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A B S T R A C T   

Classic psychological theories have demonstrated the power and limitations of spatial representations, providing 
geometric tools for reasoning about the similarity of objects and showing that human intuitions sometimes 
violate the constraints of geometric spaces. Recent machine learning methods for deriving vector-space em
beddings of words have begun to garner attention for their surprising capacity to capture simple analogies 
consistently across large corpora, giving new life to a classic model of analogies as parallelograms that was first 
proposed and briefly explored by psychologists. We evaluate the parallelogram model of analogy as applied to 
modern data-driven word embeddings, providing a detailed analysis of the extent to which this approach cap
tures human behavior in the domain of word pairs. Using a large novel benchmark dataset of human analogy 
completions, we show that word similarity alone surprisingly captures some aspects of human responses better 
than the parallelogram model. To gain a fine-grained picture of how well these models predict relational si
milarity, we also collect a large dataset of human relational similarity judgments and find that the parallelogram 
model captures some semantic relationships better than others. Finally, we provide evidence for deeper lim
itations of the parallelogram model of analogy based on the intrinsic geometric constraints of vector spaces, 
paralleling classic results for item similarity. Taken together, these results show that while modern word em
beddings do an impressive job of capturing semantic similarity at scale, the parallelogram model alone is in
sufficient to account for how people form even the simplest analogies.    

Recognizing that two situations have similar patterns of relation
ships, even though they may be superficially dissimilar, is essential for 
intelligence. This ability allows a reasoner to transfer knowledge from 
familiar situations to unfamiliar but analogous situations, and analogy 
has thus become a powerful teaching tool in math, science, and other 
fields (Richland & Simms, 2015). Computational modeling of analogy 
has primarily focused on comparing structured representations that 
contain labeled relationships between entities (Gentner & Forbus, 
2011). However, the question of where these relations come from and 
how to determine that the relationship between one set of entities 
matches that of another set is still an active area of research. 

The parallelogram model of analogy (see Fig. 1), first proposed by  
Rumelhart and Abrahamson (1973), provides one solution to this pro
blem for simple analogies based on relational similarity. In this model, 
entities are represented as points in a Euclidean space and relations 

between entities are represented as their difference vectors. Even 
though two pairs of points (A, B) and (D, C) may be far apart in the 
space (i.e., they are featurally dissimilar), they are considered re
lationally similar as long as their difference vectors (B − A) and 
(D − C) are similar. Rumelhart and Abrahamson found that this simple 
model worked well for a small domain of animal words, which are 
represented by vectors obtained using low-dimensional multi
dimensional scaling solutions. 

Little attention has been given to the parallelogram model after the 
initial proposal, with the exception of a handful of applications (see  
Ehresman & Wessel, 1978). Subsequent work found that a “nearest 
neighbor” rule could capture people's choices on a four-term analogy 
completion task using a domain of occupational terms (e.g., librarian) 
better than the parallelogram model (Sadler & Shoben, 1993). Given an 
analogy completion question, represented as A : B :: C : ? (in words, A is 

https://doi.org/10.1016/j.cognition.2020.104440 
Received 19 April 2019; Received in revised form 11 August 2020; Accepted 12 August 2020    

☆ This work was supported by grant number FA9550-13-1-0170 from the Air Force Office of Scientific Research and grant number 1718550 from the National 
Science Foundation. Preliminary results for Experiments 2-4 were presented at the Annual Conference of the Cognitive Science Society (Chen et al., 2017). 

⁎ Corresponding author. 
E-mail address: joshuacp@princeton.edu (J.C. Peterson). 

1 These authors contributed equally to the work. 

Cognition 205 (2020) 104440

0010-0277/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2020.104440
https://doi.org/10.1016/j.cognition.2020.104440
mailto:joshuacp@princeton.edu
https://doi.org/10.1016/j.cognition.2020.104440
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2020.104440&domain=pdf


to B as C is to what?), a reasoner using the nearest neighbor rule first 
examines whether term B or term C is closer to term A. If B is closer to 
A, then the reasoner looks for a term that is close to C to complete the 
analogy. If C is closer to A, then the reasoner looks for a term that is 
close to B. This raises the possibility that there might be geometric 
structures other than the parallelogram that support relational rea
soning, and provides a natural standard against which to compare the 
parallelogram model. 

In the past few years, the parallelogram model has been re
incarnated in the machine learning literature through popular word 
embedding methods such as word2vec (Mikolov et al., 2013) and 
GloVe (Pennington et al., 2014). The primary purpose of word em
beddings is to represent the similarity between words in a vector space 
(e.g., dog should be spatially closer to cat than to tree). However, al
though these methods are never explicitly trained on analogies, the 
word embeddings they produce show a surprising ability to capture 
certain verbal analogies by applying the parallelogram rule, and exhibit 
better performance in doing so than classic methods such as Latent 
Semantic Analysis (Deerwester, 1988; Pennington et al., 2014). 

In particular, modern word representations enable verbal analogy 
problems such as king: queen:: man:? to be solved through the paralle
logram model, i.e., using vword to represent the vector for word word, 
vqueen − vking + vman results in a vector very close, in terms of the cosine 
of the angle between the vectors, to vwoman. Word embeddings like 
word2vec and GloVe have also been used successfully in a variety of 
other natural language processing tasks, suggesting that these re
presentations may indeed contain enough information for relations to 
be inferred from them directly. Recently, researchers in computer vi
sion have been successful in learning feature spaces that exhibit similar 
properties in both explicit/supervised (Reed et al., 2015) and implicit/ 
unsupervised (Radford et al., 2015) models, yielding linearized se
mantic image transformations such as object rotations and high-level 
human face interpolations. The potential for applying the parallelogram 
model of analogy to vector space models thus appears to be domain- 
agnostic, broadly applicable to both semantic and perceptual domains. 
This suggests a natural resurrection of a classic cognitive model and 
provides the opportunity to evaluate a classic theory in large-scale, 
ecologically valid contexts. 

Since the conception of word2vec and GloVe, exploration and 
popularization of text embedding methods have not slowed, and have 
for example been expanded to higher-level representations of entire 
sentences or documents (Le & Mikolov, 2014), as well as to non-Eu
clidean variants that can better accommodate particular representa
tional structures such as taxonomies (Nickel & Kiela, 2017). Cognitive 
scientists have also started to explore ways that these data-driven ma
chine representation learning methods can help to model complex 
human cognition (Lake et al., 2015; Lu et al., 2019; Peterson et al., 
2016). Given the recent prominence of such methods, it is an apt time 
to perform a careful re-evaluation of the parallelogram model in its 
modern instantiation. To do this, we aim to assess basic questions re
lated to human analogy-making and relational similarity. Can these 

representations predict human completions of simple four-term verbal 
analogies? Further, how well do predictions of relational similarity in 
these spaces match human judgments of relational similarity? We find 
the first of these two phenomena interesting because it captures typical 
pedagogical interactions with analogies (e.g., verbal completion pro
blems used in standardized tests or cognitive batteries), whereas the 
second bears a more direct resemblance to item similarity, for which an 
effective theoretical framework already exists. In addition, we attempt 
to address deeper questions about the fundamental limitations of em
bedding spaces. Tversky (1977) showed that some of the geometric 
axioms of vector spaces fail to capture important aspects of human 
judgments of item similarity. However, it has not yet been investigated 
whether and to what extent human judgments of relational similarity 
also violate these axioms. 

In this paper, we evaluate the parallelogram model of analogy as 
applied to the most popular modern vector-space representations of 
words learned from massive corpora. We focus on language rather than 
perception, given the obvious primacy of language in the historical 
study of analogy. First, we collect three datasets of human analogy 
completions and compare the predictions of both the parallelogram 
model and the nearest neighbor rule. We find that the parallelogram 
model is relatively good at predicting the top human responses, 
whereas the nearest neighbor rule generally does a better job of cap
turing the entire distribution of human responses. To overcome the 
potential confound of participants responding simply on the basis of 
item similarity because it's merely easier to evaluate, we collect another 
large dataset of judgments of relational similarity, using word pairs that 
exemplify ten different types of semantic relations. Going beyond 
overall performance, we also show that the parallelogram model cap
tures human relational similarity judgments for some semantic relations 
much more successfully than others. Finally, we follow Tversky (1977) 
in demonstrating that human relational similarity judgments violate the 
geometric constraints of symmetry and the triangle inequality, posing a 
formidable challenge for any vector space model that aims to capture 
relational similarity. Taken together, these results demonstrate that 
current word embeddings do an impressive job of capturing the se
mantic similarity of words, but that the parallelogram model on its own 
is insufficient as an account of how people form even simple analogies. 

1. Relations and embeddings 

Research on cognitive development has consistently shown that 
children experience a relational shift in their thinking (Gentner, 1988), 
shifting from a focus on featural similarities between objects to that of 
relational similarities between sets of objects. One possible develop
mental trajectory for this relational shift is that children first acquire 
representations of objects, and then learn about each relation between 
objects from examples of those relations. Correspondingly, models such 
as Discovery Of Relations by Analogy (DORA; Doumas et al., 2008) and 
Bayesian Analogy with Relational Transformations (BART; Lu et al., 
2012) try to learn relations from a limited number of examples of ob
jects that instantiate these relations, using either hand-coded (DORA) or 
independently-generated (BART) representations of objects. However, 
these models have only demonstrated success on a handful of relations. 

An emerging trend is to consider that children may eventually ac
quire rich enough representations of objects alone that can enable or 
bootstrap the inference of relations between objects from those re
presentations (for example, see DORA; Doumas et al., 2008). Modern 
word vector embeddings and the parallelogram model are a strong in
stance of this hypothesis because they allow relational similarity to be 
straightforwardly evaluated over nearly all word pairs in a language 
given only a geometric encoding of distributional semantics. Such en
codings are learned with no explicit information about or supervision 
with respect to relations. While children are likely to receive at least 
some level of explicit supervision about relations, especially later in 
development, this process may be boostrapped by more general, 

Fig. 1. The parallelogram model completes the analogy king: queen:: man:? by 
adding the difference vector between king and queen to man, forming a paral
lelogram in the underlying space. 
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unsupervised information as well. Indeed, recent work modeling human 
relation learning has found success in incorporating supervision over 
off-the-shelf word embedding models (Lu et al., 2019). We turn now to 
these embedding models and the manner in which the implicitly re
present relations in more detail. 

Word embeddings are traditionally used to efficiently represent 
word similarity via distributional semantics (Harris, 1954), or seman
tics inferred as a function of the distributional properties of word oc
currences. In particular, we expect to some extent that words that have 
similar meanings will appear in similar contexts (Firth, 1968). Without 
committing to this phenomenon as a complete theory of semantics, we 
can nevertheless appreciate that such a highly general and plentiful 
source of semantic cues may be very useful to a learner, and may 
compliment more structured semantic representations. For example, 
distributional information can be useful when inferring the meaning or 
use cases of rare or novel words since they may appear in contexts si
milar to well-known words (Gleitman, 2002; Yarlett & Ramscar, 2008). 

A pure but perhaps crude form of distributional representations are 
simply vectors for each word in a vocabulary where each dimension 
tallies the frequency that the word co-occurs with each other word. 
However, such vectors are very large, sparse, and potentially noisy. The 
most common alternative historically employed in cognitive models of 
semantics makes use of matrix factorization via singular value decom
position, referred to as Latent Semantic Analysis (LSA; Deerwester, 
1988). This procedure results in a low-rank approximation (i.e., a re
latively low-dimensional non-sparse embedding) of the count vectors. 
The resulting vector space effectively and compactly represents many 
aspects of word similarity that we would expect from a good semantic 
representation. In one form or another, this is the goal and result of 
nearly all classic and modern word embedding methods. For this 
reason, it is important to understand the advantages of more modern 
methods. Why would we expect one method to perform better than 
another? One difference in modern embeddings are the alternative 
choices of what “context” means. For example, LSA treats a “document” 
(i.e., a news article) as the context over which word co-occurances are 
considered. The more recent word2vec method defines a context as a 
local window of words around the word of interest, while its successor 
GloVe incorporates both local windows and global counts. Another 
distinguishing feature of recent methods is scalability. Appropriately 
optimized word2vec models for example can be trained on (and learn 
from) over one-hundred billion words in a day using a single computer 
(Mikolov et al., 2013). Both of these factors appear to effect the quality 
and applicability of the resulting representation. Since the current work 
focuses on modern word representation methods as opposed to classic 
ones (e.g., LSA), we review their formulations below. 

One of the most popular modern word embedding methods is the 
word2vec algorithm, which learns an embedding in service of an ob
jective to either (1) predict the occurrence of a word given surrounding 
words (called Continuous Bag-of-Words or CBOW), or (2) predict the 
occurrence of surrounding words given the a target word (called Skip- 
gram). More formally, CBOW models aim to maximize the average log 
probability: 

… …
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where T is the total number of words in our corpus, t indexes the po
sition of the word wt in the sequence, and c is the size of a context 
window of words (e.g., wt+j where j ≠ 0) around wt. In Skip-gram 
models, the objective is to maximize the probability of the context 
words surrounding each word in a sequence: 

=
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In order to achieve this, two-layer neural networks are used to map 
input words to output words. For CBOW, context words coded as a 

sparse vectors (i.e., with only one nonzero entry in each) are input to 
the network and embedded using a single hidden layer. These context 
vectors are then averaged into a single context vector and multiplied 
with a final weight matrix before being passed to the final softmax 
layer, which in the general inefficient case outputs for each word in the 
vocabulary an estimated probability of it occurring within that context. 
The intended output words used for training are also coded as sparse 
vectors. Since, the final weight matrix computes inner products (i.e., 
similarities) between each context and a vector of weights for each 
word in the vocabulary, these weights are taken as the “word embed
dings” (as opposed to context embeddings from the first layer). In Skip- 
gram networks, as expected, only a single word is given as input and 
context words are predicted as outputs. Since corpus-scale vocabularies 
can be very large, a number of training optimizations are often em
ployed, such as hierarchical softmax and negative sampling (Mikolov 
et al., 2013). 

Unlike word2vec, GloVe neither predicts words from context 
words nor context words from target words directly. Instead, GloVe 
starts with word co-occurance counts, much like LSA. However, like 
word2vec, GloVe uses local context windows (to compute counts) 
instead of documents. This can be thought of as a less noisy measure
ment of local co-occurance information for which word2vec is based. 
Starting with a count matrix X, where Xij is the number of times word i 
co-occurs within some window size of word j, the authors derive a least 
squares objective relating the inner product of word vectors wi and wj to 
counts Xij: 

+ +
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where V is the vocabulary size, f is a weighting function that dem
phasizes co-occurances of zero, and bi and bj are bias vectors. GloVe is 
tasked with finding a word vector embedding that minimizes this 
(error) objective. While the derivation of this objective (see Pennington 
et al., 2014) is not as straightforward as word2vec, it can be illumi
nating to compare the two instead. First, note that both model word 
similarity as an inner product between word vectors—in word2vec, 
this is expressed in the neural network formulation. Next, since 
word2vec starts from a probabilistic formulation, error is measured 
using crossentropy, whereas in the GloVe objective, squared error is 
used. The effect of employing the latter, as the authors explain, is to put 
less weight on the long tails of the distribution (i.e., where some word 
pairs may only co-occur within a window just a few times in an entire 
corpus). Lastly, the probabilities predicted by GloVe are unnormalized 
(i.e., Xij is a count). 

The original parallelogram model of analogy was not proposed and 
evaluated in the context of embeddings optimized to encode distribu
tional semantics, but instead conceived in the context of inferred 
mental representations of animal terms (Rumelhart & Abrahamson, 
1973). However, these two types of embeddings are similar in an im
portant way: both were optimized to encode only first-order item si
milarity. The fact that the parallelogram model applies in both cases 
(and in all geometric representations) is a property of the form of the 
representation as opposed to the content or manner of derivation. That 
is, the concept of a relation is both simple and well-defined in geometric 
spaces: the relationship between two points is fully described by the 
length and direction of the vector that connects them (i.e., we can think 
of one point as a translation of the first). This is more than a simple 
artifact of the representation. When we ask if two pairs of points are 
similar, we are asking if their relation vectors are similar, and conse
quently if points A and B have a similar change in each semantic di
mension as points C and D. Applying this model in the context of em
beddings that encompass an entire language can therefore be thought of 
as a test of its viability as a highly generalizable cognitive model, even if 
only sufficient to capture simple semantic relational reasoning. 
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2. Analogy completions 

Four-term verbal analogies (e.g., cat: kitten:: dog:?) have long been 
used in tests of intelligence and vocabulary, such as the GRE and past 
versions of the SAT, as well as in analogy research (e.g., Sternberg & 
Nigro, 1980; Turney, 2013). The task of completing these analogies is 
one straightforward and intuitive way to evaluate models of analogy. 
However, the scope of this approach has been limited, even in large- 
scale machine learning assessments. For example, the dataset of ana
logy completion problems that Mikolov et al. (2013) created in order to 
evaluate word2vec was quite limited, including nine syntactic rela
tions (such as adjective-to-adverb, an example of which is apparent: ap
parently) and only five semantic relations: capital-of-common-country 
(e.g., Athens: Greece), capital-of-any-country (e.g., Astana: Kazakhstan), 
currency-of-country (e.g., Angola: Kwanza), city-in-state (e.g., Chicago: 
Illinois), and man-woman (e.g., brother: sister). We aimed to evaluate the 
parallelogram model on a richer dataset of participant-generated ana
logy completions that includes a variety of semantic relations. Toward 
this goal, we conducted a series of experiments that leverage different 
analogy-completion questions drawn from the psychology and com
puter science literature. 

2.1. Experiment 1a: Green et al.'s (2010) stimuli 

2.1.1. Participants 
We recruited 61 participants from Amazon Mechanical Turk, who 

gave informed consent and were paid $1.00 for the 10-min study. 
Participants appeared to understand and pay attention to the task as 
assessed by the attention check questions and none were excluded from 
the data analysis. However, misspelled responses were discarded, and 
sometimes participants skipped a particular question, perhaps because 
they did not understand either the words or the analogy. This experi
ment and all following experiments were conducted under the IRB 
protocol number 2015–05-755 entitled “Cognitive Research Using 
Amazon Mechanical Turk” approved by the institutional review board 
of the University of California, Berkeley. 

2.1.2. Stimuli 
We created analogy completion questions for this experiment from 

stimuli used in a previous experiment (Green et al., 2010). In Green 
et al., participants indicated whether each four-word analogy was valid. 
The stimuli included 40 within-domain (i.e., the source and target pairs 
are from semantically similar domains) and 40 cross-domain (i.e., the 
source and target pairs are from semantically different domains) ana
logies. Each cross-domain analogy corresponded to one of the within- 
domain analogies in that both analogies had the same A:B pair. For 
example, answer: riddle:: solution: problem and answer: riddle:: key: lock 
were corresponding within-domain and cross-domain analogies. We 
created analogy-completion problems from these stimuli by simply re
moving the D term. 

2.1.3. Procedure 
Participants were given instructions about four-word analogies and 

the analogy completion task. They then completed 45 analogies, 20 of 
which were a subset of the within-domain analogies from Green et al. 
(2010), 20 of which were cross-domain analogies with different A:B 
pairs from those in the within-domain analogies (so that participants 
saw each A:B pair only once), and 5 of which were very simple ana
logies added as attention checks (East: West:: North:?, hot: cold:: warm:?, 
king: queen:: prince:?, hand: fingers:: foot:?, and sister: brother:: aunt:?). 
The analogy problems were presented in a random order across five 
pages, with the constraint that each page included one attention check. 

2.1.4. Results 
About 30 responses were obtained for each analogy completion 

question. Figs. 2 and 3 respectively show the distributions of responses 

to a within-domain question and the corresponding cross-domain 
question. Across all analogy completion questions, 55% of participants 
provided the most frequent completion on average. Frequency of the 
modal completion for individual analogies ranged from 13% to 97%. 

2.2. Experiment 1b: Kmiecik and Morrison's (2013) stimuli 

2.2.1. Participants 
We recruited 117 participants from Amazon Mechanical Turk, who 

gave informed consent and were paid $1.00 for the 10-min study. This 
group of participants did not overlap with the participants in 
Experiment 1a. 

2.2.2. Stimuli 
For this study, we adapted stimuli from Kmiecik and Morrison 

(2013), which used a paradigm similar to Green et al. (2010). The 
stimuli included both “near” and “far” analogies and included five 
different relations: kept in (e.g., animal: zoo), kind of (e.g., aluminum: 
metal), made of (e.g., candle: wax), used to (e.g., train: travel), and works 
for (e.g., curator: museum). We chose a subset of 178 analogies that at 
least 90% of participants indicated as being true analogies and adapted 
them into analogy completion questions. 

2.2.3. Procedure 
The procedure for this experiment was very similar to the one for 

Experiment 1a. Participants completed either 44 or 45 of the 178 
analogies, with no constraints on how many and which near and far 
analogies they completed. When they completed only 44 of the analo
gies from Kmiecik and Morrison (2013)’s stimuli, they also completed 
one of the simple analogies used as attention checks in Experiment 1a 

Fig. 2. Response proportions and frequencies (shown above the bars) for the 
question answer:riddle::solution:?, a within-domain question from Experiment 
1a. 

Fig. 3. Response proportions and frequencies (shown above the bars) for the 
question answer:riddle::key:?, a cross-domain question from Experiment 1a. 
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so that every participant completed a total of 45 analogies. No other 
attention checks were used. 

2.2.4. Results 
About 30 responses were obtained for each analogy completion 

question. Fig. 4 shows the distribution of responses to a randomly-se
lected question. Across all analogy completion questions, 53% of par
ticipants provided the most frequent completion on average. Frequency 
of the modal completion for individual analogies ranged from 13% to 
100%. 

2.3. Experiment 1c: SemEval dataset (Jurgens et al., 2012) 

2.3.1. Participants 
We recruited 308 participants from Amazon Mechanical Turk, who 

gave informed consent and were paid $1.50 for the 15-min study. This 
group of participants was distinct from the groups who participated in 
Experiments 1a and 1b. 

2.3.2. Stimuli 
The analogy completion questions for this experiment were adapted 

from the SemEval-2012 Task 2 dataset (Jurgens et al., 2012), which has 
been used to evaluate algorithms for assessing relational similarity. This 
dataset contains prototypicality scores based on human data for word 
pairs that exemplify 79 different semantic relations. These relations 
were taken from a taxonomy of semantic relations (Bejar et al., 1991) 
and are subtypes of 10 general types of relations, such as CLASS-INCLUSION, 
SIMILAR, and CONTRAST. Participants were given three paradigmatic ex
amples of a relation (e.g., car: engine, face: nose, novel: epilogue, all ex
emplifying the PART-WHOLE Object:Component relation), and asked to 
generate additional examples of the same relation. A total of 3218 
unique word pairs were generated for the 79 relations, with an average 
of 41 word pairs per relation. A prototypicality score for each partici
pant-generated word pair was calculated based on how often a second 
group of participants chose the word pair as the best and worst example 
of the relation among a set of choices. 

We chose two representative subtypes for each of the 10 general 
types of relations (e.g., Object:Component and Collection:Member for 
PART-WHOLE) and formed analogy completion questions using each re
lation's paradigmatic examples as A:B pairs and the ten participant- 
generated word pairs with the highest prototypicality scores as the C:D 
pairs (removing the D term to form the analogy completion question). 
This resulted in 600 analogy completion questions, with 30 questions 
for each of the 20 relations. Table 1 shows the paradigmatic examples 
for each of the representative subtypes we chose. 

2.3.3. Procedure 
The procedure was similar to those of Experiments 1a and 1b. 

Participants completed three analogies for each of the 20 relations, for a 
total of 60 analogies. Each of the three analogies had a unique A:B pair. 
No attention check questions were used. 

2.3.4. Results 
About 30 responses were obtained for each analogy completion 

question. Fig. 5 shows the distribution of responses to a randomly-se
lected question. Across all analogy completion questions, 47% of par
ticipants provided the most frequent completion on average. Frequency 
of the modal completion for individual analogies ranged from 6% to 
100%. 

2.4. Model evaluation 

We evaluated the parallelogram model using word2vec (the Skip- 
gram variant, which typically performs best) and GloVe embeddings on 
each dataset of analogy-completion questions. We used the 300-di
mensional word2vec vectors trained on the Google News corpus that 
were provided by Google (Mikolov et al., 2013), and the 300-dimen
sional GloVe vectors trained on a 840B-word Common Crawl web 
crawl corpus that were provided by Pennington et al. (2014). We 
evaluated each model on each set of analogy-completion questions in 
the following manner: First, we removed questions that contained 
words not found in each model's vocabulary, as well as participant re
sponses not found in the vocabulary. We also removed responses that 
were produced by only one participant for a question, a standard pro
cedure used in response generation tasks to control the quality of re
sponses (e.g., Nelson et al., 2004). Then, for each question, we obtained 
the model's prediction of the D term according to the parallelogram rule 
(vD = vB − vA + vC, where vA, vB, and vC are the vectors corresponding 
to words A, B, and C). Next, we calculated the cosine similarities be
tween vD and the vectors of all the words in the vocabulary (3,000,000 
words for word2vec or 2,196,015 words for GloVe). We ranked the 
words by their cosine similarity to vD and converted each rank into a 
percentage of the largest rank (i.e., the number of words in the voca
bulary). In addition to the parallelogram rule, we tested a simpler rule 
in which we calculated the cosine similarities between vC and the 
vectors of all words in the vocabulary, which we call “C:D similarity,” 
and the nearest-neighbor (NN) heuristic that was found to provide a 
better fit to participants' choices than the parallelogram rule on certain 
analogy problems (Sadler & Shoben, 1993). 

2.5. Model results and discussion 

Fig. 6 shows the cumulative proportion of human responses re
trieved as a function of rank percentage (i.e., each point is the pro
portion of human responses contained in the set of words with at most a 
certain predicted rank) for each embedding and each model, averaged 
across all questions from all three datasets. The models did remarkably 
well in general, considering the large space of words that could be used 
as completions, with word2vec capturing around 50% of people's re
sponses with its first response and GloVe exhibiting dramatically better 
performance and taking this number up to around 80%. For compar
ison, note that the probability of drawing these words by chance is well 
below 1%. However, this success seems to be driven by the quality of 
the semantic representations rather than the applicability of the par
allelogram model. Despite being an extremely simple rule, C:D simi
larity outperforms the parallelogram model when using GloVe em
beddings and is slightly better than the parallelogram model overall 
when using word2vec. C:D similarity assigned lower ranks than the 
parallelogram model to 53.92% of the human responses that were given 
different ranks by the two models when using word2vec, and to 
56.76% of them when using GloVe (both ps < .001 by a binomial test). 
However, the NN heuristic does not seem to perform better than the 
parallelogram model when using word2vec and performs at a level 
between those of the parallelogram and C:D similarity models when 

Fig. 4. Response proportions and frequencies (shown above the bars) for the 
question wrench:toolbox::goldfish:?, randomly selected from Experiment 1b. 
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using GloVe. 
These results indicate that given word embeddings such as 

word2vec and GloVe, we may achieve better analogy completion 
performance using similarity rather than the parallelogram model, 
echoing Sadler and Shoben's (1993) finding that a more complex par
allelogram rule may not be necessary or even optimal. The parallelo
gram model may be relatively good at capturing the most frequent 
human analogy completion response (its median rank for the top 
human response was slightly lower than that of C:D similarity, a dif
ference that was not statistically significant), but it certainly does not 
capture the entire distribution of human responses, which may be 
better predicted by item (word) similarity. While these results highlight 
the limitations of the parallelogram model, they focus on only one way 
of assessing analogy performance, the task of completing analogies. 
Furthermore, if participants feel rushed or confused on the task, they 
may be more influenced by item similarity in their responses, because 
item similarity is easier to process than higher-order relations. To ad
dress these concerns we evaluated the performance of the parallelo
gram model on another task where relational similarity was assessed 
directly. 

3. Relational similarity 

Our results thus far hint at the possibility that the parallelogram 
model does not provide the best fit to human representations of rela
tional similarity in popular modern word embedding spaces. However, 
it could be that analogy completions do not depend solely on relational 

Table 1 
The paradigmatic examples for the representative subtypes we chose from each general relation type in the SemEval-2012 Task 2 dataset.     

Relation type Subtype Paradigmatic examples (A:B pairs)  

CLASS-INCLUSION Taxonomic flower: tulip, emotion: rage, poem: sonnet 
Class:Individual queen: Elizabeth, river: Nile, mountain: Everest 

PART-WHOLE Object:Component car: engine, face: nose, novel: epilogue 
Collection:Member forest: tree, anthology: poem, fleet: ship 

SIMILAR Synonymy car: auto, buy: purchase, rapid: quick 
Dimensional Similarity enthusiasm: fervor, simmer: boil, stream: river 

CONTRAST Contrary old: young, happy: sad, smooth: rough 
Reverse attack: defend, buy: sell, love: hate 

ATTRIBUTE Item:Attribute beggar: poor, glass: fragile, hero: brave 
Object:State beggar: poverty, dupe: gullibility, novice: inexperience 

NON-ATTRIBUTE Item:Nonattribute harmony: discordant, bulwark: flimsy, sound: inaudible 
Object:Nonstate laureate: dishonor, famine: plenitude, war: tranquility 

CASE RELATIONS Agent:Instrument farmer: tractor, conductor: baton, arsonist: match 
Action:Object plow: earth, sing: dirge, pardon: sin 

CAUSE-PURPOSE Cause:Effect enigma: puzzlement, joke: laughter, practice: improvement 
Cause:Compensatory Action hunger: eat, fatigue: sleep, lateness: hurry 

SPACE-TIME Location:Item arsenal: weapon, seminary: theologian, bookshelf: books 
Time:Associated Item retirement: pension, infancy: cradle, adolescence: textbooks 

REFERENCE Sign:Significant siren: danger, scepter: authority, signature: approval 
Representation portrait: person, backdrop: vista, diary: person 

Fig. 5. Response proportions and frequencies (shown above the bars) for the 
question lateness:hurry::tiredness:?, randomly selected from Experiment 1c. 

Fig. 6. The cumulative proportion of human responses retrieved as a function 
of rank percentage for each model using (a) word2vec and (b) GloVe em
beddings. 
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similarity, or that the particular task used biases participants toward 
less effortful judgments. In order to more fully assess how well the 
parallelogram model captures human representations of relational si
milarity, we turned to an alternative paradigm that better isolates re
lational similarity and imposes greater constraints on the task strategy. 
According to the parallelogram model, two pairs of words (A: B and C: 
D) are relationally similar to the extent that their difference vectors 
(vB − vA and vD − vC) are similar. How appropriate is this geometric 
relationship for the various semantic relations? 

As a preliminary investigation of this question, we projected the 
300-dimensional word2vec vectors into a two-dimensional space using 
principal component analysis separately for each relational subtype in 
the SemEval-2012 Task 2 dataset, and visualized the difference vectors 
for the participant-generated word pairs from each relation. A similar 
method was employed in Mikolov et al. (2013), in which projections of 
the vectors connecting various cities and the capitals of their countries 
were visualized. In their work, vectors for different city-capital pairs 
exhibited highly similar directions (i.e., the lines that connect each 
word pair are parallel) in the 2D space and provided clear qualitative 
evidence of implicitly learned relational similarity. Similarly, we vi
sualize the difference vectors for each word pair that exemplifies the 20 
relational subtypes (i.e., from Table 1) of the SemEval dataset in Fig. 7. 

If word embeddings are able to capture relations in the SemEval 
dataset using the parallelogram model, we would expect word-pair 
difference vectors of the same relation type to be similarly co-linear 
(i.e., mostly parallel). Examining the difference vectors for each rela
tion shows that the parallelogram rule does not appear to capture all 
relations. CASE RELATIONS Agent:Instrument (e.g., farmer: tractor) shows a 
nearly perfect correspondence with what we would expect under the 
parallelogram model, with all difference vectors aligning. However, 
many of the relations appear to have no clear geometric pattern. 
Nevertheless, simply looking at projections of the difference vectors is 
not sufficient to evaluate the power of geometric models of relational 
similarity to capture various relations, because information is lost in the 
projections. What is required is a detailed evaluation of the model on 
human judgments of relational similarity between word pairs within 
each relation. 

Although the SemEval dataset contains prototypicality scores for the 
participant-generated word pairs within each relation, which have been 
interpreted as the relational similarities between the participant-gen
erated pairs and the paradigmatic pairs, prototypicality is influenced by 
other factors such as the production frequencies of words (Uyeda & 
Mandler, 1980). Moreover, because participants were encouraged to 
focus on the relation illustrated by the paradigmatic examples, the 
prototypicality scores may not have much to do with the particular 
word pairs chosen as paradigmatic examples. Experiment 2 aims to 
address these problems. 

3.1. Experiment 2: relational similarity judgments 

3.1.1. Participants 
We recruited 823 participants from Amazon Mechanical Turk. 

Participants were paid $2.00 for the 20-min study. We excluded 158 
participants from the data analysis because they failed two or more of 
the attention checks. 

3.1.2. Stimuli 
The stimuli for this study were taken from the SemEval-2012 Task 2 

dataset. We were mainly interested in how people rate relational si
milarities between participant-generated word pairs within each of the 
79 relational subtypes. However, because the total number of such 
“within-subtype” pairwise comparisons is still enormous, we selected 
the most representative subtype out of the two that we chose for each of 
the 10 general types for Experiment 1c. The subtype we chose is the 
first of the pair of examples of each type that appears in Fig. 7. We then 
randomly chose 30 word pairs out of the entire participant-generated 

set for each of the 10 subtypes and formed all possible within-subtype 
comparisons between these word pairs. This created a set of 4350 
within-subtype comparisons. Finally, in order to encourage participants 
to use the entire rating scale, we added 925 “between-subtype” com
parisons, which are comparisons between word pairs from different 
subtypes within a type (e.g., Object-Component and Collection-Member, 
both subtypes of PART-WHOLE), and 925 “between-type” comparisons, 
which are comparisons between word pairs from the representative 
subtypes of different relational types (e.g., Object-Component and 
Taxonomic CLASS-INCLUSION). 

3.1.3. Procedure 
Participants were told that they will see two pairs of words on each 

page and asked to rate the similarity of the relationships shown by the 
two word pairs on a scale from 1 (extremely different) to 7 (extremely 
similar). The instructions included an example of two word pairs that 
have similar relationships (kitten: cat and chick: chicken) and an example 
of word pairs with dissimilar relationships (chick: chicken and hen: 
rooster). Participants then rated 100 comparisons in a random order, 70 
of which were within-subtype, 15 of which were between-subtype, and 
15 of which were between-type. The left-right order of the two word 
pairs on the screen was chosen randomly (but order within pairs was of 
course maintained). Finally, five attention check trials that asked par
ticipants to indicate whether two words are the same or different ap
peared at intervals of 20 normal trials. 

3.1.4. Results & discussion 
We obtained at least 10 good ratings for each comparison, with an 

average of 10.74 ratings per comparison. The mean rating across all 
comparisons was 4.52 (SD = 2.17). As expected, we obtained the 
highest relational similarity ratings for within-subtype comparisons 
(M = 5.01, SD = 1.98), mid-level ratings for between-subtype com
parisons (M = 4.02, SD = 2.14) and the lowest ratings for between- 
type comparisons (M = 2.70, SD = 1.93). 

We calculated relational similarity for each comparison using 
word2vec and GloVe word representations. We used the 300-dimen
sional word2vec vectors trained on the Google News corpus that were 
provided by Google (Mikolov et al., 2013), and the 300-dimensional 
GloVe vectors trained on a Common Crawl web crawl corpus that were 
provided by Pennington et al. (2014). We tested two measures of si
milarity between difference vectors, cosine similarity and Euclidean 
distance. Specifically, for a given comparison between two word pairs, 
A: B and C: D, letting r1 = vB − vA and r2 = vD − vC, we calculated the 
cosine similarity, 

r r
r r

,1 2

1 2

as well as a similarity measure based on Euclidean distance, 

r r1 .1 2

Cosine similarity is typically used to measure similarity in vector 
spaces such as word2vec and GloVe. However, using Euclidean dis
tance corresponds more closely to the original parallelogram model, in 
which not only the directions but also the lengths of the difference 
vectors needed to be similar for two word pairs to be considered re
lationally similar. 

Fig. 8 shows Pearson's correlations between predicted relational 
similarity scores and average human relational similarity ratings on 
each relation type (including both within-subtype and between-subtype 
comparisons) for each vector space and similarity measure. There is 
considerable variation in the performance of word2vec and GloVe in 
predicting human relational similarity ratings. As might be expected 
from examining Fig. 7, cosine similarity performs the best on CASE RE

LATIONS (relation 7). However, cosine similarity completely fails on SI

MILAR (relation 3), CONTRAST (relation 4), and NON-ATTRIBUTE (relation 6). 
Euclidean distance boosts performance on the latter two relations, but 
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still under-performs overall compared to most other relations. Never
theless, Euclidean distance does perform very well on SPACE-TIME (rela
tion 9). Lastly, variation in fit across relation types does not appear to 
be explained by human inter-rater reliability (horizontal black bars), 
which we calculated by randomly splitting the data in half 1,000 times 
and averaging the correlations between the two halves. 

These results indicate that a single relational comparison strategy, 
the parallelogram model, cannot capture all semantic relations in the 
vector spaces we tested. There are a number of possible explanations for 
why this is the case. First, it could be a consequence of the specific word 

embeddings we used, and other schemes for constructing word em
beddings could result in representations in which the parallelogram 
model captures a wider range of relations. Second, it could be that 
people adopt different strategies for assessing different relations (var
iation in inter-reliability may also suggest this at the level of in
dividuals), and that the parallelogram model corresponds to just one 
such strategy. We consider this an interesting opportunity for further 
research, and return to this point in the General Discussion. 

Rather than exhaustively exploring different word embeddings or 
geometric relations, in the remainder of the paper we take a different 

Fig. 7. Visualizations of difference vectors for 20 relational subtypes using 2D projections of word2vec word vectors obtained separately for each relation using 
principal component analysis. Subtypes where vectors are parallel are likely to be well-captured by the parallelogram model. 
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approach: consider properties of analogy that apply to all metrics, re
gardless of the space in which they are assessed. Following Tversky 
(1977), we can ask whether any distance metric in any vector space 
model of relations can capture the wide range of phenomena involving 
human representations of relational similarity. The results would apply 
not only to any potential word embedding that improves over 
word2vec and GloVe, but also to any possible distance function that 
we could define in such a space, even if we use a different distance 
function for each semantic relation that corresponds to its most ap
propriate geometric relation. 

4. Violations of metric axioms 

Vector space representations can be expressive and powerful 
(Shepard, 1980), but are by no means the only way to capture semantic 
information. Nevertheless, they form the basis of numerous cognitive 
models, such as generalization (Shepard, 1987), and categorization 
(Kruschke, 1992; Nosofsky, 2011). Importantly, the use of vector spaces 
as a representational formalism in psychology has been criticized on the 
grounds that it is constrained by both its axiomatic commitments 
(Tversky, 1977) and geometry (Tversky & Hutchinson, 1986). These 
constraints can lead to fundamental challenges in modeling human 
behavior that do not arise for competing non-spatial methods, although 
it is worth noting that potential solutions have been proposed (see  
Krumhansl (1978) for an example that integrates information about 
spatial density). 

Distance metrics in vector spaces must obey certain axioms or 
geometric constraints, such as symmetry (the distance from x to y is the 
same as the distance from y to x) and the triangle inequality (if the 
distance between x and y is small and the distance between y and z is 
small, then the distance between x and z cannot be very large). Cosine 
similarity, used to measure similarity between word2vec representa
tions, also obeys symmetry and an analogue of the triangle inequality 
(Griffiths et al., 2007). However, psychological representations of si
milarity do not always obey these constraints (Tversky, 1977). A fa
mous example of this is that people judge North Korea to be more si
milar to China than the other way around, a violation of symmetry.  
Griffiths et al. (2007) examined the word representations derived by 
Latent Semantic Analysis (Landauer & Dumais, 1997), another well- 
known vector space model, and found that these representations are 
unable to account for violations of symmetry and the triangle inequality 
in human word association data. 

All prior work exploring the limitations of spatial representations 
has focused on item similarity. If item similarity cannot be fully 

modeled by spatial representations, than why should we think that 
relational similarity can? This question may not be as straightforward 
to answer as it seems, as relational similarity may depend less than item 
similarity on which domain is taken to be the “referent” or “prototype” 
for the comparison. For this reason, it is important that we take our cues 
from human behavior before extrapolating findings on item similarity 
to relational similarity. In this section, we show that human judgments 
of relational similarity between word pairs also do not satisfy the 
geometric constraints of symmetry and the triangle inequality. Vector 
space models such as word2vec and GloVe cannot account for these 
violations. 

4.1. Experiment 3: symmetry 

In this experiment, we examined whether there are any pairs of 
word pairs for which participants' judgments of relational similarity 
change when the presentation order is reversed. We might expect such 
asymmetry to occur when a word pair has multiple relations and shares 
ones of its less salient relations with another word pair. For example, 
when presented with angry: smile – exhausted: run, one might think, “an 
angry person doesn't want to smile” and “an exhausted person doesn't 
want to run,” but when presented with exhausted: run – angry: smile, one 
might think,“running makes a person exhausted, but smiling doesn't 
make a person angry.” Thus, participants might give high relational 
similarity ratings in the first presentation order and low ratings in the 
second presentation order. 

4.1.1. Participants 
We recruited 1102 participants from Amazon Mechanical Turk, who 

gave informed consent and were paid $1.00 for the 10-min study. We 
excluded 99 participants from the data analysis because they failed two 
or more of the attention checks (see below). 

4.1.2. Stimuli 
We randomly selected 220 within-subtype, 220 between-subtype, 

and 60 between-type comparisons from all possible comparisons 
formed using the entire SemEval-2012 Task 2 dataset. We created two 
versions of each comparison, in which the order of the word pairs were 
switched. 

4.1.3. Procedure 
Participants were given instructions about relational similarity and 

the two examples used in Experiment 2 illustrating similar and dis
similar relationships. They saw one word pair in each comparison first 

Fig. 8. Pearson's r between human relational similarity ratings and model predictions on different relation types for (a) word2vec and (b) GloVe. The name and 
examples of each numbered relation type are shown in Table 1. Correlations that are statistically significant at the 0.05 level are indicated by * and those that are 
significant at the 0.01 level are indicated by **. Split-half reliability for human ratings from each relation type are indicated by horizontal black bars. 
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and were asked to think of the relationship between the words. Then 
after a 600 ms delay, the other word pair was shown and participants 
were asked to rate the similarity of the relationships on a 7-point scale. 
Participants rated 50 comparisons, including 22 within-subtype, 22 
between-subtype, and 6 between-type comparisons. Each participant 
viewed each comparison in only one of its presentation orders. After 
every 10 trials, there was an attention check question (five in total) that 
asked participants to indicate whether two words are the same or dif
ferent. 

4.1.4. Results and discussion 
We obtained about 50 ratings for each comparison in each pre

sentation order. We conducted a t-test for each comparison to see if the 
two presentation orders resulted in significantly different relational 
similarity ratings. 75 of these t-tests were statistically significant at the 
0.05 level (the corresponding stimuli and results appear in the Table 
A1). The number of t-tests that we would expect to be significant at the 
α=0.05 level if presentation order did not matter for any of the com
parisons is 25. Assuming that the t-tests are independent, a binomial 
test reveals that this deviation is statistically significant, p < .001. 

Examining the comparisons for which different presentation orders 
resulted in significantly different relational similarity ratings confirms 
our guess as to when people's judgments of relational similarity might 
not obey symmetry. The previously mentioned example of angry: smile 
and exhausted: run indeed elicited higher ratings in the direction shown 
here (4.76 mean rating) than in the opposite direction (2.36 mean 
rating). As another example, people rated hairdresser: comb – pitcher: 
baseball as more relationally similar (6.10 mean rating) than pitcher: 
baseball – hairdresser: comb (4.84 mean rating). In the first presentation 
order, participants might be thinking that “a hairdresser handles a 
comb” and “a pitcher handles a baseball,” whereas in the second pre
sentation order, they might be thinking “a pitcher plays a specific role 
in baseball,” which doesn't fit with hairdresser: comb. Yet another ex
ample is narrative: epilogue – animal: pig (2.80 mean rating) vs. animal: 
pig – narrative: epilogue (3.84 mean rating). An epilogue follows a nar
rative, but a pig doesn't follow an animal. A pig is a kind of animal, and 
an epilogue might be a kind of narrative. These results suggest that 
participants might employ a multi-sense representation of word pairs 
that transcends the single-point representations in vector space models, 
which might leave out some of or average over the different relations 
that a word pair could represent. 

4.2. Experiment 4: triangle inequality 

For this experiment, we created triads of word pairs for which we 
expected people's relational similarity judgments to violate the triangle 
inequality, such as nurse: patient, mother: baby, and frog: tadpole. This 
triad violates the triangle inequality because nurse: patient:: mother: baby 
is a good analogy (relationally similar), and so is mother: baby:: frog: 
tadpole, but nurse: patient:: frog: tadpole is not. In this example, the 
middle pair has multiple relations and shares one of them with the first 
pair and a different one with the last pair. We presented the two word 
pairs in each analogy together and asked participants to rate the quality 
of the analogy rather than relational similarity, because we wanted to 
encourage participants to consider the two relations together rather 
than using one relation as a reference. 

4.2.1. Participants 
We recruited 71 participants from Amazon Mechanical Turk, who 

gave informed consent and were paid $0.50 for the 5-min study. This 
group of participants did not overlap with the participants in 
Experiment 2. We excluded 11 participants from the data analysis be
cause they failed one of the attention checks (see below). 

4.2.2. Stimuli 
We created twelve triads of word pairs for which analogy quality 

judgments are likely to violate the triangle inequality. For every triad, 
the analogy formed between the first and third word pairs was expected 
to be rated low and the other two analogies were expected to be rated 
highly. 

4.2.3. Procedure 
Participants were given instructions about verbal analogies and the 

two examples used in Experiments 2 and 3 as examples of good and bad 
analogies, respectively. They were then asked to rate the quality of each 
analogy on a scale from 1 (very bad) to 7 (very good). For each of the 
twelve triads, each participant viewed one of the three analogies. Each 
participant received four analogies formed between the first and second 
word pairs of various triads (analogy type 1–2), four formed between 
the second and third word pairs (type 2–3), and four formed between 
the first and third word pairs (type 1–3). Because two thirds of these 
analogies are expected to be rated highly, participants also viewed four 
“filler” analogies expected to be given low ratings. Finally, there were 
two attention check questions that asked to participants to simply 
choose 1 (or 7) for a bad (or good) analogy. 

4.2.4. Results and discussion 
For each triad, we want to test for violations of triangle inequality 

using the average similarity ratings (provided in Table B1) for each 
word pair. To our knowledge, no quantitative method for such a test has 
been proposed. We can derive such a test, which we call the “product 
test”, by first considering the triangle inequality, which states that the 
distance d(x, z) between points (e.g., objects or relations) x and z must 
be greater than or equal to the sum of the distances between d(x, y) and 
d(y, z): 

+d x z d x y d y z( , ) ( , ) ( , ). (4)  

In order to relate this equation to our similarity judgments, we can 
make use of Shepard's (1987) law that relates distance in psychological 
space to similarity: 

=s e d (5) 

where we assume that similarity scores are normalized to be between 0 
and 1.2 The triangle inequality can therefore be restated in terms of 
similarity as opposed to distance as 

s x z s x y s y z( , ) ( , ) ( , ). (6)  

Because this must hold for all “sides” of the triangle, a violation of 
the triangle inequality occurs whenever the lowest similarity is less 
than the product of the two higher ones, or when the following state
ment is true: 

>s x z s x y s y z
min s x z s x y s y z

min s x z s x y s y z( , ) ( , ) ( , )
{ ( , ), ( , ), ( , )}

{ ( , ), ( , ), ( , )}.
(7)  

We can rearrange this inequality into a form that allows us to 
compare a single statistic against a constant: 

>s x z s x y s y z
min s x z s x y s y z

( , ) ( , ) ( , )
{ ( , ), ( , ), ( , )}

1.2 (8)  

How much the test statistic on the left hand side is greater than 1 
indicates the relative strength of the violation.3 

The product test provides only a point estimate to indicate violation 
of the triangle inequality. In order to perform statistical inference, we 
computed the product test for 10,000 bootstrap samples of the data 
(i.e., sampling participants with replacement) for each of the twelve 

2 Since our similarity scores were on a scale from 1 to 7, we performed this 
normalization by subtracting 1 from each score and then dividing by 6. Simply 
dividing the scores by 7 produced an equivalent pattern of results. 

3 We note that this criterion is invariant to scaling constants μ such that 
s = e−d/μ. Such constants have the effect of raising the test statistic to the power 
of 1/μ, which does not change whether it is greater than or less than 1. 
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triads. The results are shown in Fig. 9. The mean score for eleven out of 
twelve triads was positive, indicating potential violations in almost all 
cases. To determine statistical significance, we computed an empirical 
one-tailed 95% confidence interval (open in the direction of larger 
values) for each mean and examined whether the threshold of 1 fell 
outside this interval. This was the case in 9 out of 12 cases, with the 

exceptions being veil:face, password:access, key:safe, and pride:lion, 
brain:neuron, computer:chip, with the weakest results for wedding:bride, 
aquarium:fish, carton:milk. 

In both Experiments 3 and 4, the order of the word pairs or structure 
of the triad of pairs induced a contextual effect wherein the “relational 
sense” that a word pair represented was altered. The parallelogram 

Fig. 9. Distributions of product test outcomes for 10,000 bootstrap samples. Vertical black lines indicate the point beyond which tests indicate violation of the 
triangle inequality. Means are given in the top right corner of each plot. For 9 of the 12 word-pair triads the threshold of 1 fell outside an empirical one-tailed 95% 
confidence interval. 
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model represents the relation between a pair of words by the difference 
vector between the single-point representations of the individual words 
in the underlying vector space. The relation that a word pair represents 
is thus a single, fixed point, which cannot account prima facie for the 
multiple relational senses that a word pair might take on, as in 
Experiments 3 and 4. However, these results do not rule out an alter
native model that computes the relation a word pair represents by 
taking context into account but that still uses single-point representa
tions of words, or perhaps even a parallelogram model that operates on 
context-specific word representations. We discuss some of these possi
bilities in more detail below. Nevertheless, these results do point out 
one of the principal disadvantages of current models that use single- 
point, context-independent representations of words and word pairs. 

5. General discussion 

Our results provide a clearer picture of the utility of vector-space 
models of analogy: capturing human relational similarity poses some 
significant challenges for these models. Experiment 1 showed that the 
parallelogram model can predict analogy completions, but is out
performed by a much simpler rule based on item similarity. This po
tentially challenges the parallelogram model, but also highlights the 
difficulty in designing experiments that don't bias participants toward 
one strategy over the other, since the simple rule we used corresponds 
to an easier judgments that bears less resemblance to analogy as we 
commonly think of it. Experiment 2 was meant to overcome this pro
blem to some extent by using a direct measure of human relational 
similarity. With this constraint in place, we find that the parallelogram 
model indeed makes very good predictions for some semantic relations, 
although it performs poorly for others. Experiments 3 and 4 showed 
that the relation inferred between a pair of words by participants is 
context-sensitive and multi-sense, posing an insurmountable modeling 
limitation for context-invariant, non-adaptive word representations. In 
the remainder of this paper we discuss the implications of these results 
– the need to consider metric learning in addition to representation 
learning, possible extensions to larger relational systems, and avenues 
for exploring non-spatial alternatives. 

5.1. Considering a broader set of geometric relations 

In Experiment 2, we found that no single metric (i.e., relation 
comparison strategy) could capture all semantic relations in our da
taset. This raises the possibility that, rather than the parallelogram 
model being the monolothic solution to the problem of analogy, there 
are a number of different geometric relations that can be used to cap
ture different semantic relations. 

We tested only a small set of geometric relations here, but myriad 
more are possible, even when restricting to very simple types. The 
search space is potentially very large, although some may seem gen
erally more sensible starting points than others. For example, consider 
the word pairs represented as vectors in Fig. 7. As one would expect, the 
relation SIMILAR seems to be best represented by the vectors for words 
having a short difference vector (still a relational feature) rather than 
the direction of the difference vector, and it would be hard to imagine 
an alternative. However, not all metrics will necessarily be easy to in
tuit. One relatively easy family of metrics to search are the Minkowski 
distance metrics, some of which have been shown to correspond to 
important basic kinds of spatial psychological representations 
(Nosofsky, 1987; Shepard, 1987). It may also be fruitful, and potentially 
more efficient, to learn a metric directly from the data, for which an 
interpretation can be proposed post-hoc. 

Vector space models of analogy embody a hope that it is possible to 
define a scheme for learning a representation such that semantic rela
tions can be read off from the space using a single, standardized geo
metric relation. Our results suggest that instead, to at least some extent, 
each geometric relation must also be learned along with the 

representation. When we encounter a new semantic relation, we need 
to consider which of a set of hypothetical geometric relations best 
captures that semantic relation. This departs to some degree with the 
original appeal of the approach, but not from its competitive perfor
mance. Future work exploring this idea could investigate the results of 
some form of categorical search among common metrics, simple 
transformations such as an attentional scaling of the features, or even 
more complex functions provided we have enough data for such a task. 
The search over geometric relations can also be thought of as additional 
representation learning on top of the original feature representation, 
which leaves open the question of whether item and relational simi
larity should be learned jointly or separately, and to what degree. 

5.2. Extending to more complex analogies 

The seminal Structure-Mapping theory of analogy poses the pro
blem as one of mapping a set of relations from one arbitrary (base) set 
of objects to another (target) set of objects (Gentner, 1983). The par
ticular set of relations to be mapped are those with the highest “sys
tematicity”, or higher-order relations. As a high-level theory, this fra
mework is general enough to encompass the full scope of human 
analogy-making, however, in representing relations as syntactic rules, 
the optimal mapping solutions are are hard to compute for large sys
tems of objects and relations. Further, this framework decouples the 
problem of representing relations from the problem of matching them, 
which requires another intractable search problem to fully implement 
and test in externally valid contexts. 

The simple model applied here allows us to provide a practical so
lution to a historically very hard problem, deriving relations from the 
feature space itself and coupling this process to the matching problem. 
However, despite this apparent ease, our results are still limited to two- 
object systems commonly used in pedagogical settings, whereas hu
mans can make much more complex analogies (e.g., comparing the 
solar system to an atom). However, extensions are possible for mapping 
arbitrary structure if we allow systems of relations between objects to 
be represented as arbitrary geometric forms in the embedding space. 
This is one reason why having an effective and efficient model of re
lational similarity is so crucial, as multi-item analogies are usually 
drastically harder to handle computationally. For example, multi-point 
statistics are second order descriptions, like distance metrics, that are 
very easy to compute in geometric spaces, which may make for a fast 
initial search for candidate systems of objects to perform a mapping. 

Ultimately, understanding human analogy is likely to require cap
turing efficient algorithms for aligning complex, abstract systems of 
concepts, a task that may be inherently easier with spatial representa
tions that can be learned from large sources of data. 

5.3. Beyond spatial relations 

Potentially the greatest challenges for vector space models of ana
logy are the constraints posed by the geometric axioms. In our experi
ments, we found that human behavior gives rise to considerable vio
lations of two of these axioms. In Experiment 3, we showed that 
relational similarity can be asymmetric, and in Experiment 4, we found 
substantial violations of the triangle inequality. These discrepancies 
may be difficult to overcome through alternative word embedding 
methods alone. 

In light of this, it would be interesting to follow the history of 
models of item similarity in considering the use of featural re
presentations (Tversky, 1977), an alternative that is known handle 
asymmetries well. However, it is notable that these feature-based 
models make use of the similarity calculation to handle asymmetries as 
opposed to the structure of the feature representations alone, which 
echoes our suggestion above that spatial representations could be 
combined with non-metric similarity measures. In fact, at least one 
method has already been proposed for measuring cognitive similarity in 
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vector spaces that are no longer subject to the constraints imposed by 
the metric axioms (Krumhansl, 1978). More recent work has also pro
posed reformulating the problem as probabilistic inference (Griffiths 
et al., 2007). 

In considering these alternatives, it may be beneficial to anticipate 
ways to better handle different word “senses”, rather than word tokens, 
as well as varying senses or salient aspects of word-pair relations. 
Methods for automatically identifying senses in vector space embed
dings are currently a topic of research in machine learning (Arora et al., 
2016). Feature-based methods draw some of their success from mod
eling feature salience directly, often as a set of free parameters. How
ever, in the spirit of the current work, it would be interesting to explore 
this approach using data-driven methods that model salience as a 
product of context. 

6. Conclusion 

Current word embedding methods might seem limited a priori in 
their capacity to model cognition, since they capture distributional 
semantics, a mere correlate of actual semantic structure, yet they make 
good predictions on account of being able to tractably leverage massive 
language corpora. While past work had already established that these 
spaces can be applied to more complex and interesting language tasks 
than word similarity (e.g., analogy completions), our work explores a 
broader space of semantically rich analogies and their psychological 
characterization beyond completion and prototypicality. We find that 
these simple representations are rich enough to generate good predic
tions of human analogy completion and relational similarity judgments, 

but that they still have systematic limitations as an account of how 
people form analogies. Specifically, the parallelogram model does not 
perform as well as simple similarity in predicting analogy completions, 
is limited in the range of semantic relations that it can capture, and 
faces fundamental limits in reproducing phenomena of human analogy 
judgments such as asymmetry and the triangle inequality. 

We view these results not as an argument against exploring vector- 
space representations and geometric approaches to analogy, but as a 
crucial source of empirical and theoretical constraints that can guide 
this endeavor. By generating substantial datasets against which models 
can be evaluated and highlighting phenomena that pose challenges to 
these models, we hope to spur on further research that explores more 
sophisticated strategies for solving these problems. For example,  
Nematzadeh et al. (2017) offer one potential method for producing 
human-like asymmetries from vector-space models. Other methods that 
compare vector aggregates (e.g., Kintsch, 2000; Kintsch & Bowles, 
2002) may also have potential, but are yet to be evaluated. We hope 
that this work will inspire further cross-talk between classic cognitive 
theories and tractable, data-driven solutions from machine learning. 
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Appendix A. Violations of symmetry from Experiment 3 

Table A1 
Comparisons with significantly different forward and backward relational similarity ratings from Experiment 3.       

Comparison Mean Rating   

Forward Backward t statistic p-value  

angry: smile – exhausted: run  4.76  2.36  5.76 9.49e-8 
sew: needle – store: products  4.00  2.30  4.95 3.04e-6 
password: access – burka: body  2.00  3.34  −4.07 9.43e-5 
wrinkle: age – cross: faith  4.16  5.60  −3.86 2.02e-4 
hairdresser: comb – pitcher: baseball  6.10  4.84  3.67 3.99e-4 
mother: children – words: letters  5.25  3.82  3.53 6.33e-4 
dim: light – darken: color  4.10  5.38  −3.48 7.61e-4 
store: shopping – bedtime: sleeping  4.36  5.68  −3.47 7.74e-4 
rise: tide – flood: water  4.86  3.65  3.34 1.18e-3 
sun: shine – shovel: dig  5.54  4.34  3.29 1.39e-3 
punch: pain – food: nourishment  5.82  4.82  3.26 1.54e-3 
cooking: peeling – knitting: purling  5.29  4.24  3.16 2.08e-3 
water: wet – dusty: dusted  2.57  3.88  −3.11 2.43e-3 
fish: fin – album: songs  5.82  4.84  3.08 2.64e-3 
punch: pain – ice: cold  5.88  4.90  3.07 2.77e-3 
emotional: turmoil – psychotic: insanity  5.14  4.10  2.99 3.53e-3 
shooter: gun – step: journey  3.16  2.14  2.98 3.62e-3 
stare: intermittently – full: empty  2.92  2.02  2.95 4.02e-3 
garment: skirt – artwork: sculpture  6.54  6.00  2.94 4.04e-3 
tree: branch – house: roof  5.94  5.08  2.90 4.61e-3 
crossbones: poison – outline: paper  3.10  2.14  2.88 4.91e-3 
knowledge: ignorance – money: poverty  5.76  6.47  −2.83 5.67e-3 
deafness: hearing – gap: teeth  2.54  3.62  −2.82 5.74e-3 
winter: sledding – refinery: oil  3.36  2.42  2.79 6.30e-3 
ladder: stairs – goal: score  4.48  3.40  2.76 6.85e-3 
husband: bachelorhood – cooking: chopping  2.61  1.73  2.75 7.05e-3 
quarter: pennies – poem: verses  4.80  3.88  2.72 7.62e-3 
coldness: shiver – battery: flashlight  2.00  2.88  −2.71 8.05e-3 
wine: alcohol – atmosphere: gas  4.46  5.42  −2.70 8.26e-3 
shirt: button – garage: wrench  3.75  4.76  −2.69 8.30e-3 
stab: wound – pacifist: peace  4.18  3.18  2.68 8.60e-3 
happy: contentment – angry: belligerence  5.31  6.10  −2.68 8.67e-3 
repair: broken – divide: parts  3.20  2.32  2.67 8.97e-3 
sunscreen: burns – water: thirst  5.66  4.71  2.61 1.04e-2 

(continued on next page) 
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Table A1 (continued)      

Comparison Mean Rating   

Forward Backward t statistic p-value  

withdrawal: timid – eat: satisfaction  3.36  2.42  2.61 1.05e-2 
narrative: epilogue – animal: pig  2.80  3.84  −2.57 1.18e-2 
pay: debtor – preach: disciple  4.92  3.92  2.55 1.24e-2 
quarter: pennies – words: letters  5.50  4.64  2.54 1.25e-2 
automobile: transportation – church: worship  5.54  4.56  2.53 1.29e-2 
bird: lips – wall: bricks  2.18  1.44  2.52 1.34e-2 
house: room – restaurant: chef  4.72  3.70  2.52 1.35e-2 
bird: wings – pack: wolf  2.94  2.08  2.48 1.48e-2 
abandon: embrace – attract: repel  6.31  5.54  2.48 1.48e-2 
award: winner – pay: debtor  3.88  4.90  −2.48 1.50e-2 
house: home – hunger: starvation  4.92  3.86  2.47 1.51e-2 
kitchen: oven – laboratory: reagents  5.14  4.29  2.46 1.55e-2 
cold: warm – infertility: reproduction  5.76  4.80  2.45 1.61e-2 
angry: enraged – hot: burning  6.12  5.44  2.44 1.63e-2 
tip: waiter – inexorable: halted  1.84  2.54  −2.44 1.64e-2 
sadness: cry – food: nourishment  4.52  3.62  2.43 1.69e-2 
glue: adhesion – shoot: kill  4.60  5.40  −2.41 1.78e-2 
workout: sweat – showering: soaping  4.52  5.35  −2.36 2.00e-2 
clothing: shirt – sun: shine  2.14  3.06  −2.36 2.00e-2 
diamond: shiny – mogul: wealth  4.74  3.84  2.34 2.13e-2 
winter: snow – winter: cold  5.42  4.65  2.31 2.30e-2 
explosion: damage – drink: hydrate  5.42  4.68  2.27 2.56e-2 
curtain: window – anthropology: people  3.16  2.38  2.24 2.72e-2 
check: employee – lecture: child  3.86  3.02  2.22 2.88e-2 
instruct: subordinate – inspire: follower  5.96  5.24  2.21 2.91e-2 
bigot: hateful – pillow: soft  5.08  5.84  −2.21 2.96e-2 
furniture: chair – seat: chair  4.88  4.08  2.20 2.99e-2 
hug: comfort – medicine: recovery  6.04  5.54  2.18 3.13e-2 
donation: charity – certificate: teacher  4.18  3.29  2.16 3.31e-2 
book: chapters – advertise: promote  2.84  2.08  2.16 3.35e-2 
hands: gloves – war: weapon  3.26  4.08  −2.15 3.38e-2 
therapy: talking – spring: breeze  3.38  4.22  −2.15 3.42e-2 
circus: clown – house: roof  4.82  3.98  2.13 3.55e-2 
teach: ignorant – groom: unkempt  5.82  5.08  2.12 3.63e-2 
pimple: skin – leukemia: blood  5.06  5.72  −2.11 3.71e-2 
church: pew – edge: cliff  3.59  2.82  2.09 3.87e-2 
fire: burn – baby: cry  5.18  5.86  −2.05 4.28e-2 
ear: earplug – shirt: button  4.50  3.74  2.05 4.28e-2 
adult: childhood – miscarriage: fetus  2.63  1.94  2.04 4.43e-2 
introduction: speech – step: journey  5.84  5.24  2.03 4.50e-2 
mathematics: numbers – anatomy: body  6.30  5.84  1.99 4.96e-2  

Appendix B. Stimuli and results for Experiment 4 

Table B1 
Average similarity ratings for each word pair in each triad from Experiment 4 (violations of the triangle inequality in judgments of analogy quality).      

Triad (1,2,3) Mean Rating for Each Analogy Type 

1–2 2–3 1–3  

hat: head, mask: face, disguise: identity 6.65 (.17) 5.65 (.29) 3.20 (.37) 
foot: shoe, wrist: bracelet, wall: painting 6.20 (.23) 5.75 (.20) 3.55 (.42) 
dog: mailman, cat: mouse, horse: hay 5.50 (.47) 3.95 (.39) 2.30 (.36) 
nurse: patient, mother: baby, frog: tadpole 5.55 (.34) 6.35 (.21) 2.45 (.39) 
cocoon: butterfly, egg: chicken, wine: vineyard 5.95 (.30) 4.90 (.52) 3.05 (.41) 
person: clothes, bird: feathers, cat: whiskers 6.30 (.22) 5.35 (.31) 3.35 (.41) 
student: backpack, snail: shell, rabbit: burrow 5.15 (.36) 4.95 (.41) 2.75 (.40) 
wedding: bride, aquarium: fish, carton: milk 3.75 (.38) 5.40 (.36) 3.70 (.38) 
flock: bird, hive: bee, hangar: airplane 6.35 (.18) 5.75 (.38) 3.35 (.38) 
lawyer: books, chemist: beakers, librarian: books 5.80 (.31) 5.80 (.34) 2.65 (.39) 
veil: face, password: access, key: safe 3.90 (.41) 5.40 (.41) 2.50 (.39) 
pride: lion, brain: neuron, computer: chip 4.20 (.41) 5.95 (.28) 3.00 (.45) 

Note: Standard error of the mean is reported in parentheses.  
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