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Abstract

Sampling is a promising bottom-up method for
exposing what generative models have learned
about language, but it remains unclear how to
generate representative samples from popular
masked language models (MLMs) like BERT.
The MLM objective yields a dependency net-
work with no guarantee of consistent condi-
tional distributions, posing a problem for naive
approaches. Drawing from theories of iter-
ated learning in cognitive science, we explore
the use of serial reproduction chains to sam-
ple from BERT’s priors. In particular, we ob-
serve that a unique and consistent estimator of
the ground-truth joint distribution is given by
a Generative Stochastic Network (GSN) sam-
pler, which randomly selects which token to
mask and reconstruct on each step. We show
that the lexical and syntactic statistics of sen-
tences from GSN chains closely match the
ground-truth corpus distribution and perform
better than other methods in a large corpus of
naturalness judgments. Our findings establish
a firmer theoretical foundation for bottom-up
probing and highlight richer deviations from
human priors1.

1 Introduction

Large neural language models have become the
representational backbone of natural language pro-
cessing. By learning to predict words from their
context, these models have induced surprisingly
human-like linguistic knowledge, from syntactic
structure (Linzen and Baroni, 2021; Tenney et al.,
2019; Warstadt et al., 2019) and subtle lexical bi-
ases (Hawkins et al., 2020) to more insidious so-
cial biases and stereotypes (Caliskan et al., 2017;
Garg et al., 2018). At the same time, efforts to
probe these models have revealed significant de-
viations from natural language (Braverman et al.,
2020; Holtzman et al., 2019; Dasgupta et al., 2020).

1Code and data are available at https://github.
com/taka-yamakoshi/TelephoneGame
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chain 1

food was running short, and winters were colder.
time was running short, and winters were colder.
time was running out, and winters were colder.

Figure 1: We use a serial reproduction method to probe
BERT’s prior over possible sentences (visualization of
reproduction chains obtained by running t-sne on sen-
tence embeddings; chains are color-coded and fade to
black across their burn-in period).

Observations of incoherent or “weird” behavior
may often be amusing, as when a generated recipe
begins with “1/4 pounds of bones or fresh bread”
(Shane, 2019), but also pose significant dangers in
real-world settings (Bender et al., 2021).

These deviations present a core theoretical and
methodological puzzle for computational linguis-
tics. How do we elicit and characterize the full
prior2 that a particular model has learned over pos-
sible sentences in a language? A dominant ap-
proach has been to design benchmark suites that

2We use the term prior to refer to graded linguistic knowl-
edge assigning probabilities to all possible sentences. While
we focus on text, this prior is also the foundation for more
grounded, pragmatic language use.
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Type of unnaturalness Example
word-level morphological Higher education school xur divided into six institutions.

phrase-level

syntactic
Swallowing hard, Verity stared at the these, desperately wanting
to see if they congealed.

semantic
The west section is a fig octagon.
A private apartment with nothing but hot cooled water.

predication
He already costumes his relationship with my mother carefully.
Voices rapped on the incremental door.

sentence-level

out-of-context Like a cataract, Horatius responds, “You are better than me.”
self-contradictory The newspaper is published weekly and biannually.

pragmatic
She grew up with three sisters and ten sisters.
It should apply between the extreme and the extreme.

Table 1: Examples of sentences sampled from BERT’s prior that received low naturalness ratings from our partic-
ipants, including sources forms of unnaturalness like predicability or category errors (e.g. doors typically do not
have the property of “incrementality”), semantic incoherence (“hot cooled water”), or contradictory constructions
(especially for longer sentences). More examples can be found in table S2 and in the online supplement.

probe theoretically important aspects of the prior,
and compare model behavior to human behavior
on those tasks (e.g. Warstadt et al., 2020; Ettinger,
2020). Yet this approach can be restrictive and
piecemeal: it is not clear ahead of time which
tasks will be most diagnostic, and many sources of
“weirdness” are not easily operationalized (Kurib-
ayashi et al., 2021).

A more holistic, bottom-up alternative is to di-
rectly examine samples from the model’s prior and
compare them against those from human priors.
However, many successful models do not explicitly
expose this distribution, and many generation meth-
ods optimize the “best” sentences rather than the-
oretically meaningful or representative ones. For
example, masked language models (MLMs) like
BERT (Devlin et al., 2018) are dependency net-
works (Heckerman et al., 2000; Toutanova et al.,
2003), trained to efficiently learn an independent
collection of conditional distributions without en-
forcing consistency between them. In other words,
these conditionals may not correspond to any co-
herent joint distribution at all, leading recent work
to focus on other score-based sampling objectives
(Goyal et al., 2021).

Here, we explore the use of serial reproduction
chains (see Fig. 1) to overcome these challenges.
While a naive (pseudo-)Gibbs sampler is indeed
problematic for MLMs, the literature on Generative
Stochastic Networks (GSNs; Bengio et al., 2014)
has formally shown that a simple algorithmic vari-
ant we call GSN sampling produces a stationary
distribution that is, in fact, a unique and consis-

tent estimator of the ground-truth joint distribution.
Furthermore, while the independent conditionals
learned by dependency networks may be arbitrarily
inconsistent in theory, empirical work has found
that these deviations tend to be negligible in prac-
tice, especially on larger datasets (Heckerman et al.,
2000; Neville and Jensen, 2007). Thus, we argue
that it is both theoretically and empirically justified
to take these samples as uniquely representative of
the model’s prior over language.

We begin in Section 2 by introducing the serial
reproduction approach and clarifying the problem
of re-constructing a joint distribution from a depen-
dency network. We then validate that our chains are
well-behaved (Section 3) and compare the statis-
tics of samples from BERT’s prior to the lexical
and syntactic statistics of its ground-truth training
corpus to measure distributional similarity (Section
4). Finally, in Section 5, we present a large-scale
behavioral study eliciting naturalness judgments
from human speakers and identify features of the
generated sentences which most strongly predict
human ratings of “weirdness” (see Table 1). We
find that GSN samples closely approximate the
ground-truth distribution and are judged to be more
natural than other methods, while also revealing
areas of improvement that have been difficult to
quantify with top-down benchmarks.

2 Approach

2.1 Serial reproduction

Our approach is inspired by serial reproduction
games like Telephone, where an initial message is



Bayes net (acyclic) dependency net (cyclic)
LM MLM

Figure 2: While autoregressive language models (LMs)
are Bayes nets, masked language models (MLMs) are
dependency networks with cyclic dependencies.

gradually relayed along a chain from one speaker
to the next. At each step, the message is changed
subtly as a result of noisy transmission and recon-
struction, and the final version of the message often
differs drastically from the first. This serial repro-
duction method, initially introduced to psychology
by Bartlett (1932), has become an invaluable tool
for revealing human inductive biases (Xu and Grif-
fiths, 2010; Langlois et al., 2021; Sanborn et al.,
2010; Harrison et al., 2020). Because reconstruct-
ing a noisy message is guided by the listener’s prior
expectations, such chains eventually converge to a
stationary distribution that is equivalent to the pop-
ulation’s prior, reflecting what people expect others
to say (Kalish et al., 2007; Griffiths and Kalish,
2007; Beppu and Griffiths, 2009). For example,
Meylan et al. (2021) recently evaluated the ability
of neural language models to predict the changes
made to sentences by human participants at each
step of a serial reproduction chain. Thus, while
serial reproduction is commonly used to probe hu-
man priors, and to compare models against human
data, it is not yet in wide use for probing the models
themselves.

2.2 BERT as a dependency network

There has been considerable confusion in the recent
literature over how to interpret the MLM objective
used to train models like BERT, and how to inter-
pret samples from such models. Wang and Cho
(2019) initially observed that BERT was a Markov
Random Field (MRF) and proposed a Gibbs sam-
pler that iteratively masks and reconstructs differ-
ent sites k by sampling from the conditional given
the tokens at all other sites P̂ (wk|w−k). As ob-
served by Goyal et al. (2021), however, this pro-
cedure does not actually correspond to inference
in the MRF. Unlike auto-regression language mod-
els (LMs) like GPT-3 (Brown et al., 2020), which
define an acyclic dependency graph (or Bayes net)

from left-to-right, MLMs have cyclic dependencies
(see Fig. 2) and are therefore usefully interpreted as
dependency networks rather than Bayes networks
(Heckerman et al., 2000). Because dependency net-
works estimate independent conditionals, there is
no guarantee that these conditionals are consistent
(i.e. they may violate Bayes rule) and therefore do
not represent a coherent joint distribution.

Still, it is possible to re-construct a joint dis-
tributions from these conditionals. For example,
Heckerman et al. (2000) proved that if sites are
visited in a fixed order, a (pseudo-)Gibbs chain
similar to the one used by Wang and Cho (2019)
does converge to a stationary distribution that is
a well-formed joint. The problem is that differ-
ent orders may yield different joint distributions,
making it difficult to interpret any distributions as
definitive. This ambiguity was resolved by the Gen-
erative Stochastic Network framework proposed by
Bengio et al. (2014). Instead of visiting sites in
a fixed order, a GSN sampler randomly chooses
which site to visit at each step (with replacement),
thus preserving aperiodicity and ergodicity. Specif-
ically, this algorithm begins by initializing with
a sequence {w0

1, . . . , w
0
n}. At each step t of the

chain, we randomly choose a site k ∈ 1, . . . , n to
mask out, and we sample a new value wt+1

k from
the conditional distribution P (wk|wt

−k) with the
other n− 1 sites fixed.

A key theorem of Bengio et al. (2013, 2014)
proves that the stationary distribution arising from
the GSN sampler defines a unique joint distribu-
tion, and furthermore, this stationary distribution
is a consistent estimator of the ground-truth joint
distribution3. Importantly, this stationary distribu-
tion differs from the one given by the Metropolis-
Hastings (MH) approach suggested by Goyal et al.
(2021), which uses the GSN sampler as a proposal
distribution but accepts or rejects proposals based
on an energy-based pseudo-likelihood defined by
the sum of the conditional scores at each location
(Salazar et al., 2020). This MH sampler instead
converges to an implicit stationary distribution de-
fined by the energy objective4.

3Technically, the proof only holds if the dependency net-
work was trained using consistent estimators for the condition-
als, which is the case for the cross-entropy loss used by BERT;
see also McAllester (2019).

4Although our focus is on evaluation rather than algorith-
mic performance characteristics, we note that because GSN
sampling does not require calculating energy scores to deter-
mine the acceptance probability for each sample, it is signifi-
cantly faster, especially for longer sequences.



2.3 Mixture kernels
In practice, Markov chain sampling methods have
many failure modes. Most prominently, because
samples in the chains are not independent, it is
challenging to guarantee convergence to a station-
ary distribution, and the chain is easily “stuck” in
local regions of the sample space (Gelman et al.,
1992). Typically, samples from a burn-in period
(e.g. the first m epochs) are discarded to reduce
dependence on the initial state, and a lag between
samples (e.g. recording only every l epochs) is in-
troduced to reduce auto-correlation. However, the
problem is particularly severe for language models
like BERT where there are strong mutual dependen-
cies between words at different sites. For example,
once the chain reaches a tri-gram like ‘Papua New
Guinea’, it is unlikely to change any single word
while keeping the other words constant. To ensure
ergodicity, we use a mixture kernel introducing a
small constant probability (ε = 0.001) of return-
ing to the initial distribution of [MASK] tokens on
each epoch, allowing the chain to burn in again.

3 Validating the stationary distribution

In this section, we validate that the samples pro-
duced by our serial reproduction method are repre-
sentative of the stationary prior distribution. More
specifically, we consider two basic properties of the
chain: convergence and independence. For these
analyses, we consider samples from the pretrained
bert-base-uncased model with 12 layers, 12
heads, and 110M parameters5.

3.1 Convergence
We begin by checking the convergence time for
chains generated by GSN sampling. Theoretical
bounds derived for serial reproduction chains give a
convergence time of n log n, where n is the number
of sites (see Rafferty et al., 2014). To check these
convergence bounds in practice, we set n = 21
and select 20 sentences from Wikipedia to serve as
initial states, and run 10 chains initialized at each
sentence. We ensured that half of these sentences
have high initial probability (under BERT’s energy
score) and half have low initial probability. We
find that these distributions indeed begin to quickly
mix in probability (see Figure S1). Because longer
sentences may require a longer burn-in time, we
conservatively set our burn-in window to m =
1000 epochs for our subsequent experiments.

5https://huggingface.co/bert-base-uncased

3.2 Independence

Second, we want to roughly ensure independence
of samples, so that the statistics of our distribution
of samples isn’t simply reflecting auto-correlation
in the chain. For a worst-case analysis of a local
minimum, suppose P (wi|w−i) < δ (0 < δ < 1)
for all i ∈ [1, . . . , k], where k is the sentence length
in tokens. Then the probability of re-sampling the
same sentence is roughly < δk·n after n epochs.
We can solve for the number of epochs n we need
to bound the probability of re-sampling the exact
same sentence under ε for a given worst-case δ. For
example, if δ = 0.99 and we want to ensure that
the probability of re-sampling the same sentence is
below a threshold ε = 0.01, then n = 47 epochs
will likely suffice. Ensuring complete turnover in
the worst case scenario requires much longer lags,
i.e. [1− (1− δ)k]n < ε.

To evaluate the extent to which these cases arise
in practice, we examine auto-correlation rates on
longer chains (50,000 epochs). We calculate cor-
relations between the energy scores at each epoch
as a proxy for the state: when the chain gets stuck
re-sampling the same sentence, the same scores
appear repeatedly. We find that auto-correlation is
generally high, but our mixture kernel prevents the
worst local minima for both the MH chain (Goyal
et al., 2021) and our GSN chain (see Fig. S2),
although we still found higher auto-correlation
rates for the MH chain. To further examine these
minima, we examined edit rates: the number of
changes made to the sentence within an epoch.
Without the mixture kernel, we observe long re-
gions of consistently low edit rates (e.g. in some
cases, 5000 epochs in a row of exactly the same
sentence) which disappear under the mixture kernel
(see Fig. S3).

Based on these observations, we set the lag to
l = 500 epochs to maintain relatively high inde-
pendence between samples.

4 Distributional comparisons

In this section, we examine the extent to which
higher-order statistics of sentences from BERT’s
prior are well-calibrated to the data it was trained
on. This kind of comparison provides a richer sense
of what the model has learned or failed to learn
than traditional scalar metrics like perplexity (Taka-
hashi and Tanaka-Ishii, 2017; Meister and Cotterell,
2021; Takahashi and Tanaka-Ishii, 2019; Pillutla
et al., 2021).

https://huggingface.co/bert-base-uncased
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Figure 3: The lexical frequencies of our GSN samples (A) closely match the Zipfian distribution of the corpus and
(B) closely correlate with the corresponding frequencies of the corpus distribution.

4.1 Corpus preparation

The version of BERT we analyzed in the previ-
ous section was trained on a combination of two
corpora: Wikipedia and BookCorpus. In order to
make valid comparisons between human priors and
machine priors, we needed to closely match BERT-
generated sentences with a comparable subset of
human-generated sentences from these combined
corpora. There are two technical challenges we
must overcome to ensure comparable samples, con-
cerning the sentencizer and tokenizer steps.

First, because our unit of comparison is the sen-
tence, we needed to control for any artifacts that
may be induced by how we determine what sen-
tences are (e.g. if our Wikipedia sentences were
systematically split on abbreviations, skewing the
distribution toward fragments). We therefore ap-
plied the same punkt sentencizer to create our
distribution of Wikipedia sentences and to check
our BERT samples for cases where the generated
sequence contained multiple sentences or ended
with a colon or semicolon.

Second, we needed a tokenizer that equates sen-
tence length. Because bi-directional models like
BERT operate over sequences of fixed length, all
samples drawn from a single chain have the same
number of tokens.

Critically, however, BERT chains are defined
over sequences of WordPiece tokens, so once these
sequences are decoded back into natural language
text, they may yield sentences of varying length,

depending on how the sub-word elements are com-
bined together6 (see Fig. S5). We solve this align-
ment problem by using the WordPiece tokenizer to
extract sentences of fixed sub-word token length
from our text corpora, yielding equivalence classes
of corpus sentences that are all tokenized to the
same number of WordPiece tokens. We ran GSN
and MH chains over sentences of n = 11 tokens,
representing the modal lengths of sentences in
BookCorpus (see Fig. S4). We obtained 5,000 in-
dependent sentences from each sampling method
after applying our conservative burn-in and lag,
and combined the Wikipedia and BookCorpus sen-
tences together into a single corpus that is represen-
tative of BERT’s training regime.

4.2 Lexical distributions

We begin by comparing the lexical frequency statis-
tics of our samples from BERT against the ground-
truth corpus statistics. First, we note that the rela-
tionship between rank and frequency of tokens in
the GSN sampling matches the Zipfian distribution
of its training corpus better than those produced by
MH sampling (see Fig. 3A). However, it is possible
to produce the same overall distribution without

6One additional complexity is that the mapping between
WordPiece tokens and word tokens is non-injective. There
exist multiple sequences of sub-word tokens that render to
the same word (e.g. the WordPiece vocabulary contains a
token for the full word ‘missing’ but it is also able to generate
‘missing’ by combining the sub-word tokens ‘miss’+‘#ing’).
However, these cases are rare.
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Figure 4: The relative frequencies of different parts of speech (left) and dependencies (right) in the ground-truth
training corpora closely matched for GSN samples. In all cases, the GSN frequencies fell closer to the ground-truth
than the MH frequencies.

matching the empirical frequencies of individual
words. We next examined the respective ranks of
each word across the two distributions. Overall,
the word ranks in the GSN samples had a strong
Spearman rank correlation of r = 0.75 with the
word ranks in the ground-truth corpus; the MH
samples had a significantly lower correlation of
r = 0.48 (Pearson z = 17, p < 0.001, Fig 3B).
Most disagreements lay in the tails where frequency
estimates are particularly poor (e.g. many words
only appeared once in our collection of samples).
Indeed, among words with greater than 10 occur-
rences, the correlation improved to r = 0.83 for
GSN and r = 0.65 for MH.

To understand this relationship further, we con-
ducted an error analysis of lexical items which
were systematically over- or under-produced by
BERT relative to its training corpus. We found
that certain punctuation tokens (e.g. parentheses)
were over-represented in both the GSN samples
and the MH samples, while contractions like ’s
and ’d were under-represented. The MH samples
specifically over-produced proper names such as
Nina and Jones. Finally, due to the use of sub-word
representations, we found a long tail of morpho-
logically complex words that did not appear at all
in the training corpus (e.g. names like Kyftenberg
or Streckenstein and seemingly invented scientific
terms like lymphoplasmic, neopomphorus, or pyra-
nolamines).

4.3 Syntactic distributions

While the lexical distributions were overall well-
matched for GSN samples, our error analysis sug-
gested potential structure in the deviations. In
other words, entire grammatical constructions may
be over- or under-represented, not just particular
words. To investigate these patterns, we used the
spacy library to extract the parts of speech and
dependency relations that are present within each
sentence. We are then able to examine, in aggre-
gate, whether certain classes of constructions are
disproportionately responsible for deviations. Our
findings are shown in Fig. 4. Overall, the distri-
butions are close, but several areas of misalign-
ment emerge. For parts of speech, we observe
that the GSN sampler is slightly over-producing
nouns (and proper nouns) while under-producing
verbs and prepositions. We also observe that it
is over-producing noun-related dependencies (e.g.
compound nouns and appositional modifiers, which
are noun phrases modifying other noun phrases, as
in “Bill, my brother, visited town”). This pattern
suggests that BERT’s prior may be skewed toward
(simpler) noun phrases while neglecting more com-
plex constructions.

4.4 Sentence complexity

One hypothesis raised by comparing distributions
of syntactic features is that BERT may be regu-
larizing the complex structure of its input toward
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dency lengths across sentences from BERT chains and
from the training corpus.

simpler constructions. To test this hypothesis, we
operationalize syntactic complexity using a mea-
sure known as the average dependency length of
a sentence (Futrell et al., 2015; Grodner and Gib-
son, 2005). This measure captures the (linear) dis-
tance between syntactically related words, which
increases with more complex embedded phrase
structures. We found that the distribution of de-
pendency distances in the sentences produced by
GSN sampling is overall more similar to those in
its training corpus than the MH (Fig. 5), although
closer analysis suggests it is still skewed slightly
simpler (see Fig. S6).

5 Human judgments

Finally, while our corpus comparisons highlighted
particular ways in which samples from BERT’s
prior were well-calibrated to the high-level statis-
tics of its training distribution, it is unclear whether
these agreements or deviations ‘matter’ in terms of
naturalness. In this section, we elicit human natu-
ralness judgments in order to provide a more holis-
tic measure of potential ‘weirdness’ with BERT
sentences.

5.1 Experimental methods

We recruited 1016 fluent English speakers on the
Prolific platform and asked them to judge the natu-
ralness of 4040 unique sentences from three length
classes: short (11 tokens), medium (21 tokens),
and long (37 tokens). 1675 of these sentences were
from the stationary state of the different chains,
2339 were from the burn-in phase (i.e. < 1000
epochs), and the remainder were baseline sentences
(149 from Wikipedia, 48 from a 5-gram model, and
42 from an LSTM model; see Appendix for details).

Each participant was shown a sequence of 25 sen-
tences in randomized order, balanced across differ-
ent properties of the stimulus set7. On each trial,
one of these sentences appeared with a slider rang-
ing from 0 (“very weird”) to 100 (“completely nat-
ural”)8. After excluding 8 participants who failed
the attention check (i.e. failed to rate a scram-
bled sentence below the midpoint of the scale and
a human-generated sentence above the midpoint),
we were left with an average of 7.3 responses per
sentence.

5.2 Behavioral results

We begin by comparing the naturalness of sen-
tences from the stationary GSN distribution to
other baselines (see Fig. 6), using a linear regres-
sion model predicting trial-by-trial judgments as
a function of categorical variables encoding sen-
tence length (short, medium, long) and the source
of the sentence (Wikipedia, GSN, MH, LSTM, or
n-gram). First, we find that the naturalness of sen-
tences from GSN declines by 14 points at longer
sentence lengths, p < 0.001, while the natural-
ness of Wikipedia sentences is unaffected by length
(interaction term, p < 0.001), consistent with re-
sults reported by Ippolito et al. (2020). Further-
more, among short sentences, where we included
additional baselines, we find that GSN sentences
tend to be rated as slightly less natural than sen-
tences from Wikipedia (+10 points, p < 0.001) but
more natural than those produced by an n-gram
model (-52 points, p < 0.001), LSTM model (-
25 points, p < 0.001); or MH sampling from the
same BERT conditionals (-15 points, p < 0.001;
see Table S1). MH samples also deteriorate sig-
nificantly in naturalness for longer sentences com-
pared to GSN samples (p < 0.001). Finally, we
examine naturalness ratings across the the burn-in
period, finding that ratings decline steadily across
the board as the chain takes additional steps (linear
term: t(7297) = −12.4, p < 0.001), suggesting
gradual deviation away from the initial distribu-
tion of Wikipedia sentences toward the stationary
distribution (shown as the green and grey regions,
respectively, in Fig. S7).

7In a later batch, we increased the number of sentences
per participant to 40. The task was approximately 10 minutes
and participants were paid $2.50, for an average compensation
rate of $15/hr.

8See Clark et al. (2021) for a discussion of the merits of
phrasing the question in terms of naturalness instead of asking
participants to judge whether it was produced by a human or
machine.
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Figure 6: Empirical naturalness ratings elicited from
the stationary GSN distribution, compared to different
baselines at different sentence lengths. Error bars are
bootstrapped 95% CIs.

5.3 Predicting naturalness
Given that sentences from the stationary GSN dis-
tribution are judged to be less natural than human-
generated sentences overall, we are interested in
explaining why. Which properties of these sen-
tences make them sound strange? We approach this
problem by training a regression model to predict
human judgments from attributes of each sentence.
We include all part of speech tag counts and depen-
dency counts, as well as the sentence probability
scored under BERT, and the sentence length. We
use a cross-validated backwards feature selection
procedure to select the most predictive set of these
features for a linear regression (Kuhn and Johnson,
2013)9.

The best-fitting model used 26 features and
achieved an (adjusted) R2 = 0.21. The only fea-
tures associated with significantly lower ratings
were the use of adpositions (e.g. before, after)
and coordinating conjunctions. Importantly, we
found that including a categorical variable of cor-
pus (i.e. Wikipedia vs. GSN) significantly im-
proved model fit even after controlling for all other
features, χ2(1) = 7135, p < 0.001, suggesting
that sources of “weirdness” are not being captured
by typical statistics. We show some of these low-
naturalness sentences in Table 1 and S2.

6 Discussion

6.1 Probing through generation
A core idea of our serial reproduction approach
is to use generation as a window into a model’s
prior over language. While a variety of metrics

9Specifically, we used the lmStepAIC procedure imple-
mented in the caret R package, with k = 10 folds.

and techniques have been proposed to quantify the
“quality” of generation, especially in the domains of
open-ended text generation and dialogue systems
(Caccia et al., 2020; Li et al., 2020; Guidotti et al.,
2018; Celikyilmaz et al., 2020), these metrics have
typically been applied to compare specific genera-
tion algorithms and operationalize specific pitfalls,
such as incoherence, excess repetition, or lack of
diversity. Consequently, it has been difficult to dis-
entangle the extent to which deviations resulting
from generations are an artifact of specific decod-
ing algorithms (e.g. greedy search vs. beam search)
or run deeper, into the prior itself. For the purposes
of probing, we suggest that it is important to ask
not only how to generate the highest-scoring sen-
tences but how to generate sentences that may be
interpreted as representative of the model’s prior, as
formal results on GSNs have effectively provided.

6.2 GSN vs. energy-based objectives

We found that the prior distribution yielded by the
GSN sampler more closely approximated the lexi-
cal and syntactic distributions of the ground-truth
corpus and also sounded more “natural” to humans
than the samples yielded by MH. These results are
in contrast to findings by Goyal et al. (2021), show-
ing that MH produced high-quality BLEU scores
on a Machine Translation (MT) task compared to
a degenerate (pseudo-)Gibbs sampler. There are
several possible reasons for this discrepancy. One
possibility may be task-specific: while we focused
on unconditional generation, Goyal et al. (2021)
focused on a neural machine translation (MT) task,
where sentence generation was always conditioned
on a high-quality source text and thus remained
within a constrained region of sentence space. An-
other possibility is that we ran substantially longer
chains (50,000 epochs compared to only 33 epochs)
and the pitfalls of MH sampling only emerged later
in the chain.

More broadly, our corpus comparisons and hu-
man evaluations suggest serious limitations of sim-
ple “quality” metrics like energy values. We found
that the best-scoring states were often degenerate
local minima with mutually supporting n-grams
(such as repetitive phases and names like “Papua
New Guinea”). Indeed, there was only a loose re-
lationship between energy scores and participants’
judgments in our study, with many poorer-scoring
sentences judged to be more natural than better-
scoring sentences (e.g. overall, the distribution



of Wikipedia sentences tended to be much lower-
scoring under the energy function despite being
rated as more natural). We empirically validated
that the stationary distribution of the GSN chain
successfully approximates even higher-order statis-
tics of the ground-truth corpus, suggesting that the
raw conditionals of the dependency network may
implicitly acquire the joint distribution, without
requiring guarantees of consistency.

6.3 Other architectures
Serial reproduction methods are particularly useful
for probing models that do not directly generate
samples from their prior. For auto-regressive mod-
els like GPT-2, these samples are obtained more
directly by running the model forward (and, in-
deed, ancestral sampling produces text that better
balances the precision-recall tradeoff than other al-
gorithms; Pillutla et al., 2021). While we focused
on BERT, this method may be particularly use-
ful for encoder-decoder architectures like BART
(Lewis et al., 2020) which more closely resemble
the human Telephone Game task, requiring full re-
construction of the entire sentence from noisy input
rather than reconstruction of a single missing word.
Indeed, these architectures may overcome an im-
portant limitation of serial reproduction with BERT:
because these chains operate over a fixed sequence
length, the resulting prior is not over all of language
but only over sentences with the given number of
WordPiece tokens. Finally, while we focused on
unconditional generation, the GSN sampler also
generalizes straightforwardly to conditional gen-
eration, where a subset of sites are fixed and the
masked site is chosen from the remaining set.

6.4 Conclusions
Serial reproduction paradigms have been central
for exposing human priors in the cognitive sci-
ences. In this paper, we drew upon the theory
of iterated learning and of Generative Stochastic
Networks (GSNs) to expose the priors of large neu-
ral language models, which are often similarly in-
scrutable. We hope future work will consider other
points of contact between these areas and draw
more extensively from the theory developed to un-
derstand dependency networks. More broadly, as
language models become increasingly adaptive and
deployed in increasingly unconstrained settings,
bottom-up probing has the potential to reveal a
broader spectrum of “weirdness” than top-down
evaluative benchmarks.
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Appendix A: Baseline details

Wikipedia sentences were randomly selected from
the full sentencized corpus English Wikipedia that
tokenized to 12, 21, and 37 WordPiece tokens for
the short, medium, and long conditions, respec-
tively. These sentences were also chosen to span a
broad range of sentence probabilities under BERT
(i.e. logP (p1, . . . , pn) =

∑
k logP (pk|p−k)).

For our ngram baseline, we trained a 5-gram
model with Kneser-Ney smoothing (Kneser and
Ney, 1995) on English Wikipedia using the kenlm
library (Heafield, 2011), and generated sentences
of length 10 by sampling from the resulting condi-
tional distributions. Because this model stripped
punctuation, and was therefore unable to emit an
“end of sentence” token, we expected it to serve as
a lower bound on the naturalness scale.

For our LSTM baseline, we used the network
pre-trained by Gulordava et al. (2018) on English
Wikipedia. This model was trained to emit an end
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of sentence (<eos>) token, allowing us to rejec-
tion sample to obtain sentences that were exactly 10
words long with no unknown words (i.e. <unk> to-
kens). Because it was not trained with a <start>
token, however, we needed to initialize it with the
initial word of the sentence. We randomly selected
this initial word from a small set of common sen-
tence openers (e.g. the, a, it, his, her). As a
result of our initial token selection, this model does
not precisely sample from its true prior over sen-
tences. Thus, it is best viewed as another baseline
of sentences rather than as a careful architectural
comparison.

Because we were asking participants to judge
the naturalness of complete sentences, we did not
want to include samples which clearly violated sen-
tencehood, as these would not be informative (e.g.
fragments from Wikipedia that were incorrectly
sentencized and ended with an abbreviation, bibli-
ographic text like “korsakov (1976) r.s.,” or table
markdown with pipes like “| a | b |”). We automat-
ically removed any sentences containing pipes or
ending with colons or semicolons, as these were
associated with sentencizer inconsistency, as well
as sequences that contained multiple sentences (ac-
cording to our sentencizer). Finally, the authors
took a manual pass to exclude other non-sentential
fragments from the stimulus set.

Appendix B: Corpus details

We downloaded cleaned Wikipedia data provided
by GluonNLP (https://github.com/dmlc/gluon-
nlp/tree/master/scripts/datasets/pretrain_corpus),
and BookCorpus data from HuggingFace Datasets
(https://huggingface.co/datasets/bookcorpus).

−60

−40

−20

0

0 100 200 300
epoch

se
nt

en
ce

 s
co

re

Figure S1: We examine the convergence time by initial-
izing different chains at different classes of sentences
(red is high probability under BERT’s energy function,
blue is low probability). Faint lines show smoothed tra-
jectories for individual chains and error bars are boot-
strapped 95% confidence intervals across chains.
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Figure S2: MCMC methods like GSN and MH sam-
pling tend to get stuck in local regions with high auto-
correlation. We find that a minimal autocorrelation is
achievable with lower lag (500 epochs between sam-
ples) using a mixture kernel with a constant probabil-
ity of resetting the chain. Error ribbons are 95% confi-
dence intervals.
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term estimate std.error statistic p.value
1 (Intercept) 67.33 1.14 59.08 < 0.001
2 short vs. long (GSN) -14.49 1.60 -9.08 < 0.001
3 short vs. medium (GSN) -10.21 1.60 -6.39 < 0.001
5 GSN vs. LSTM (short) -28.60 2.04 -14.05 < 0.001
6 GSN vs. MH (short) -14.76 1.59 -9.26 < 0.001
7 GSN vs. ngram (short) -54.26 2.00 -27.07 < 0.001
8 GSN vs. wiki (short) 10.40 1.70 6.13 < 0.001

13 interaction (short vs. long; GSN vs. MH) -12.31 2.23 -5.51 < 0.001
14 interaction (short vs. medium; GSN vs. MH) -7.33 2.23 -3.29 < 0.001
17 interaction (short vs. long; GSN vs. wiki) 11.22 2.39 4.70 < 0.001
18 interaction (short vs. medium; GSN vs. wiki) 5.56 2.37 2.35 0.02

Table S1: Fixed effect estimates for regression on human scores. Length class and source are dummy coded with
short lengths and GSN as baselines.
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Figure S3: Without mixing in a constant probability of returning to the initial distribution, the GSN chain (and MH
chain, not shown) goes through periods of stasis with low edit rates (red curves), contributing to high autocorrela-
tions.

Figure S4: Empirical distribution of sentence lengths in Wikipedia and BookCorpus training corpora, after Word-
Piece tokenization. For our corpus comparisons, we selected the modal Wikipedia sentence length of 21 tokens and
the modal BookCorpus length of 11 tokens. For our human judgment experiment, we included baseline sentences
only from Wikipedia for shorter (12 tokens) and longer sentences (37 tokens), with roughly equal prevalence in
the corpus (orange dots).



types of unnaturalness examples
character-level He preened on a レ drink of copper.

phrase-level semantic
The little wattled songbird, also called the Chink Warbler,
Orange Garver or Quickcumber is a socially luscious and
habituated bird species.

sentence-level

construction There were two hours before he made the walk.
out-of-context word No need to focus on bicycling.

self-contradictory
The symbols (· · ·) read as (· · ·) and (·) are written as
(· · · · ·) , not as (·).

repetition

The college of arts and sciences, adjacent to the business
school, is majoring in business.
He saw Cronus and Cronus, Cronus and James Cronus he
saw Cronus and Cronus and Cronus and Cronus Cronus
when he saw Cronus.

Table S2: More examples of sentences from BERT’s prior with low naturalness ratings.
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Figure S5: There is a misalignment between the space
of sentences obtainable by a BERT chain of a fixed to-
ken length (in sub-word tokens) and natural language
sentences of a fixed length (in words). We consider
the distribution of corpus sentences that are obtainable
from a fixed-length BERT chain, which may decode to
different lengths in natural text (black arrows).
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Figure S6: Dependency distances are similar for sen-
tences sampled from BERT’s prior and sentences from
its training corpus, but the BERT distribution is more
bimodal and tends to skew simpler.
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Figure S7: Sentences gradually drift away from the initial distribution across the burn-in period. Light green
region represents the 95% confidence interval for the mean naturalness of Wikipedia sentences while grey region
represents the same interval around the stationary distribution of the converged chain. Top row represents chains
that are initialized at high-probability states, while bottom row is initialized in low-probability states.


