
wise indicated.  

3 The results shown in Fig. 1 confirm that it is indeed bounded-optimal to 
have two systems in this scenario. 
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reflexive system to be included in the optimal pairs and triples of 
cognitive systems (i.e., less than 103 for ε = 0.05, between 103 and 104 

for ε = 0.1 and between 104 and 105 for ε = 0.2). 
Finally, we observed that the proportion of situations in which a 

resource-rational dual-process architecture relies on System 1 increases 
with the variability of the environment. For instance, as the variance of 
re increases from 104 to 105 the proportion of times that the resource- 
rational dual-process architecture relies on System 1 increases from 
39.1% to 79.2%. This appears to be optimal for two reasons. The first 
reason is that the proportion of situations where the cost of reasoning is 
high compared to the cost of acting increases with the variability of the 
cost of reasoning. This is a mathematical consequence of increasing the 
variance of the Gamma distribution on re while keeping its mean con-
stant. The second reason is that the range of situations for which System 
1 is optimal widens as the optimal amount of deliberation performed by 
System 2 increases with the variability of the environment. 

5. Simulation 2: Sequential decision-making in novel 
environments 

Complementing our analysis of which cognitive architectures are 
bounded-optimal in simple, binary decisions where the reflexive system 
can draw on prior experience with informative cues (Simulation 1), we 
now analyze which cognitive architectures are optimal for handling 
more complex problems in a new environment. More concretely, 
Simulation 2 focuses on sequential decision problems, in which the 
agent needs to choose a sequence of actions over time in order to achieve 

its goal in a novel environment. In these problems, the best action to take 
at any given point depends on future outcomes and actions. Since ac-
tions only affect the environment probabilistically, solving such prob-
lems requires planning under uncertainty. 

Although planning often allows us to make better decisions, planning 
places high demands on people’s working memory and time (Kotovsky, 
Hayes, & Simon, 1985). This may be why research on problem solving 
has found that people’s cognitive repertoire comprises not only strate-
gies that plan many steps ahead but also simpler heuristic planning 
strategies (Atwood & Polson, 1976; Kotovsky et al., 1985; Newell & 
Simon, 1972). Likewise, models of problem solving often assume that 
the mind is equipped with a highly accurate, but effortful, planning 
strategy, such as means-ends analysis, and one or two simple heuristic 
planning strategies, such as hill-climbing (Anderson, 1990; Gunzelmann 
& Anderson, 2003; Newell & Simon, 1972). Consistent with our 
modeling framework, Anderson’s rational analysis of problem solving 
assumed that people select between intensive planning by 
means-ends-analysis versus heuristic planning via hill climbing ac-
cording to a rational cost-benefit analysis (Anderson, 1990). Here, we 
aim to derive a normative theory of what set of planning mechanisms the 
mind should be equipped with in the first place. We study this question 
for novel problems where the reflexive system cannot draw on prior 
experiences. 

5.1. Methods 

Like Daw et al., 2005, we model the challenge of finding a sequence 
of actions that achieves the goal as a finite-horizon Markov decision 
problem (MDP; Sutton & Barto, 2018) with an absorbing goal-state. This 
type of MDP is formally defined by a set of states 𝒮, a set of actions 𝒜, a 
cost function c : 𝒮 × 𝒜→ℝ≥0 that measures how costly each action a is 
depending on the current state s, a transition probability model p : 𝒮 ×

𝒜× 𝒮→[0, 1] that defines the probability of the next state given the 
current state and the action taken, an absorbing goal state g, and a time 
horizon h. Experience in these MDPs can be thought of as a set of trials or 
episodes. A trial ends once the agent reaches an absorbing goal-state g or 
it exceeds the maximal number of time steps allowed by the time horizon 
h. 

In the standard formulation, at each time step, the agent takes an 
action, which depends upon its current state. The agent’s action choices 
can be concisely represented by a policy π : 𝒮→𝒜 that returns an action 
for each state. An optimal policy minimizes the expected sum of costs 
across the trial: 

π∗ = arg min
π

E

[
∑N

i=0
c(si, π(si))|π

]

, (5)  

where si is the state at time step i and N is the time step that the episode 
ends (either once the agent reaches the goal state g or the time horizon h 
is reached). The expectation is taken over the states at each time step, 
which are stochastic according to the transition model p. 

However, this formulation of the problem ignores the fact that the 
agent needs to think to decide how to act, and that thinking also incurs 
cost. We extend the standard MDP formulation to account for the cost of 
thinking. At each time step, the agent has a thinking stage, followed by 
an acting stage. We analyze the performance of a set of bounded agents 
that differ in how many and which processes they can choose between at 
the beginning of the thinking stage. For each planning problem, each 
agent is assumed to let its most suitable planning process (stochastically) 
decide on an action a. In the acting stage, the agent executes the chosen 
action. In addition to the cost c(s, a) of acting, there is also a cost f(t) that 
measures the cost of thinking about the problem for t units of time. We 
seek to determine how many qualitatively different planning processes 
(or strategies) the mind’s cognitive architecture should be designed to 
support. What exactly those processes should be is an important ques-
tion. Yet, for the purpose of our analysis, it only matters that they 
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Fig. 2. Optimal number of decision mechanisms in the 2AFC problem of 
Simulation 1 as a function of the standard deviation of re and 1/rm. In this 
example E[re] = 10 and ε = 0.1. 

Table 1 
The optimal set of cognitive systems (ℳ) for the 2AFC task of Simulation 1 with 
ε = 0.1 as a function of the number of systems (|ℳ|) and the variability of the 
environment (Var(re)) for E[re] = 100 and rm = 1000.  

|ℳ|
Var(re) 

103 104 105 

1 3 0 0 
2 3, 5 0, 5 0, 7 
3 3, 5, 7 0,3,7 0, 3, 9 
4 0, 3, 5, 7a 0, 3, 5, 7 0, 3, 7, 13  

a Any set of four systems that includes 3, 5, and 7 is optimal. 
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achieve different speed-accuracy tradeoffs. We therefore abstract away 
from the qualitative differences between the strategies and represent 
each hypothetical planning strategy by a single number (t) that repre-
sents how much planning it performs. Under these assumptions, an 
optimal planning strategy is one that minimizes the total expected cost 
of acting and thinking: 

t∗ = arg min
t

E

[
∑N

i=0
c(si, ai) + f (t)|t

]

, (6)  

where a0,. . . , aN are the actions chosen by the strategy investing t units 
of time into planning at each time step and s0,. . . , sN are the states at 
each time step. The expectation is taken over states and actions, which 
are stochastic because the transition model p and the process of planning 
are not necessarily deterministic. 

Abstracting away from the actual planning mechanisms allows us to 
simulate the performance of each planning strategy by the performance 
that a single planning algorithm achieves with varying numbers of 
simulations. For this purpose, we use bounded real-time dynamic pro-
gramming (BRTDP; McMahan, Likhachev, & Gordon, 2005), a planning 
algorithm from the artificial intelligence literature. That is, we simulate 
the performance of planning strategy t by the performance that BRTDP 
can achieve with t simulations. BRTDP simulates potential action se-
quences, and then uses these simulations to estimate an upper bound 
and lower bound on how good each action in each possible state. It starts 
with a heuristic bound, and then continuously improves the accuracy of 
its estimates. Depending on the number of simulations chosen, it can be 
executed for an arbitrarily short or long amount of time. Fewer simu-
lations result in faster but less accurate solutions, while more simula-
tions results in slower but more accurate solutions, making BRTDP 
particularly well-suited for studying the adaptive control of planning 
(Lin et al., 2015). Since we are simulating planning in novel environ-
ments we assume that the instantaneous choices of the reflexive system 
would be essentially random. This is equivalent to the performance of 
BRTDP with t = 0 simulations. 

During the thinking stage, the agent chooses the number of action 
sequences to simulate (k). Then, based on these simulations, the agent 
uses BRTDP to update its estimate of how good each action is in each 
possible state. During the acting stage, the agent takes the action with 
the highest upper bound on its value. Thus the agent’s policy is defined 

entirely by k, the number of action sequences it simulates. This type of 
policy corresponds to the Think*Act policy from Lin et al., 2015 

We consider environments in which there is a constant cost per ac-
tion (ca) from all non-goal states: c(s, a) = ca. The cost of planning is 
linear in the number of simulated action sequences (k): f(k) = ce ⋅ k, 
where ce is the cost of each mental simulation. We reparameterize the 
costs by the ratio of the cost of acting over the cost of thinking, re = ca

ce
. 

Having defined the agent policy and the cost of planning, Eq. (6) sim-
plifies to 

k∗ = arg min
k∈ℕ0

(

1 +
k
re

)

E[N|k], (7)  

where N is the number of time steps until the trial ends, either by 
reaching the goal state or the time horizon. See Appendix B for a 
derivation. 

Eq. (7) defines the optimal planning process for the agent to use for a 
particular decision problem, but we seek to investigate what set of 
processes is optimal for the agent to be equipped with for a range of 
decision problems. We assume that there is a distribution of MDPs the 
agent may encounter, and while re is constant within each problem, it 
varies across different problems. Therefore, optimally allocating finite 
computational resources requires selecting among the available plan-
ning processes. We assume that this incurs a cost that is linear in the 
number of systems: cm⋅|ℳ|, where cm is the cost required to predict the 
performance of a single system. Similarly we can reparametrize this cost 
using rm = ca/cm, so that the cost of selecting between planning pro-
cesses becomes |ℳ|/rm. 

Assuming that the agent chooses optimally from its set of planning 
processes, the optimal set of processes that it should be equipped with is 

ℳ∗ = arg min
ℳ⊂ℕ

Ere

[

mink∈ℳ∪{0}

(

1 +
k
re

)

E[N|k]
]

+
|ℳ|

rm
. (8) 

We investigated the size and composition of the optimal set of 
planning processes for a simple 20 × 20 grid world where the agent’s 
goal is to get from the lower left corner to the upper right corner with as 
little cost as possible. The horizon was set to 500, and the maximum 
number and length of simulated action sequences at any thinking stage 
were set to 10. BRTDP was initialized with a constant value function of 
0 for the lower bound and a constant value function of 106 for the upper 
bound. This means that the agent’s initial policy prior to any delibera-
tion was to act randomly–which is highly suboptimal. For each envi-
ronment, the ratio of the cost of action over the cost of planning (re) was 
again drawn from a Gamma distribution and shifted by one, that is 
re − 1 ~ Γ(α, β). The expected number of steps required to achieve the 
goal E[N|k] was estimated via simulation (see Fig. 3). 

5.2. Results 

Because the agent rarely reached the goal with zero planning 
(E[N|k = 0] = 500) one system provided the largest reduction in ex-
pected cost with each additional system providing at most marginal 
reductions (Fig. 4). The optimal number of systems increased with the 
variance of re and decreased with the metareasoning cost ( 1

rm
). This 

resulted in the optimal number of cognitive systems being two for a 
range of plausible combinations of variability and metareasoning cost 
(Fig. 5). When the number of systems was two, the difference between 
the amount of planning performed by the two optimal systems increased 
with the variance of re.4 This resulted in one system that does a high 
amount of planning but is costly and another system that plans very little 

Fig. 3. Performance of agents with different numbers of cognitive systems in 
planning under uncertainty (Simulation 2). The number of actions it takes an 
agent to reach a goal as a function of the number of simulated paths before each 
action. For 0 simulated paths the expected number of actions was 500 (the 
maximum allowed). 

4 This observation holds until the variance becomes extremely high (≈107 for 
Table 2), in which case both systems move towards lower values (Table 2). 
However, this is not a general problem but merely a quirk of the skewed dis-
tribution we used for re. 
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but is computationally inexpensive. This supports Anderson (1990) 
assumption that when people are confronted with a novel problem, they 
choose between two processes, an intensive planning strategy, such as 
means-ends-analysis, and a simple heuristic, such as hill-climbing. 

Unlike in Simulation 1, reflexive processes that perform zero plan-
ning were never included in the optimal set of processes. This is because 
we modelled planning in a new environment where reflexive processes 
cannot draw on any prior experience. Interestingly, across a range of 
different scenarios, the optimal number of processes was still two. The 
only difference was that the reflexive process was replaced by a heuristic 
planning process. This suggests that dual-process architectures can be 
bounded-optimal not only for familiar environments where it is adaptive 
to have a reflexive system but also for novel environments where re-
flexive processes are not adaptive. 

6. Simulation 3: Strategic interaction in a two-player game 

Starting in the 1980s, researchers began applying dual-process the-
ories to social cognition (Chaiken & Trope, 1999; Evans, 2008). One 
potential reason why heuristic processes exists is that exact logical or 
probabilistic reasoning is often computationally prohibitive. For 
instance, Herbert Simon famously argued that computational limitations 
place substantial constraints on human reasoning (Simon, 1972, 1982). 
Such computational limitations become readily apparent in problems 
involving social cognition because the number of future possibilities 
explodes once the actions of others must be considered. For example, 
one of Simon’s classic examples was chess, where reasoning out the best 
opening move is completely infeasible because it would require 
considering about 10120 possible continuations. 

In this section, we show that our findings about the number of pro-
cesses supported by bounded-optimal planning systems also apply to 
tasks that involve reasoning about decisions made by others. Specif-
ically, we focus on strategic reasoning in Go, an ancient two-player 
game. Two-player games are the simplest and perhaps most widely 
used paradigm for studying strategic reasoning about other people’s 
actions (Camerer, 2011). Although seemingly simple, it is typically 
impossible to exhaustively reason about all possibilities in a game, 
making heuristic reasoning necessary. This is especially true in Go, 
which has about 10360 continuations from the first move (compare this 
to chess which has “only” 10120 possible continuations). 

6.1. Methods 

We now describe the details of our simulation deriving bounded- 
optimal architectures for strategic reasoning in the game of Go. 

We model the speed-accuracy tradeoffs that different hypothetical 
processes for reasoning about strategic social interactions might achieve 
by varying the number of simulations performed by a single planning 
algorithm. In doing so, we deliberately abstract away from the quali-
tative differences between alternative processes and make no claims 
about what those processes are. As in Simulations 1 and 2 those details 
do not affect the qualitative results of our abstract resource-rational 
analysis. To simulation the speed-accuracy tradeoffs of hypothetical 
processes performing different amounts of reasoning, we employ a 
planning algorithm known as Monte Carlo tree search (MCTS) (Browne 
et al., 2012). Recently, AlphoGo, a computer system based on MCTS, 
became the first to defeat the Go world champion and achieve super-
human performance in the game of Go (Silver et al., 2016, 2017). Like 
other planning methods against adversarial opponents, MCTS works by 
constructing a game tree to plan future actions. Unlike other methods, 
MCTS selectively runs stochastic simulations (also known as rollouts) of 
different actions, rather than exhaustively searching through the entire 
game tree. In doing so, MCTS focuses on moves and positions whose 
values appear both promising and uncertain. In this regard, MCTS is 
similar to human reasoning (Newell & Simon, 1972). 

Furthermore, the number of simulations used by MCTS affects how 
heuristic versus how accurate the method is. When the number of sim-
ulations is small, the algorithm is faster but less accurate. When the 
number of simulations is high, the algorithm is slower but more accu-

Fig. 4. The expected cost incurred is a U-shaped function of the number of 
planning systems in Simulation 2. As the cost of selecting a planning system ( 1

rm
) 

decreases, the optimal number of systems increases. The expected cost of 
0 systems was 500, thus 1 system provided the greatest reduction in cost. In this 
example E[re] = 100, Var(re) = 105, and ca = 1. 

Fig. 5. The optimal number of systems for planning under uncertainty 
(Simulation 2) as a function of the standard deviation of re and rm for E[re]

= 100. 

Table 2 
The optimal set of cognitive systems (ℳ★) for planning under uncertainty 
(Simulation 2) as a function of the number of systems (|ℳ|) and the variability of 
the environment (Var(re)) with E[re] = 100.  

|ℳ|
Var(re) 

103 104 105 

1 9 7 7 
2 7, 9 4, 7 2, 7 
3 1, 7, 9 4, 7, 9 1, 4, 9 
4 1, 2, 7, 9 2, 4, 7, 9 1, 4, 7, 9  
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rate. Thus, similar to the sequential decision making setting (Simulation 
2), we simulate the speed-accuracy tradeoffs of the available processes 
ℳ by running MCTS with different numbers of simulations (k). 

On each turn, there is a thinking stage and an acting stage. In the 
thinking stage, the agent executes a reasoning process that performs a 
number of stochastic simulations (k) of future moves and then updates 
its estimate of how good each action is, that is how likely it is to lead to a 
winning state. In the acting stage, the agent takes the action with the 
highest estimated value. 

The agent attains a utility U based on whether it wins or loses the 
game. The unbounded agent would simply choose the number of sim-
ulations k that maximizes expected utility: E[U∣k]. However, the boun-
ded agent incurs costs for acting and thinking. We assume that the cost 
for acting is constant: ca. The cost for executing a reasoning process is 
linear in the number of simulations it performs: k ⋅ ce, where ce is the cost 
of a single simulation. The bounded agent has to optimize a trade-off 
between its utility U and the costs of acting and thinking: 

E[U − (ca + k⋅ce)N∣k], (9)  

where N is the number of turns until the game ends. For consistency, we 
can reparameterize this as re = ca/ce, the ratio between the cost of acting 
and the cost of thinking, and without loss of generality, we can let ca = 1. 
Eq. (9) then simplifies into 

B(k, re) := E

[

U −

(

1 +
k
re

)

N|k
]

(10)  

The optimal reasoning process for the agent to choose given a fixed 
value of re is k * (re) = arg maxkB(k, re). The optimal set of reasoning 
processes ℳ out of all possible systems 𝒯 for strategic interaction is 

ℳ∗ = arg max
ℳ⊂𝒯

E[maxkB(k, re)] −
|ℳ|

rm
. (11)  

In this case, the expectation is taken over re, as the goal is to find the set 
of systems that is optimal across all problems in the environment. 

In our simulations, the game is played on a 9 × 9 board. U is 500 if 
the agent wins, 250 if the game ends in a draw, and 0 if the agent loses. 
The opponent also runs MCTS with 5 simulations to decide its move. E[U∣ 
k] and E[N∣k] are estimated using simulation (see Fig. 6). For computa-
tional tractability, the possible number of simulations we consider are 
𝒯 = {5,10, ...,50}. 

6.2. Results 

As in the previous tasks, the optimal number of processes depends on 
the variability of the environment and the difficulty of selecting between 

multiple processes (Fig. 7). As the cost of selecting between reasoning 
processes (“costliness of metareasoning”) increases, the optimal number 
of processes decreases and the bounded-optimal agent comes to reason 
less and less. By contrast, the optimal number of processes increases 
with the variability of the environment. Furthermore, when the optimal 
number of processes is two, the difference between the amount of 
reasoning performed by the two processes increases as the environment 
becomes more variable (Table 3). In conclusion, the findings presented 
in this section suggest that the kind of computational architecture that is 
bounded-optimal for simple decisions and planning (i.e., two processes 
with opposite speed-accuracy tradeoffs) is also optimal for reasoning 
about more complex problems, such as strategic interaction in games. 

7. Simulation 4: Multi-alternative risky choice 

Decision-making under risk is another domain in which dual-process 
theories abound (e.g., Figner, Mackinlay, Wilkening, & Weber, 2009; 
Kahneman & Frederick, 2007; Mukherjee, 2010; Steinberg, 2010), and 
the dual-process perspective was inspired in part by Kahneman and 

Fig. 6. Performance as a function of the amount of reasoning in the game of Go (Simulation 3). As the amount of computation (number of simulations) increases, the 
likelihood of selecting a good action increases, thus resulting in larger utility (a) and the game tends to be won in increasingly fewer moves (b). 

Fig. 7. The optimal number of processes for strategic reasoning in the game of 
Go (Simulation 3) as a function of the standard deviation of re and 1

rm
. E[re] =

100 in this case. 
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Tversky’s ground-breaking research program on heuristics and biases 
(Kahneman, Slovic, & Tversky, 1982). Consistent with our 
resource-rational framework, previous research revealed that people 
make risky decisions by arbitrating between fast and slow decision 
strategies in an adaptive and flexible manner (Payne et al., 1993). When 
making decisions between the risky gambles shown in Fig. 8 people 
adapt not only how much they think but also how they think about what 
to do. Concretely, people have been shown to use different strategies for 
different types of decision problems (Payne et al., 1988). For instance, 
when some outcomes are much more probably than others then people 
seem to rely on fast-and-frugal heuristics (Gigerenzer & Goldstein, 1996) 
like Take-The-Best which decides solely based on the most probably 
outcome that distinguishes between the alternatives and ignores all 
other possible outcomes. By contrast, when all outcomes are equally 
likely, people seem to integrate the payoffs for multiple outcomes into 
an estimate of the expected value of each gamble. Previous research has 
proposed at least ten different decision strategies that people might use 
when choosing between risky prospects (Gigerenzer & Selten, 2002; 
Payne et al., 1988; Thorngate, 1980). Yet, it has remained unclear how 
many decision strategies a single person would typically consider 
(Scheibehenne, Rieskamp, & Wagenmakers, 2013). Here, we investigate 
how many decision strategies a boundedly optimal metareasoning agent 
should use in a multi-alternative risky-choice environment similar to the 
experiments by Payne et al., 1988. Unlike in the previous simulations 
these strategies differ not only in how much computation they perform 
but also in which information they use and how they use it. 

7.1. Methods 

We investigated the size of the optimal subset of the ten decision 
strategies proposed by Payne et al., 1988 as a function of the meta-
reasoning cost and the variability of the relative cost of reasoning. These 
strategies were the lexicographic heuristic (LEX) which corresponds to 
Take-The-Best, the semi-lexicographic heuristic, the weighted-additive 
strategy (WADD), choosing randomly, the equal-weight heuristic, 
elimination by aspects, the maximum confirmatory dimensions heuristic 

(MCD), satisficing (SAT), and two combinations of elimination by as-
pects with the weighted additive strategy (EBA-WADD) and the 
maximum confirmatory dimensions heuristic (EBA-MCD). Concretely, 
we determined the optimal number of decision strategies in 5 × 30 en-
vironments that differed in the mean and the standard deviation of the 
distribution of re. The means were 10, 50, 100, 500, and 1000, and the 
standard deviations were linearly spaced between 10− 3 and 3 times the 
mean. 

For each environment, four thousand decision problems were 
generated at random. Each problem presented the agent with the choice 
between five gambles with five possible outcomes. The payoffs for each 
outcome-gamble pair were drawn from a uniform distribution on the 
interval [0, 1000]. The outcome probabilities differed randomly from 
problem to problem except that the second highest probability was al-
ways at most 25% of highest probability, the third highest probability 
was always at most 25% of the second-highest probability, and so on. 

Based on previous work on how people select cognitive strategies 
(Lieder & Griffiths, 2017), our simulations assume that people generally 
select the decision-strategy that achieves the best possible 
speed-accuracy tradeoff. This strategy can be formally defined as the 
heuristic s★ with the highest value of computation (VOC; Lieder & 
Griffiths, 2017). Formally, for each decision problem d, an agent 
equipped with strategies 𝒮 should choose the strategy 

s★(d,𝒮, re) = maxs∈𝒮VOC(s, d). (12)  

Following Lieder and Griffiths (2017) we define a strategy’s VOC as 
decision quality minus decision cost. We measure the decision quality by 
the ratio of the expected utility of the chosen option over the expected 
utility of the best option, and we measure decision cost by the oppor-
tunity cost of the time required to execute the strategy. Formally, the 
VOC of making the decision d using the strategy s is 

VOC(s, d) =
E[u(s(d))|d]

maxaE[u(a)|d]
−

1
re

⋅ncomputations(s, d), (13)  

where s(d) is the alternative that the strategy s chooses in the decision d, 
1
re 

is the cost per decision operation, and ncomputations(s, d) is the number 
of cognitive operations it performs in this decision process. To determine 
the number of cognitive operations, we decomposed each strategy into a 
sequence of elementary information processing operations (Johnson & 
Payne, 1985) in the same way as Lieder and Griffiths (2017) did and 
counted how many of those operations each strategy performed on any 
given decision problem. 

We estimated the optimal set of strategies, 

𝒮★ = max𝒮EP(d)

[

VOC(s★(d;𝒮, re), d) −
1
rm

⋅|𝒮|
]

, (14)  

by approximating the expected value in Eq. (14) by averaging the VOC 
over 4000 randomly generated decision problems. The resulting noisy 

Table 3 
The optimal set of processes (ℳ★) for strategic reasoning in the game of Go 
(Simulation 3) depending on the number of processes (|ℳ|) and the variability 
of the environment (Var(re)) for E[re] = 10.  

|ℳ|
Var(re) 

10 102 103 

1 10 10 10 
2 10, 20 10, 20 10, 50 
3 n/aa 10, 20, 50 10, 20, 50 
4 n/aa 10, 20, 30, 50 10, 20, 30, 50  

a This number of processes does not provide a noticeable increase in utility 
over fewer processes. 

Fig. 8. Illustration of the Mouselab paradigm used to study multi-alternative risky choice.  
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estimates were smoothed with a Gaussian kernel with standard devia-
tion 20. Then the optimal set of cognitive strategies was determined 
based on the smoothed VOC estimates for each combination of param-
eters. Finally, the number of strategies in the optimal sets was smoothed 
with a Gaussian kernel with standard deviation 10, and the smoothed 
values were rounded. 

7.2. Results 

As shown in Fig. 9, we found that the optimal number of strategies 
increased with the variability of the environment and decreased with the 
metareasoning cost. Like in the previous simulations, the optimal 
number of decision systems increased from 1 for high metareasoning 
cost and low variability to 2 for moderate metareasoning cost and 
variability, and increased further with decreasing metareasoning cost 
and increasing variability. There was again a sizeable range of plausible 
values in which the optimal number of decision systems was 2. For 
extreme combinations of very low time cost and very high variability the 
optimal number of systems increased to up to 5. Although Fig. 9 only 
shows the results for E[re] = 100, the results for E[re] = 10, 50, 500, and 
1000 were qualitatively the same. 

When the optimal number of strategies was one, then in 87% of the 
cases the optimal strategy was to choose randomly and in 13% of the 
cases the optimal strategy was the lexicographic strategy. When the 
optimal number of strategies was two, then for 98% of the scenarios this 
optimal pair comprised choosing randomly and LEX. When the optimal 
decision system included three strategies, then this optimal triplet al-
ways was one of the four following combinations: (LEX, SAT, EBA- 
WADD) was optimal in 49.5% of the scenarios; (LEX, random choice, 
MCD) was optimal for 24.9% of the scenarios; (LEX, random choice, 
WADD) was optimal for 20.7% of all scenarios, and (LEX, random 
choice, EBA-MCD) was optimal for 4.8% of all scenarios. 

In this section, we applied our analysis to a more realistic setting than 
in the previous sections. It used psychologically plausible decision 
strategies that were proposed to explain human decision-making rather 
than algorithms. These strategies differed not only in how much 
reasoning they perform but also in how they reason about the problem. 
For this setting, where the environment comprised different kinds of 
problems favoring different strategies, one might expect that the optimal 
number of systems would be much larger than in the previous simula-
tions. While we did find that having 3–5 systems became optimal for a 
larger range of metareasoning costs and variabilities, it is remarkable 

that having two systems was still bounded-optimal for a sizeable range 
of reasonable parameters. This finding suggests that our results might 
generalize to the much more complex problems people have to solve and 
people’s much more sophisticated cognitive mechanisms. 

Most importantly, the finding that there is a range of plausible sce-
narios in which the bounded-optimal cognitive architecture comprises 
the only strategy that performs zero deliberation (i.e., choosing 
randomly) and a second strategy that performs some deliberation (i.e., 
LEX) corroborates the conclusion of Simulation 1 in a more realistic 
scenario. 

In addition, we again found that the variability of the environment 
matters. Concretely, Fig. 9 shows that as the variability of the environ-
ment increases from 0.1 to 50 the range of arbitration cost for which a 
dual-process architecture is resource-rational roughly doubles in size. 

8. General discussion 

We found that across four different tasks the number and diversity of 
processes supported by a bounded-optimal cognitive architecture in-
creases with the variability of the environment but decreases with how 
difficult it is to select and arbitrate between different processes. Each 
additional system tends to provide at most marginal improvements; so 
the optimal solutions tend to favor small numbers of cognitive systems, 
with two systems being optimal across a range of plausible values for 
metareasoning cost and variability. Our analyses of two-alternative 
forced choice and multi-alternative risky-choice found that the 
bounded-optimal cognitive architecture for a range of environments and 
cognitive costs included exactly two systems: a system that performs no 
deliberation (“System 1”) and a system that performs a fair amount of 
deliberation (“System 2”). This might be why the human mind too ap-
pears to contain two opposite subsystems within itself – one that is fast 
but fallible and one that is slow but accurate. In other words, this mental 
architecture might have evolved to enable people to quickly adapt how 
they think and decide to the demands of different situations. Our find-
ings thereby suggests that dual-process architectures could be optimal 
for the human mind. Whether or not dual-system architectures are in 
fact bounded-optimal in the real-world depends on the variability of the 
stakes of real-life decisions and on the cost of selecting and arbitrating 
between multiple cognitive systems. Our analysis can be used to make 
this hypothesis empirically testable by specifying the conditions under 
which it would be true. 

While we have formulated the function of selecting between multiple 
cognitive systems as metareasoning, this does not mean that the mech-
anisms through which this function is realized have to involve any form 
of reasoning. Rather, our analysis holds for all selection and arbitration 
mechanisms as having more cognitive systems incurs a higher cognitive 
cost. This also applies to model-free mechanisms that choose decision 
systems based on learned associations. This is because the more actions 
there are, the longer it takes for model-free reinforcement learning to 
converge to a good solution and the suboptimal choices during the 
learning phase can be costly. 

The emerging connection between normative modeling and dual- 
process theories is remarkable because the findings from these ap-
proaches are often invoked to support opposite views on human (ir)ra-
tionality (Stanovich, 2011). In this debate, some authors (Ariely, 2009; 
Marcus, 2009) have interpreted the existence of a fast, error-prone 
cognitive system whose heuristics violate the rules of logic, probabil-
ity theory, and expected utility theory as a sign of human irrationality. 
By contrast, our analysis suggests that having a fast but fallible cognitive 
system in addition to a slow but accurate system might be the best 
possible solution. This implies that the variability, fallibility, and 
inconsistency of human judgment that result from people’s switching 
between System 1 and System 2 should not be interpreted as evidence 
for human irrationality, because it might reflect the rational use of 
limited cognitive resources. 

Fig. 9. The optimal number of strategies for multi-alternative risky choice 
(Simulation 4) as a function of the standard deviation of re and rm for E[re]

= 100. 
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8.1. Limitations 

One limitation of our analysis is that the cognitive systems we 
studied are simple algorithms that abstract away most of the complexity 
and sophistication of the human mind. In particular, Simulations 1-3 do 
not properly capture that people use qualitatively different kinds of 
decision mechanisms that differ in more than just their speed-accuracy 
tradeoffs. A second limitation is that all of our tasks were drawn from 
the domains of decision-making and reasoning. However, our conclu-
sion only depends on the plausible assumption that the cost of deciding 
which cognitive system to use increases with the number of systems. As 
long as this is the case, the optimal number of cognitive systems should 
still depend on the tradeoff between metareasoning cost and cognitive 
flexibility studied above, even though its exact value may be different. 
Thus, our key finding that the optimal number of systems increases with 
the variability of the environment and decreases with the metareasoning 
cost is likely to generalize to other tasks and the much more complex 
architecture of the human mind. 

Third, our analysis assumed that the mind is divided into discrete 
cognitive systems to make the adaptive control over cognition tractable. 
While this makes selecting cognitive operations much more efficient, we 
cannot prove that it is bounded-optimal to approximate rational meta-
reasoning in this way. Research in artificial intelligence suggests that 
there might be other ways to make metareasoning tractable. One 
alternative strategy is the meta-greedy approximation (Hay et al., 2012; 
Russell & Wefald, 1991a) which selects computations under the 
assumption that the agent will act immediately after executing the first 
computation. According to the directed cognition model (Gabaix & 
Laibson, 2005) this mechanism also governs the sequence of cognitive 
operations people employ to make economic decisions. This model 
predicts that people will always stop thinking when their decision 
cannot be improved by a single cognitive operation even when signifi-
cant improvements could be achieved by a series of two or more 
cognitive operations. This makes us doubt that the meta-greedy heuristic 
would be sufficient to account for people’s ability to efficiently solve 
complex problems, such as puzzles, where progress is often non-linear. 
This might be why when Gabaix, Laibson, Moloche, and Weinberg 
(2006) applied their model to multi-attribute decisions, they let it 
choose between macro-operators rather than individual computations. 
Interestingly, those macro-operators are similar to the cognitive systems 
studied here in that they perform different amounts of computation. 
Thus, the directed cognition model does not appear to eliminate the 
need for sub-systems but merely proposes a mechanism for how the 
mind might select and switch back-and-forth between them. Consistent 
with our analysis, the time and effort required by this mechanism in-
creases linearly with the number of cognitive systems. While research in 
artificial intelligence as identified a few additional approximations to 
rational metareasoning, those are generally to specific computational 
processes and problems (Lin et al., 2015; Russell & Wefald, 1989; Vul 
et al., 2014) and would be applicable to only a small subset of people’s 
cognitive abilities. 

Fourth, the sizes of the relevant regions of the parameter space for 
which dual-process theories are resource-rational depend on one’s as-
sumptions about the unknown statistics of natural environments. Our 
limited knowledge about the statistics of natural environments renders 
the relative sizes of the regions depicted in Figs. 2, 5, 7, and 9 difficult to 
interpret. 

8.2. Relation to previous work 

The work presented here continues the research programs of 

bounded rationality (Simon, 1956, 1982), rational analysis (Anderson, 
1990), computationally bounded rational analysis (Howes et al., 2009; 
Lewis et al., 2014), and resource-rational analysis (Griffiths et al., 2015; 
Lieder & Griffiths, 2020b) in seeking to understand how the mind is 
adapted to the structure of the environment and its limited computa-
tional resources. While previous work has applied the idea of bounded 
optimality to derive optimal cognitive strategies for an assumed cogni-
tive architecture (Griffiths et al., 2015; Lewis et al., 2014; Lieder et al., 
2018a; Lieder, Griffiths, & Hsu, 2018) and the arbitration between 
assumed cognitive systems (Keramati et al., 2011), the work presented 
here derived the cognitive architecture itself. 

Our application of the principle of bounded optimality to studying 
cognitive architectures has precedents in the work by Howes et al. 
(2009) and the approach of computationally bounded rational analysis 
(Lewis et al., 2014) more generally. In their groundbreaking work 
Howes et al. (2009) applied bounded optimality to derive the behavioral 
signatures of two cognitive architectures (i.e., serial vs. parallel pro-
cessing) and used empirical data to infer which of them best explains 
human behavior. Our goal here is different in that we asked a normative 
question rather than a descriptive question. That is, we sought to 
determine which cognitive architecture achieves the best tradeoff be-
tween choice accuracy and cognitive cost for a given environment. 
Another difference is that Howes et al. (2009) assumed bounded opti-
mality to derive which program a given cognitive architecture would 
execute whereas we assumed bounded optimality to derive which 
cognitive systems the agent should be equipped with. Some additional 
differences between resource-rational analysis and computationally 
bounded rational analysis are discussed in Lieder and Griffiths (2020a). 

The compatibility of the results of our analysis with the empirical 
literature on dual systems in human cognition provide support for the 
idea that bounded optimality is a useful assumption for understanding 
human cognition. Our analysis complements previous arguments sug-
gesting that people make rational use of the cognitive architecture they 
are equipped with (Griffiths et al., 2015; Howes et al., 2016; Lewis et al., 
2014; Lieder et al., 2018a; Lieder & Griffiths, 2020b; Lieder, Griffiths, & 
Hsu, 2018; Tsetsos et al., 2016). Taken together, these lines of work 
illustrate how assuming the people make rational use of their cognitive 
resources can be an effective tool for identifying not just the specific 
systems and strategies that people follow, but also the structure of the 
underlying cognitive architecture. 

8.3. Conclusion and future directions 

A conclusive answer to the question whether it is boundedly optimal 
for humans to have two types of cognitive systems will require more 
rigorous estimates of the variability of decision problems that people 
experience in their daily lives and precise measurements of how long it 
takes to predict the performance of a cognitive system. Regardless 
thereof, our analysis suggests that the incoherence in human reasoning 
and decision-making are qualitatively consistent with the rational use of 
a bounded-optimal set of cognitive systems rather than a sign of irra-
tionality. Perhaps more importantly, the methodology we developed in 
this paper makes it possible to extend resource-rational analysis from 
cognitive strategies to cognitive architectures. This new line of research 
offers a way to elucidate how the architecture of the mind is shaped by 
the structure of the environment and the fundamental limits of the 
human brain. Future work can use our methodology to investigate how 
differences between cognitive domains and tasks affect which cognitive 
architectures are resource-rational, as well as how often people should 
rely on on different cognitive systems.  
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Appendix A. 2AFC 

In this appendix, we derive the formula for the utility of making a decision based on k mental simulations used in our analysis of two alternative 
forced choice (i.e., Eq. (1)). Since there are two possible choices, there are two ways in which the agent can score a reward of 1, that is 

Eθ[U|k] =
∫

θ
[P(a1 iscorrect)⋅P(Agentpicks a1∣k) + P(a0 iscorrect)⋅P(Agentpicks a0∣k)]Pθ(dθ). (1) 

If ai is the correct answer, then i ~ Bern(θ). The probability that the agent chooses ai is equal to the probability that it sampled ai more than k/2 
times. The probability that the agent sampled a0 more than k/2 times is ΘCDF(k/2, θ, k) where ΘCDF is the binomial cumulative density function. 
Correspondingly, the probability that the agent sampled a1 more than k/2 times is 1 − ΘCDF(k/2, θ, k). Thus, we can write Eq. (1) as 

Eθ[U|k] =
∫

θ
[θ(1 − ΘCDF(k/2, θ, k)) + (1 − θ)(ΘCDF(k/2, θ, k) )]Pθ(dθ).

Appendix B. Sequential decision-making 

Here, we provide a derivation of how to simplify the expression for the optimal number of planning systems in Eq. (6), that is 

t∗ = arg min
t

E

[
∑N

i=0
c(si, ai) + f (t)|t

]

, (6)  

to the expression in Eq. (7), that is 

k∗ = arg min
k∈ℕ0

(

1 +
k
re

)

E[N|k]. (7) 

Our reasoning behind this derivation is as follows: Since the cost of each thinking system is linear in the number of simulations, i.e. ce ⋅ k, we can 
replace f(t) with ce ⋅ k in the expectation in Eq. (6). Since the cognitive systems are distinguished by the number of simulations they do, we can 
condition on the number of simulations k instead. Therefore, the expectation in Eq. (6) becomes 

E

[
∑N

i=0
c(si, ai) + ce⋅k|k

]

The cost of acting from non-goal states is constant, i.e. c(si, ai) = ca. Therefore, the expectation simplifies to (6) becomes 

E

[
∑N

i=0
ca + ce⋅k|k

]

= E[N(ca + ce⋅k)∣k].

We can reparameterize using re = ca/ce by substituting ce with ca/re: 

E

[

N
(

ca +
ca

re
⋅k
)⃒
⃒
⃒
⃒k
]

= caE

[(

1 +
k
re

)

N|k
]

We now arrive at Eq. (6) by picking the cognitive system (number of simulations) that minimizes the above quantity. 

k∗ = arg min
k

caE

[(

1 +
k
re

)

N|k
]

= arg min
k

E

[(

1 +
k
re

)

N|k
]
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