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Abstract

Understanding how people represent categories is a core prob-
lem in cognitive science. Decades of research have yielded
a variety of formal theories of categories, but validating them
with naturalistic stimuli is difficult. The challenge is that hu-
man category representations cannot be directly observed and
running informative experiments with naturalistic stimuli such
as images requires a workable representation of these stimuli.
Deep neural networks have recently been successful in solving
a range of computer vision tasks and provide a way to com-
pactly represent image features. Here, we introduce a method
to estimate the structure of human categories that combines
ideas from cognitive science and machine learning, blending
human-based algorithms with state-of-the-art deep image gen-
erators. We provide qualitative and quantitative results as a
proof-of-concept for the method’s feasibility. Samples drawn
from human distributions rival those from state-of-the-art gen-
erative models in quality and outperform alternative methods
for estimating the structure of human categories.
Keywords: categorization; neural networks; Markov Chain
Monte Carlo

Introduction
Categorization is a central problem in cognitive science and
concerns why and how we divide the world into discrete units
at various levels of abstraction. The biggest challenge for
studying human categorization is that the content of mental
category representations cannot be directly observed, which
has led to development of laboratory methods for estimating
this content from human behavior. Because these methods
rely on small sets of artificial stimuli with handcrafted or low-
dimensional feature sets, they are ill-suited to the study of cat-
egorization as an intelligent process, which is principally mo-
tivated by robust human categorization performance in com-
plex ecological settings (Nosofsky et al., 2017).

One of the challenges of applying laboratory methods to
realistic stimuli such as natural images is finding a way to
represent them. Deep learning models, such as convolutional
neural networks, discover features that can be used to repre-
sent complex images compactly and perform well on a range
of computer vision tasks (LeCun et al., 2015). It may be pos-
sible to express human category structure using these features,
an idea supported by recent work in cognitive science (Lake
et al., 2015; Peterson et al., 2016).

Ideally, experimental methods could be combined with
state-of-the-art deep learning models to estimate the structure
of human categories with as few assumptions as possible, and
while avoiding the problem of dataset bias. In what follows,
we propose a method that uses a human in the loop to estimate

arbitrary distributions over complex feature spaces, adapt-
ing an existing experimental paradigm to exploit advances in
deep architectures to capture the precise structure of human
category representations and iteratively sharpen them. Such
knowledge is crucial to forming an ecological theory of intel-
ligent categorization behavior and to providing a ground-truth
benchmark to guide future work in machine learning.

Background

Deep neural networks for images Deep neural networks
are modern instantiations of classic multilayer perceptrons,
and represent a powerful class of machine learning model.
DNNs can be trained efficiently through gradient descent
and structurally specialized for particular domains (LeCun et
al., 2015). In the image domain, deep convolutional neu-
ral networks (CNNs; LeCun et al., 1989) excel in classic
computer vision tasks, including natural image classification
(Krizhevsky et al., 2012). CNNs exploit knowledge of the
input domain by learning a hierarchical set of translation-
invariant image filters. The resulting representations, real-
valued feature vectors, are surprisingly general and outper-
form other methods in explaining complex human behavior
(Lake et al., 2015; Peterson et al., 2016).

Generative Adversarial Networks (GANs; Goodfellow et
al., 2014) and Variational Autoencoders (VAEs; Kingma &
Welling, 2013) provide a generative approach to modeling the
content of natural images. Importantly, though the approaches
differ considerably, each approach makes use of a network
(called a “decoder” or “generator”) that learns a deterministic
function that maps samples from a known noise distribution
p(z) (e.g., a multivariate Gaussian) to samples from the true
image distribution p(x). This can be thought of as mapping a
relatively low-dimensional feature representation z to a rela-
tively high-dimensional image x. Sampling new images from
these networks is as simple as passing Gaussian noise into
the learned decoder. In addition, because of its simple form,
the resulting latent space z tends to be easy to traverse mean-
ingfully (i.e., an intrinsic linear manifold) and can be readily
visualized via the decoder, a property we exploit presently.

Estimating the structure of human categories Methods
for estimating human category templates have existed for
some time. In psychophysics, the most popular and well-
understood method is known as classification images (CI;
Ahumada, 1996).
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Which is more like a cat?
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Decoder Inference Figure 1: Deep MCMCP. A current state z and proposal
z∗ (top middle) are fed to a pretrained deep image gen-
erator/decoder network (top left). The corresponding de-
coded images x and x∗ for the two states are presented
to human raters on a computer screen (leftmost arrow
and bottom left). Human raters then view the images
in an experiment (bottom middle arrow) and act as part
of an MCMC sampling loop, choosing between the two
states/images in accordance with the Barker acceptance
function (bottom right). The chosen image can then be
sent to the inference network (rightmost arrow) and de-
coded in order to select the state for the next trial, how-
ever this step is unnecessary when we know exactly which
states corresponds to which images.

In the classification images experimental procedure, a hu-
man participant is presented with images from two categories,
A and B, each with white noise overlaid, and asked to se-
lect the stimulus that corresponds to the category in question.
On most trials, the participant will obviously select the exem-
plar generated from the category in question. However, if the
added white noise significantly perturbs features of the image
that are important to making the distinction, they may fail.
Exploiting this, we can estimate the decision boundary from a
number of these trials using the simple formula:

(nAA +nBA)− (nAB +nBB), (1)

where nXY is the average of the noise across trials where the
correct class is X and the observer chooses Y .

Vondrick et al. (2015) used a variation on classification im-
ages using deep image representations that could be inverted
back to images using an external algorithm. In order to avoid
dataset bias introduced by perturbing real class exemplars,
white noise in the feature space was used to generate stimuli.
In this special case, category templates reduce to nA−nB. On
each trial of the experiment, participants were asked to select
which of two images (inverted from feature noise) most re-
sembled a particular category. Because the feature vectors for
all trials were random, thousands of stimuli could be rendered
in advance of the experiment using relatively slow methods
that require access to large datasets. This early inversion
method was applied to mean feature vectors for thousands of
positive choices in the experiments and yielded qualitatively
decipherable category template images, as well as better ob-
jective classification decision boundaries that were guided hu-
man bias. Under the assumption that human category distri-
butions are Gaussian with equal variance, this method yields
a vector that aligns with the nearest-mean decision boundary,
although a massive number of human trials are required.

Markov Chain Monte Carlo with People (MCMCP; San-
born & Griffiths, 2007), an alternative to classification im-
ages, is an experimental procedure in which humans act as
a valid acceptance function A in the Metropolis–Hastings al-
gorithm, exploiting the fact that Luce’s choice axiom, a well-
known model of human choice behavior, is equivalent to the

Barker acceptance function (see equation in Figure 1). On the
first trial, a stimulus x is drawn arbitrarily from the parame-
ter space and compared to a new proposed stimulus x∗ that
is nearby in that parameter space. The participant makes a
forced choice as to which is the better exemplar of some cat-
egory (e.g., dog), acting as the acceptance function A(x∗;x).
If the initial stimulus is chosen, the Markov chain remains in
that state. If the proposed stimulus is chosen, the chain moves
to the proposed state. The process then repeats until the chain
converges to the target category distribution p(x|c). In prac-
tice, convergence is assessed heuristically, or limited by the
number of human trials that can be practically obtained.

MCMCP has been successfully employed to capture a num-
ber of different mental categories (Sanborn & Griffiths, 2007;
Martin et al., 2012), and though these spaces are higher-
dimensional than those in previous laboratory experiments,
they are still relatively small and artificial compared to real
images. Unlike classification images, this method makes no
assumptions about the structure of the category distributions
and thus can estimate means, variances, and higher order mo-
ments. Therefore, we take it as a starting point for the current
method.

MCMCP in deep feature spaces
The typical MCMCP experiment is effective so long as noise
can be added to dimensions in the stimulus parameter space
to create meaningful changes in content. In the case of natu-
ral images, noise in the space of all pixel intensities is very
unlikely to modify the stimulus in meaningful ways. In-
stead, we propose perturbing images in a deep feature space
that captures only essential variation. Since trials in an
MCMCP experiment are not independent, we employ real-
time, web-accessible generative adversarial networks to ren-
der high quality inversions from their latent features. The
mapping from features to images learned by a GAN is de-
terministic, and therefore MCMCP in low-dimensional fea-
ture space approximates the same process in high-dimensional
image space. The resulting judgments (samples) approximate
distributions that both derive arbitrary human category bound-
aries for natural images and can be sampled from to create



images, yielding new human-like generative image models.
A schematic of this procedure is illustrated in Figure 1.

There are several theoretical advantages to our method over
previous efforts. First, MCMCP can capture arbitrary distri-
butions, so it is not as sensitive to the structure of the underly-
ing low-dimensional feature space and should provide better
category boundaries than classification images when required.
This is important when using various deep features spaces that
were learned with different training objectives and architec-
tures. MCMC inherently spends less time in low probabil-
ity regions and should in theory waste fewer trials. Having
generated the images online and as a function of the partic-
ipant’s decisions, there is no dataset or sampling bias, and
auto-correlation can be addressed by removing temporally ad-
jacent samples from the chain. Finally, using a deep generator
provides drastically clearer samples than shallow reconstruc-
tion methods, and can be trained end-to-end with an inference
network that allows us to categorize new images using the
learned distribution.

Experiments
For our experiments, we explored two image generator net-
works trained on various datasets. Since even relatively low-
dimensional deep image embeddings are large compared to
controlled laboratory stimulus parameter spaces, we use a hy-
brid proposal distribution in which a Gaussian with a low vari-
ance is used with probability P and a Gaussian with a high
variance is used with probability 1−P. This allows partic-
ipants to both refine and escape nearby modes, but is simple
enough to avoid excessive experimental piloting that more ad-
vanced proposal methods often require.

Participants in all experiments completed exactly 64 tri-
als (image comparisons), collectively taking about 5 minutes,
containing segments of several chains for multiple categories.
The order of the categories and chains within those categories
were always interleaved. Each participant’s set of chains for
each category were initialized with the previous participants
final states, resulting in large, multi-participant chains. All
experiments were conducted on Amazon Mechanical Turk. If
a single image did not load for a single trial, the data for the
subject undergoing that trial was completely discarded, and
a new subject was recruited to continue on from the original
chain state.

Experiment 1: Initial test with face categories
Methods We first test our method using DCGAN (Radford
et al., 2015) trained on the Asian Faces Dataset. We chose this
dataset because it requires a deep architecture to produce rea-
sonable samples (unlike MNIST, for example), yet it is con-
strained enough to test-drive our method using a relatively
simple latent space. Four chains for each of four categories
(male, female, happy, and sad) were used. Proposals were
generated from an isometric Gaussian with a standard devia-
tion of 0.25 50% of the time, and 2 otherwise. In addition,
we conducted a baseline in which two new initial state pro-
posals were drawn on every trial, and were independent of

previous trials (classification images). The final dataset con-
tained 50 participants and over 3,200 trials (samples) in total
for all chains. The baseline classification images (CI) dataset
contained the same number of trials and participants.

Results MCMCP chains are visualized using Fisher Linear
Discriminant Analysis in Figure 2, along with the resulting av-
erages for each chain and each category. Chain means within
a category show interesting variation, yet converge to similar
regions in the latent space as expected. Figure 2 also shows
visualizations of the mean faces for both methods in the fi-
nal two columns. MCMCP means appear to have converged
quickly, whereas CI means only moderately resemble their
corresponding category (e.g., the MCMCP mean for “happy”
is fully smiling, while the CI mean barely reveals teeth). All
four CI means appear closer to a mean face, which is what one
would expect from averages of noise. We validated this im-
provement with a human experiment in which 30 participants
made forced choices between CI and MCMCP means. The
results are reported in Figure 3. MCMCP means are consis-
tently highly preferred as representations of each category as
compared to CI. This remained true even when an additional
50 participants (total of 100) completed the CI task, obtaining
twice as many image comparison trials as with MCMCP.

Experiment 2: Larger networks & larger spaces
The results of Experiment 1 show that reasonable category
templates can be obtained using our method, yet the complex-
ity of the stimulus space used does not rival that of large object
classification networks. In Experiment 2, we tackled a more
challenging (and interesting) form of the problem. To do this,
we employed a bidirectional generative adversarial network
(BiGAN; Donahue et al., 2016) trained on the 1.2 million-
image ILSVRC12 dataset (64× 64 center-cropped). BiGAN
includes an inference network, which regularizes the rest of
the model and produces unconditional samples competitive
with the state-of-the-art. This also allows for the later possi-
bility of comparing human distributions with other networks
as well as assessing machine classification performance with
new images based on the granular human biases captured.

Methods Our generator network was trained given uniform
rather than Gaussian noise, which allows us to avoid propos-
ing highly improbable stimuli to participants. Additionally,
we avoid proposing states outside of this hypercube by forc-
ing z to wrap around (proposals that travel outside of z are
injected back in from the opposite direction by the amount
originally exceeded). In particular, we run our MCMC chains
through an unbounded state space by redefining each bounded
dimension zk as

z′k =

{
−sgn(zk)× [1− (zk−bzkc)], if |z|> 1
zk, otherwise.

(2)

Proposals were generated from an isometric Gaussian with a
standard deviation of 0.1 60% of the time, and 0.7 otherwise.

We use this network to obtain large chains for two groups of
five categories. Group 1 included bottle, car, fire hydrant, and



Figure 2: Visualizing captured representations. A. Fisher Linear Discriminant projections of all four MCMCP chains for each of
the four face categories. The four sets of chains overlap to some degree, but are also well-separated overall. Means of individual
chains are closer to other means from the same class than to those of other classes. B. Individual MCMCP chain means (4×4
grid) and overall category means (second to last) visualized as images (overall CI means also shown for comparison in the final
column).

person, television, following Vondrick et al. (2015). Group 2
included bird, body of water, fish, flower, and landscape. Each
chain was approximately 1,040 states long, and four of these
chains were used for each category (approximately 4,160). In
total, across both groups of categories, we obtained exactly
41,600 samples from 650 participants.

To demonstrate the efficiency and flexibility of our method
compared to alternatives, we obtained an equivalent number
of trials for all categories using the variant of classification
images introduced in Vondrick et al. (2015), with the excep-
tion that we used our BiGAN generator instead of the offline
inversion previously used. This also serves as an important
baseline against which to quantitatively evaluate our method
because it estimates the simplest possible template.
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Figure 3: Human two-alternative forced-choice tasks reveal a
strong preference for MCMCP means as representations of a
category, when twice as many trials are used for CI.

Results The acceptance rate was approximately 50% for
both category groups, which is near the common goal for
MCMCP experiments. The samples for all ten categories are
shown in Figure 5B and D using Fisher Linear Discriminant
Analysis. Similar to the face chains, the four chains for each
category converge to similar regions in space, largely away
from other categories. In contrast, classification images shows
little separation with so few trials (5C and D). Previous work
suggests that at least an order of magnitude higher number
of comparisons may be needed for satisfactory estimation of
category means. Our method estimates well-separated cate-
gory means in a manageable number of trials, allowing for
the method to scale greatly. This makes sense given that CI
compares arbitrary images, potentially wasting many trials,
and clearly suffers from a great deal of noise.

Beyond yielding a decision rule, our method additionally
produces a density estimate of the entire category distribu-
tion. In classification images, only mean template images can
be viewed, while we are able to visualize several modes in
the category distribution. Figure 4 visualizes these modes us-
ing the means of each component in a mixture of Gaussians
density estimate. This produces realistic-looking multi-modal
mental category templates, which to our knowledge has never
been accomplished with respect to natural image categories.

Efficacy in classifying real images

Improvements of MCMCP over classification images may
be both perceptible and detectable, but their practical differ-
ences are also worth considering — do they differ signifi-
cantly on real-world tasks? Moreover, if the representations
we learn through MCMCP are good approximations to peo-
ple, we would expect them to perform reasonably well in cat-
egorizing real images. For this reason, we provide an addi-
tional quantitative assessment of the samples we obtained and



Figure 4: 40 most interpretable mixture component means (modes) taken from the 50 largest mixture weights for category.

compare them to classification images (CI) using an external
classification task.

To do this, we scraped ≈ 500 images from Flickr for each
of the ten categories, which was used for a classification task.
To classify the images using our human-derived samples, we
used (1) the nearest-mean decision rule, and (2) a decision rule
based on the highest log-probability given by our ten density
estimates. For classification images, only a nearest-mean de-
cision rule can be tested. In all cases, decision rules based on
our MCMCP-obtained samples overall outperform a nearest-
mean decision rule using classification images (see Table 1).

In category group 1, the MCMCP density performed best and
was more even across classes. In category group 2, nearest-
mean using our MCMCP samples did much better than a den-
sity estimate or CI-based nearest-mean.

Discussion
Our results demonstrate the potential of our method, which
leverages both psychological methods and deep surrogate rep-
resentations to make the problem of capturing human cate-
gory representations tractable. The flexibility of our method
in fitting arbitrary generative models allows us to visualize



Figure 5: Categories are better separated by MCMCP representations. Fisher Linear Discriminant projections of A. CI compar-
isons for each category of group 1, B. samples for MCMCP chains for category group 1, C. CI comparisons for each category
of group 2, and D. samples for MCMCP chains for category group 2. For A and C, large dots represent category means. For B
and D, large dots represent chain means.

Table 1: Classification performance compared to chance for
both category sets (chance is 0.20).

bird body of water fish flower landscape all
MM .33 .28 .01 .57 .67 .37
MD .23 .31 .18 .44 .73 .38
CM .23 .30 .2 .24 .52 .30

bottle fire hydrant car person television all
MM .15 .11 .32 .77 .73 .42
MD .25 .26 .56 .19 .50 .35
CM .28 .15 .62 .12 .13 .26

MM = MCMCP Mean, MD = MCMCP Density, CM = CI Mean

multi-modal category templates for the first time, and improve
on human-based classification performance benchmarks. It is
difficult to guarantee that our chains explored enough of the
relevant space to actually capture the concepts in their entirety,
but the diversity in the modes visualized and the improvement
in class separation achieved are positive indications that we
are on the right track. Further, the framework we present
can be straightforwardly improved as generative image mod-
els advance, and a number of known methods for improving
the speed, reach, and accuracy of MCMC algorithms can be
applied to MCMCP make better use of costly human trials.

There are several obvious limitations of our method. First,
the structure of the underlying feature spaces used may either
lack the expressiveness (some features may be missing) or the
constraints (too many irrelevant features or possible images
wastes too many trials) needed to map all characteristics of
human mental categories in a practical number of trials. Even
well-behaved spaces are very large and require many trials to
reach convergence. Addressing this will require continuing
exploration of a variety of generative image models. We see
our work as part of an iterative refinement process that can
yield more granular human observations and inform new deep
network objectives and architectures, both of which may yet
converge on a proper, yet tractable model of real-world human
categorization.
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